
CS720

Logical Foundations of Computer Science

Lecture 16: Small-step semantics

Tiago Cogumbreiro

CS720: Lecture 16 �� Tiago Cogumbreiro 1 / 21

Overview
Introduction of small-step semantics

Normalization of terms

Relationship between small-step and big-step semantics.

CS720: Lecture 16 �� Tiago Cogumbreiro 2 / 21

Revisiting arithmetic semantics
A language with constants and a plus-operator:

How do we represent an evaluation function for a term, say ?

t ::= n ∣ t ⊕ t

eval(t)

CS720: Lecture 16 �� Tiago Cogumbreiro 3 / 21

Revisiting arithmetic semantics
A language with constants and a plus-operator:

How do we represent an evaluation function for a term, say ?

How do we represent as a relation ?

t ::= n ∣ t ⊕ t

eval(t)

eval(n) = n

eval(t ⊕1 t) =2 eval(t) +2 eval(t)2

eval(t) t ⇓ n

CS720: Lecture 16 �� Tiago Cogumbreiro 3 / 21

Revisiting arithmetic semantics
A language with constants and a plus-operator:

How do we represent an evaluation function for a term, say ?

How do we represent as a relation ?

t ::= n ∣ t ⊕ t

eval(t)

eval(n) = n

eval(t ⊕1 t) =2 eval(t) +2 eval(t)2

eval(t) t ⇓ n

n ⇓ n t ⊕ t ⇓ n + n 1 2 1 2

t ⇓ n t ⇓ n 1 1 2 2

CS720: Lecture 16 �� Tiago Cogumbreiro 3 / 21

Small-step operational semantics
The idea is to model computation similar to how a computer (or an abstract machine) would
run.

We want to model the smallest step of computation (capture each tick the machine does).

In big step semantics, we are only interested in the outcome of a computation. In small step
semantics, we are interested in how the execution unfolds.

A big-step semantics execution can be encoded as a sequence of multiple steps in small-
step semantic.

 (P-const) (P-left)
n ⊕ n ⇒ n + n 1 2 1 2 t ⊕ t ⇒ t ⊕ t 1 2 1

′
2

t ⇒ t 1 1
′

(P-right)
n ⊕ t ⇒ n ⊕ t 1 2 1 2

′
t ⇒ t 2 2

′

CS720: Lecture 16 �� Tiago Cogumbreiro 4 / 21

Example
Step 1:

Step 2:

Step 3:

We may just write the short-hand notation:

(P-left)
(0 ⊕ 3) ⊕ (2 ⊕ 4) ⇒ 3 ⊕ (2 ⊕ 4)

 (P-const)
0 ⊕ 3 ⇒ 3

(P-right)
3 ⊕ (2 ⊕ 4) ⇒ 3 ⊕ 6

 (P-const)
2 ⊕ 4 ⇒ 6

(P-const)
3 ⊕ 6 ⇒ 9

(0 ⊕ 3) ⊕ (2 ⊕ 4) ⇒ 3 ⊕ (2 ⊕ 4) ⇒ 3 ⊕ 6 ⇒ 9

CS720: Lecture 16 �� Tiago Cogumbreiro 5 / 21

Abstracting a binary relation
Notice how our small-step semantics always only has a unique "output". In such a case,
we say that a relation is deterministic. That is, a deterministic relation describes an
injective function.

De�nition (deterministic relation). If and , then .t ⇒1 t 2 t ⇒1 t2
′ t =2 t 2

′

CS720: Lecture 16 �� Tiago Cogumbreiro 6 / 21

Deterministic relations
Theorem. is deterministic.

Can you come up with a way to make non-deterministic?

⇒

⇒

CS720: Lecture 16 �� Tiago Cogumbreiro 7 / 21

Deterministic relations
Theorem. is deterministic.

Can you come up with a way to make non-deterministic?

⇒

⇒

 (P-const) (P-left)
n ⊕ n ⇒ n + n 1 2 1 2 t ⊕ t ⇒ t ⊕ t 1 2 1

′
2

t ⇒ t 1 1
′

(P-right)
t ⊕ t ⇒ t ⊕ t 1 2 1 2

′
t ⇒ t 2 2

′

CS720: Lecture 16 �� Tiago Cogumbreiro 7 / 21

Deterministic relations
Theorem. is deterministic.

Can you come up with a way to make non-deterministic?

⇒

⇒

 (P-const) (P-left)
n ⊕ n ⇒ n + n 1 2 1 2 t ⊕ t ⇒ t ⊕ t 1 2 1

′
2

t ⇒ t 1 1
′

(P-right)
t ⊕ t ⇒ t ⊕ t 1 2 1 2

′
t ⇒ t 2 2

′

(0 ⊕ 3) ⊕ (2 ⊕ 4) ⇒ 3 ⊕ (2 ⊕ 4)
(0 ⊕ 3) ⊕ (2 ⊕ 4) ⇒ (0 ⊕ 3) ⊕ 6

CS720: Lecture 16 �� Tiago Cogumbreiro 7 / 21

Small-step semantics as an abstract machine
We can think of the execution of an expression as:

1. The state of the machine is a term

2. A step of the machine performs an atomic unit of computation (eg, evaluates one
addition in a sub-expression)

3. The machine halts when it cannot perform any more steps.

Here is an inductive de�nition of :

t

value

(V-nat)
value(n)

CS720: Lecture 16 �� Tiago Cogumbreiro 8 / 21

Exercise
Which of these are provable?

value(10)
value(10 ⊕ 2)
∃n, value(n ⊕ 10)

CS720: Lecture 16 �� Tiago Cogumbreiro 9 / 21

Revisiting our small-step semantics

By convention we write a value (a halted state) as .v

 (P-const) (P-right)
n ⊕ n ⇒ n + n 1 2 1 2 t ⊕ t ⇒ t ⊕ t 1 2 1

′
2

t ⇒ t 1 1
′

 (P-left)
v ⊕ t ⇒ t ⊕ t 1 2 1 2

′
value(v) t ⇒ t 1 2 2

′

CS720: Lecture 16 �� Tiago Cogumbreiro 10 / 21

Strong Progress
Is our semantics always able to perform a step?

CS720: Lecture 16 �� Tiago Cogumbreiro 11 / 21

Strong Progress
Is our semantics always able to perform a step? No. When a term is a value, then there is
no rule that we can apply to perform a step.

If the term is not a vale, is it always able to perform a step?

CS720: Lecture 16 �� Tiago Cogumbreiro 11 / 21

Strong Progress
Is our semantics always able to perform a step? No. When a term is a value, then there is
no rule that we can apply to perform a step.

If the term is not a vale, is it always able to perform a step? Yes.

Theorem (Strong Progress). Given a single-step relation and a notion of value .

Any term is either a value or it reduces .

A language may not enjoy progress because we "forgot" to write a rule for a given
command. Example: extend the grammar to include the minus-operator, but do not
update the small-step semantics.

In concurrency theory, the notion of progress may capture the notion of deadlock
freedom (ie, there is always a task that can perform an action, or all tasks are idle).
Thus, many concurrent languages do not enjoy progress.

A language may not reduce because there are type-mismatch errors.

(⇒) value
t value(t) ∃t , t ⇒′ t′

CS720: Lecture 16 �� Tiago Cogumbreiro 11 / 21

Thinking of the state in terms of steps
If a language enjoys progress, then we can always perform a step until we reach a value.

Can we perform a step on a value?

What do we call a term where there are no further steps?

CS720: Lecture 16 �� Tiago Cogumbreiro 12 / 21

Normal Form
Normal form. A term that cannot perform any step (ie, make any progress).

In our language, are all values in the normal form? Are all normal form terms a value?

nf(t) := ¬∃t , t ⇒′ t′

CS720: Lecture 16 �� Tiago Cogumbreiro 13 / 21

Normal Form
Normal form. A term that cannot perform any step (ie, make any progress).

In our language, are all values in the normal form? Are all normal form terms a value? Yes!

Theorem. .

This is a non-trivial result, depending on the language:

One captures the notion of a halted state syntactically (a value)

The other captures the notion of a halted state semantically (in terms of)

nf(t) := ¬∃t , t ⇒′ t′

value(t) ⟺ nf(t)

⇒

CS720: Lecture 16 �� Tiago Cogumbreiro 13 / 21

Multi-Step Reduction
Our goal is to relate big-step and small-step semantics.

This family of relations is also known as the (re�exive) transitive-closure of a relation.

The multi-step reduction can be though of describing all states that can be reached
from a given starting state.

 (R-refl) (R-step)
t ⇒ t⋆ t ⇒ t 1

⋆
3

t ⇒ t t ⇒ t 1 2 2
⋆

3

CS720: Lecture 16 �� Tiago Cogumbreiro 14 / 21

Exercise
Recall the following propositions:

 reaches which terms?

(0 ⊕ 3) ⊕ (2 ⊕ 4) ⇒ 3 ⊕ (2 ⊕ 4) ⇒ 3 ⊕ 6 ⇒ 9

(0 ⊕ 3) ⊕ (2 ⊕ 4)

CS720: Lecture 16 �� Tiago Cogumbreiro 15 / 21

Exercise
Recall the following propositions:

 reaches which terms?

(0 ⊕ 3) ⊕ (2 ⊕ 4) ⇒ 3 ⊕ (2 ⊕ 4) ⇒ 3 ⊕ 6 ⇒ 9

(0 ⊕ 3) ⊕ (2 ⊕ 4)

(0 ⊕ 3) ⊕ (2 ⊕ 4) ⇒⋆ (0 ⊕ 3) ⊕ (2 ⊕ 4)
(0 ⊕ 3) ⊕ (2 ⊕ 4) ⇒⋆ 3 ⊕ (2 ⊕ 4)
(0 ⊕ 3) ⊕ (2 ⊕ 4) ⇒⋆ 3 ⊕ 6
(0 ⊕ 3) ⊕ (2 ⊕ 4) ⇒⋆ 9

CS720: Lecture 16 �� Tiago Cogumbreiro 15 / 21

The normal form of a term

What is the normal form of ?

t nfof t :′ = t ⇒⋆ t ∧′ nf(t)′

(0 ⊕ 3) ⊕ (2 ⊕ 4)

CS720: Lecture 16 �� Tiago Cogumbreiro 16 / 21

The normal form of a term

What is the normal form of ?

De�nition (normalizing). We say that a relation, say , is normalizing if, and only if, we can

always �nd a normal form of .

Is normalizing?

t nfof t :′ = t ⇒⋆ t ∧′ nf(t)′

(0 ⊕ 3) ⊕ (2 ⊕ 4)

(0 ⊕ 3) ⊕ (2 ⊕ 4) nfof 9

⇒
t

⇒

CS720: Lecture 16 �� Tiago Cogumbreiro 16 / 21

The normal form of a term

What is the normal form of ?

De�nition (normalizing). We say that a relation, say , is normalizing if, and only if, we can

always �nd a normal form of .

Is normalizing? Yes.

Theorem. is normalizing.

t nfof t :′ = t ⇒⋆ t ∧′ nf(t)′

(0 ⊕ 3) ⊕ (2 ⊕ 4)

(0 ⊕ 3) ⊕ (2 ⊕ 4) nfof 9

⇒
t

⇒

⇒

CS720: Lecture 16 �� Tiago Cogumbreiro 16 / 21

Normalizing languages
In practice, a normalizing language is one where programs are guaranteed to terminate, by
design.

Do you know any normalizing language?

CS720: Lecture 16 �� Tiago Cogumbreiro 17 / 21

Normalizing languages
In practice, a normalizing language is one where programs are guaranteed to terminate, by
design.

Do you know any normalizing language?

Yes! Coq de�nitions are guaranteed to terminate. The Calculus of Constructions, which Coq
implements, enjoys a normalizing semantics.

See also Dhall, a con�guration programming language, for when you need controlled
�exibility.

CS720: Lecture 16 �� Tiago Cogumbreiro 17 / 21

http://prosecco.gforge.inria.fr/personal/hritcu/temp/snforcc.pdf
https://github.com/dhall-lang/dhall-lang

Can we relate small-step semantics

and big-step semantics now?

18 / 21

Relating small-step and big-step semantics
Theorem 1. If , then .

Theorem 2. If , then .

Suggestion: Regarding Theorem 2, you might want to prove �rst that if , then

. And then show that, if , then .

t ⇓ n t ⇒⋆ n

t nfof t′ ∃n, t =′ n ∧ t ⇓ n

t nfof t′

∃n, t =′ n t ⇒⋆ n t ⇓ n

CS720: Lecture 16 �� Tiago Cogumbreiro 19 / 21

Workshop
Theorem step_deterministic:
 deterministic step.

Theorem strong_progress : forall t,
 value t \/ (exists t', t ==> t').

Lemma value_is_nf : forall v,
 value v -> normal_form step v.

Lemma nf_is_value : forall t,
 normal_form step t -> value t.

Theorem step_normalizing : (* By induction on [t]. *)
 normalizing step. (* It is crucial to replace a nf by a value. *)
 (* P t1 t2 ==>* P (C n1) t2 ==>* P (C n1) (C n2) ==>* C (n1 + n2) *)

CS720: Lecture 16 �� Tiago Cogumbreiro 20 / 21

Summary
Small-step semantics

Deterministic relations

Progress

Normal forms

Normalizing semantics

Relating small-step and big-step semantics

CS720: Lecture 16 �� Tiago Cogumbreiro 21 / 21

