

#### Logical Foundations of Computer Science

Lecture 10: Inductive propositions

Tiago Cogumbreiro

## Summary

- How is Coq being used in research
- Exercises on inductive propositions
- Proofs by reflection



#### Projects that use Coq

- <u>Coq Proof of the Four Color Theorem</u> (Georges Gonthier, 2008) (Proposed in 1852, first proof in 1976 by Appel and Haken, proved in Coq in 2005). Four colors suffice to color any flat map.
- <u>CompCert</u> (2009): "CompCert is the first commercially available optimizing compiler that is formally verified, using machine assisted mathematical proofs, to be free from mis-compilation."
- Programming language formalization: <u>Rust</u> (2015), <u>Haskell</u> (2018)
- <u>Verdi</u> (2015): Verdi is a framework from the University of Washington to implement and formally verify distributed systems.
- <u>A Formal Proof of the Expressiveness of Deep Learning</u> (2017): A Formal Proof of the Expressiveness of Deep Learning.
- Coq: The world's best macro assembler (2013)



#### Projects that use Coq @ UMB

- <u>Deadlock Avoidance in Parallel Programs with Futures</u> (2017): formalized a task parallel programming model and the result that Data-Race-Freedom implies Deadlock-Freedom.
- <u>Dynamic Deadlock Verification for General Barrier Synchronisation</u> (2019): formalized phaser semantics and the notion of deadlock
- <u>Checking Data-Race Freedom of GPU Kernels, Compositionally</u> (2021): formalized GPU program semantics and our data-race-freedom analysis
- <u>Formalizing the Introduction to the Theory of Computation</u> (unpublished): decidability/undecidability results (eg, halting problem, Rice's theorem, etc). Rice's Theorem was proved by Kleopatra Ginji, an undergraduate student here at UMB.



Proofs are code

# Proofs by induction Derivation versus data

#### Recall the definition on even numbers

```
ev_SS : forall n : nat, ev n \rightarrow ev (S (S n)).
```



#### Let us prove that these two propositions are equivalent

```
Theorem evenb_to_ev:
 forall n,
 evenb n = true \rightarrow
 ev n.
  (* Hint: use [even_bool_prop]; no need for induction. *)
Theorem ev to evenb:
 forall n,
 ev n →
 evenb n = true.
Theorem ev_iff_evenb:
 forall n,
 ev n \leftrightarrow evenb n = true.
```



# Proofs by reflection

#### Reflection

We say that a proposition is reflected by a boolean value according to the following definition.

```
Inductive reflect (P : Prop) : bool → Prop :=
| ReflectT : P → reflect P true
| ReflectF : ~ P → reflect P false.
```

```
Theorem iff_reflect : forall P b, (P \leftrightarrow b = true) \rightarrow reflect P b.

Theorem reflect_iff : forall P b, reflect P b \rightarrow (P \leftrightarrow b = true). (* Homework*)
```

Let us prove that ev n reflects evenb n.

Lemma ev\_reflect : forall n, reflect (ev n) (evenb n).



#### Recall proving that 6 is even

It is much easier to compute that 6 is even, than to derive a proposition for it.

```
Theorem ev_6: ev 6.
Proof.
apply ev_SS, ev_SS, ev_SS, ev_0.
Qed.
Theorem evenb_6: evenb 6 = true.
reflexivity.
Qed.
```



#### Prove that 6 is even with reflection

```
Lemma reflect_true:
  forall P,
  reflect P true \rightarrow
  Ρ.
Proof.
  intros.
  inversion H.
  apply H0.
Qed.
Theorem ev_6_reflect: ev 6.
Proof.
 apply (reflect_true (ev 6) (ev_reflect 6)).
Qed.
```



#### Proof by Reflection

The term reflection applies because we will need to **translate Gallina propositions into values of inductive types** representing syntax, so that Gallina programs may analyze them, and **translating such a term back to the original form** is called reflecting it.

- <u>Certified Programming with Dependent Types</u> A bit more than what we have seen so far...



#### Reflecting the Logical And

Lemma reflect\_and:
 forall P b1 Q b2,
 reflect P b1 →
 reflect Q b2 →
 reflect (P /\ Q) (andb b1 b2).



#### Reflecting the Logical Or

Lemma reflect\_or:
 forall P b1 Q b2,
 reflect P b1 →
 reflect Q b2 →
 reflect (P \/ Q) (orb b1 b2).



#### A mini-language of expressions

```
Inductive Lang :=

| Eq: nat \rightarrow nat \rightarrow Lang (* x = n *)

| Even: nat \rightarrow Lang (* ev n *)

| And: Lang \rightarrow Lang \rightarrow Lang (* P / Q *)

| Or: Lang \rightarrow Lang \rightarrow Lang. (* P / Q *)
```



## Evaluate our mini-language

```
Fixpoint eval (exp:Lang) :=
  match exp with
    | Eq n m ⇒ beq_nat n m
    | Even n ⇒ evenb n
    | And l r ⇒ andb (eval 1) (eval r)
    | Or l r ⇒ orb (eval 1) (eval r)
    end.
```

```
Goal eval (Or (Even 3) (Eq 3 3)) = true.
  reflexivity.
Qed.
```



#### Generate a proposition

```
Fixpoint as_prop (exp:Lang) :=
  match exp with
    | Eq n m ⇒ n = m
    | Even n ⇒ ev n
    | And l r ⇒ as_prop l /\ as_prop r
    | Or l r ⇒ as_prop l \/ as_prop r
  end.
```

```
Goal as_prop (Or (Even 3) (Eq 3 3)).
    (* ev 3 \/ 3 = 3 *)
    simpl.
    right.
    reflexivity.
Qed.
```



#### Show that our language is reflective

```
Lemma reflect_lang:
   forall p,
   reflect (as_prop p) (eval p).
Goal ev 3 \/ 3 = 3.
   assert (H:=reflect_lang (Or (Even 3) (Eq 3 3))).
   apply reflect_true, H.
Qed.
```



#### Automating the translation

```
Ltac trans P :=
  match P with
    | ?P1 /\ ?P2 ⇒
      let t1 := trans P1 in
      let t2 := trans P2 in constr:(And t1 t2)
     ev ?x \Rightarrow constr:(Even x)
    | ?P1 \/ ?P2 ⇒
      let t1 := trans P1 in
      let t2 := trans P2 in constr:(Or t1 t2)
     | ?x = ?y \Rightarrow constr:(Eq x y)
  end.
```

```
Goal ev 3 \/ 3 = 3.
let t := trans (ev 3 \/ 3 = 3) in
assert (H:= reflect_lang t).
```



#### Automating the translation

```
Ltac solve :=
  match goal with
    | [ |- ?P ] ⇒
    let t := trans P in
    let H := fresh "H" in
    assert (H := reflect_lang t);
    apply reflect_true, H
end.
```

```
Goal ev 3 \/ 3 = 3.
    solve.
Qed.
```



#### Summary on Proof by Reflection

- Reflection establishes a deep connection between a proposition and the function that decides it
- We can leverage Ltac to automate trivial operations and build solvers (*Not covered in this course.*)



#### Exercises on Less-Than

#### Prove that

- 1. < is transitive
- 2. < is irreflexive
- 3. <mark><</mark> is asymmetric
- 4. < is decidable



## Summary

- We looked at Coq being used in research
- Exercises on inductive propositions
- A deep dive in proofs by reflection

