CS720

Logical Foundations of Computer Science

Lecture 9: Inductive propositions
Tiago Cogumbreiro

Building propositions with data structures (inductively)

Enumerated propositions

Types vs propositions

Inductive bit : Type $:=$ on | off.
Definition bool_to_bit (b:bool) : bit :=
match b with
| true \Rightarrow on
false \Rightarrow off
end.
Definition bit_to_bool (b:bit) : bool := match b with
on \Rightarrow true
| off \Rightarrow false
end.
Goal
forall b, bool_to_bit (bit_to_bool b) = b.

Examples

- What is a value of bit?

Examples

- What is a value of bit? example, off.
- What is a value of bit \rightarrow bit?

Examples

- What is a value of bit? example, off.
- What is a value of bit \rightarrow bit? example, fun (b:bit) \Rightarrow if b then off else on
- What is a value of bool \rightarrow bit?

Examples

- What is a value of bit? example, off.
- What is a value of bit \rightarrow bit? example, fun (b:bit) \Rightarrow if b then off else on
- What is a value of bool \rightarrow bit? example, fun (b:bool) \Rightarrow if b then on else off

Enumerated propositions

Inductive Bit : Prop := On | Off.
Definition bool_to_Bit (b:bool) : Bit :=
match b with
| true \Rightarrow On
| false \Rightarrow Off
end.
Definition Bit_to_bool (b:Bit) : bool := match b with
| $\mathrm{On} \Rightarrow$ true
| Off \Rightarrow false
end.

- Propositions cannot be the target of match

Boston

Examples of propositions and their proofs

- Goal Bit.

Examples of propositions and their proofs

- Goal Bit. You can always prove bit. Example, on
- Goal Bit \rightarrow Bit.

Examples of propositions and their proofs

- Goal Bit. You can always prove bit. Example, on
- Goal Bit \rightarrow Bit. If you have bit, then you can conclude bit. Example, intros H. apply H.
- Goal forall b:Bit, b.

Examples of propositions and their proofs

- Goal Bit. You can always prove bit. Example, on
- Goal Bit \rightarrow Bit. If you have bit, then you can conclude bit. Example, intros H. apply H.
- Goal forall b:Bit, b. Error! Variable b is a value of Bit, an evidence. Cannot be used as a proposition (Bit is a proposition!)
- Goal forall b:Bit, Bit.

Examples of propositions and their proofs

- Goal Bit. You can always prove bit. Example, on
- Goal Bit \rightarrow Bit. If you have bit, then you can conclude bit. Example, intros H. apply H.
- Goal forall b:Bit, b. Error! Variable b is a value of Bit, an evidence. Cannot be used as a proposition (Bit is a proposition!)
- Goal forall b:Bit, Bit. If you have bit, then you can conclude bit. Example, intros H. apply H.
- Goal Bit \leftrightarrow True.

Examples of propositions and their proofs

- Goal Bit. You can always prove bit. Example, on
- Goal Bit \rightarrow Bit. If you have bit, then you can conclude bit. Example, intros H. apply H.
- Goal forall b:Bit, b. Error! Variable b is a value of Bit, an evidence. Cannot be used as a proposition (Bit is a proposition!)
- Goal forall b:Bit, Bit. If you have bit, then you can conclude bit. Example, intros H. apply H.
- Goal Bit \leftrightarrow True. Whenever you have Bit, you can conclude True, and vice versa. We are not saying that Bit is True.

Insights

- Propositions are restricted in how you can
- Equivalence between A and B, means A is provable whenever B is provable.
- Theorems are just definitions, where we don't care about how it was proved (the code), just that it can be proved

Composite inductive propositions

Disjunction

Inductive or (A B : Prop) : Prop :=
| or_introl :
A \rightarrow
or A B
| or_intror:
B \rightarrow
or A B

Conjunction

Inductive and (P Q : Prop) : Prop :=
| conj :
P \rightarrow
Q \rightarrow
and P Q.

Adding parameters to predicates

Inductive Bar : nat \rightarrow Prop :=
| C : Bar 1
D : Bar 2.

Adding parameters to predicates

Inductive Bar : nat \rightarrow Prop :=
| C : Bar 1
D : forall n, Bar (S n).

Goal forall n,
Bar $n \rightarrow$
n <> 0 .

Alternative definition of Bar

Definition Bar2 n : Prop := n <> 0 .

Existential

```
Inductive sig ( \(A:\) Type) ( \(P: A \rightarrow\) Prop) : Type :=
    | exist : forall x : A,
        P x \(\rightarrow\)
        sig A P.
```

Recursive inductive propositions

Recall the functional definition of In

Fixpoint In \{A: Type\} (x : A) (l : list A) : Prop := match l with
| [] \Rightarrow False
| $\mathrm{x}^{\prime}:: \mathrm{l}^{\prime} \Rightarrow \mathrm{x}^{\prime}=\mathrm{x}$ \/In $\mathrm{x} \mathrm{l}^{\prime}$
end.

Defining In inductively

Inductive In \{A:Type\} : $A \rightarrow$ list $A \rightarrow$ Prop :=

Defining In inductively

Inductive In \{A:Type\} : $A \rightarrow$ list $A \rightarrow$ Prop $:=$

| in_eq:
forall $\times 1$,
In x ($x:: 1$)
| in_cons:
forall x y l,
In $\mathrm{x} 1 \rightarrow$
In $x(y:: 1)$.

Fixed parameters in inductive propositions

Inductive In' $\{A:$ Type $\}(x: A)$: list $A \rightarrow$ Prop $:=$
| in_eq: forall l, In' x ($x:: 1$)
| in_cons:
forall y l,
In' $^{\prime} \times 1 \rightarrow$
In' $^{\prime} x(y:: 1)$.

Proofs by induction on the derivation

Lemma in_in':
forall (A:Type) (x:Type) l, In' x l \rightarrow In $\times 1$.
Proof.
intros.
induction H .

McCarthy 91 function

- McCarthy's 91 function

$$
\begin{gathered}
M(n)=n-10 \text { if } n>100 \\
M(n)=M(M(n+11)) \text { if } n \leq 100
\end{gathered}
$$

Inductive McCarthy91: nat \rightarrow nat \rightarrow Prop $:=$
| mc_carthy_91_gt:
forall n,
$\mathrm{n}>100 \rightarrow$
McCarthy91 n (n - 10)
| mc_carthy_91_le:
forall n 0 m ,
$\mathrm{n} \leq 100 \rightarrow$
McCarthy91 (n + 11) m \rightarrow
McCarthy91 m o \rightarrow
McCarthy91 n o.

Exercise

Let us define even numbers inductively...

| In the world of propositions, what is a signature of a number being even?

Exercise

Let us define even numbers inductively...

| In the world of propositions, what is a signature of a number being even?

Inductive ev: nat \rightarrow Prop

Exercise

Let us define even numbers inductively...

| In the world of propositions, what is a signature of a number being even?

Inductive ev: nat \rightarrow Prop

- 0 is even
- If n is even, then $2+n$ is also even.

Inductively defined even

| In Logic, the constructors ev_0 and ev_SS of propositions can be called inference rules.

```
Inductive ev: nat }->\mathrm{ Prop :=
(* Rule 1: *)
| ev_0:
    ev 0
(* Rule 2: *)
| ev_SS: forall n,
    ev n }
(*------------*)
    ev (S (S n)).
```

Which can be typeset as an inductive definition with the following notation:

$$
\overline{\mathrm{ev}(0)} \mathrm{ev} _0 \quad \frac{\mathrm{ev}(n)}{\mathrm{ev}(\mathrm{~S}(\mathrm{~S}(n)))} \mathrm{ev} \mathrm{v}_{-} \mathrm{SS}
$$

Proving that 4 is even

$$
\begin{aligned}
& \overline{\text { ev } 0} \text { ev_0 } \\
& \overline{\text { ev } 2} \text { ev_SS } \\
& \overline{\text { ev } 4} \text { ev_SS }
\end{aligned}
$$

Backward style: From ev_SS we can conclude that 4 is even, if we can show that 2 is even, which follows from ev_SS and the fact that 0 is even (by ev_0).
Forward style: From the fact that 0 is even (ev_0), we use theorem ev_SS to show that 2 is even; so, applying theorem ev_SS to the latter, we conclude that 4 is even.

Goal ev 4.
Proof. (* backward style proof *) apply eq_SS. apply eq_SS. apply ev_0.
Qed.
Goal ev 4.
Proof. (* forward style proof *) apply (ev_SS 2 (ev_SS 0 ev_0)). Qed.

Reasoning about inductive propositions

Theorem evSS : forall n, $\mathrm{ev}(\mathrm{S}(\mathrm{S} n)) \rightarrow \mathrm{ev} \mathrm{n}$.
(Done in class.)

Example

Goal ~ ev 3.
(Done in class.)

Proofs by induction

Goal forall n, ev $n \rightarrow \sim e v(S n)$.
(Done in class.)

Proofs by induction

```
Goal forall n, ev n }->~\textrm{ev}(\textrm{S}n)
```


(Done in class.)

| Notice the difference between induction on n and on judgment ev n.

Relations in Coq

```
Inductive le \(:\) nat \(\rightarrow\) nat \(\rightarrow\) Prop \(:=\)
    | le_n :
        forall n,
        le \(n\) n
    | le_S :
        forall n m,
        le \(\mathrm{n} \mathrm{m} \rightarrow\)
        le n (S m).
Notation "n \(\leq m\) " := (le n m).
```


Exercise

Goal $3 \leq 6$.

UMass
Boston

Less-than

Definition lt (m :nat) := le (S n) m.
| How do we prove that this definition is correct?

Less-than

Definition lt (n m:nat) := le (S n) m.
| How do we prove that this definition is correct?
Goal $n \leq m \longleftrightarrow$ lt $n m / / n=m$.

Less-than

| How can we define Less-Than inductively?

Less-than

| How can we define Less-Than inductively?

```
Inductive lt : nat }->\mathrm{ nat }->\mathrm{ Prop :=
    | lt_base :
        forall n,
        lt n (S n)
    | lt_S :
        forall n m,
        lt n m ->
        lt n (S m).
Notation "n < m" := (lt n m).
```

| How do we prove that this definition is correct?

Exercises on Less-Than

| Prove that

1. < is transitive
2. < is irreflexive
3. < is asymmetric
4. < is decidable
