CS720

Logical Foundations of Computer Science

Lecture 3: induction

Tiago Cogumbreiro

Today we will learn...

- about proofs with recursive data structures
- how to use induction in Coq
- how to infer the induction principle
- about the difference between informal and mechanized proofs

Compile Basic.v

CoqIDE:

- Open Basics.v. In the "Compile" menu, click on "Compile Buffer".

Console:

- make Basics.vo

Example: prove this lemma (1/4)

Theorem plus_n_0 : forall n:nat, $\mathrm{n}=\mathrm{n}+0$. Proof.

Example: prove this lemma (1/4)

Theorem plus_n_0 : forall n:nat, $\mathrm{n}=\mathrm{n}+0$.
Proof.
Tactic simpl does nothing.

Example: prove this lemma (1/4)

Theorem plus_n_0 : forall n:nat, $\mathrm{n}=\mathrm{n}+0$.
Proof.
Tactic simpl does nothing. Tactic reflexivity fails.

Example: prove this lemma (1/4)

Theorem plus_n_0 : forall n:nat, $\mathrm{n}=\mathrm{n}+0$.
Proof.
Tactic simpl does nothing. Tactic reflexivity fails. Apply destruct n.
2 subgoals

```
---------------------------------------------
0 = 0 + 0
-------------------------------------------}(2/2
S n = S n + 0
```


Example: prove this Iemma (2/4)

After proving the first, we get
1 subgoal
n : nat

$S n=S n+0$
Applying simpl yields:
1 subgoal
n : nat

$S n=S(n+0)$

Example: prove this Iemma (2/4)

After proving the first, we get
1 subgoal
n : nat

$S n=S n+0$
Applying simpl yields:
1 subgoal
n : nat

$S n=S(n+0)$
Tactic reflexivity fails and there is nothing to rewrite.

We need an induction principle of nat

For some property P we want to prove.

- Show that $P(0)$ holds.
- Given the induction hypothesis $P(n)$, show that $P(n+1)$ holds.

Conclude that $P(n)$ holds for all n.

Example: prove this Iemma (3/4)

Apply induction n.
2 subgoals

How do we prove the first goal?
Compare induction n with destruct n.

Example: prove this Iemma (4/4)

After proving the first goal we get
1 subgoal
n : nat
IHn : n = n + 0
---(1/1)
Sn=Sn+0
applying simpl yields
1 subgoal
n : nat
IHn : n = n + 0

$S n=S(n+0)$
| How do we conclude this proof?

Intermediary results

```
Theorem mult_0_plus' : forall n m : nat,
    (0 + n) * m = n * m.
Proof.
    intros n m.
    assert (H: 0 + n = n). { reflexivity. }
    rewrite }->\mathrm{ H.
    reflexivity. Qed.
```

- H is a variable name, you can pick whichever you like.
- Your intermediary result will capture all of the existing hypothesis.
- It may include forall.
- We use braces $\{$ and $\}$ to prove a sub-goal.

Formal versus informal proofs

- The objective of a mechanical (formal) proofs is to convince the proof checker.
- The objective of an informal proof is to convince (logically) the reader.
- Itac proofs are imperative, assume the reader can step through
- In informal proofs we want to help the reader reconstruct the proof state.

An example of an ltac proof

Theorem plus_assoc : forall $n \mathrm{~m} p$: nat, $n+(m+p)=(n+m)+p$.
Proof.
intros $n \mathrm{~m}$ p. induction n as $\left[\mid \mathrm{n}^{\prime} \mathrm{IHn}{ }^{\prime}\right]$.

- reflexivity.
- simpl. rewrite \rightarrow IHn'. reflexivity. Qed.

1. The proof follows by induction on n.

An example of an ltac proof

Theorem plus_assoc : forall $n \mathrm{~m} p$: nat, $n+(m+p)=(n+m)+p$.
Proof.
intros $\mathrm{n} m \mathrm{p}$. induction n as $\left[\mid \mathrm{n}^{\prime} \mathrm{IH} n^{\prime}\right]$.

- reflexivity.
- simpl. rewrite \rightarrow IHn'. reflexivity. Qed.

1. The proof follows by induction on n.
2. In the base case, we have that $n=0$. We need to show $0+(m+p)=0+m+p$, which follows by the definition of + .

An example of an ltac proof

Theorem plus_assoc : forall $n \mathrm{~m} p$: nat, $n+(m+p)=(n+m)+p$.
Proof.
intros $n \mathrm{~m}$ p. induction n as $\left[\mid \mathrm{n}^{\prime} \mathrm{IHn}{ }^{\prime}\right]$.

- reflexivity.
- simpl. rewrite \rightarrow IHn'. reflexivity. Qed.

1. The proof follows by induction on n.
2. In the base case, we have that $n=0$. We need to show $0+(m+p)=0+m+p$, which follows by the definition of + .
3. In the inductive case, we have $n=\mathrm{S} n^{\prime}$ and must show $S n^{\prime}+(m+p)=S n^{\prime}+m+p$.

From the definition of + it follows that $\mathrm{S}\left(n^{\prime}+(m+p)\right)=\mathbf{S}\left(n^{\prime}+m+p\right)$.
The proof concludes by applying the induction hypothesis $n^{\prime}+(m+p)=n^{\prime}+m+p$.

How do we define a data structure that holds two nats?

A pair of nats

Inductive natprod : Type :=
| pair : nat \rightarrow nat \rightarrow natprod.
Notation "(x, y)" := (pair x y).

Explicit vs implicit: be cautious when declaring notations, they make your code harder to understand.

How do we read the contents of a pair?

Accessors of a pair

Accessors of a pair

Definition fst (p : natprod) : nat :=

Accessors of a pair

```
Definition fst (p : natprod) : nat :=
    match p with
    | pair x y \(\Rightarrow \mathrm{x}\)
    end.
Definition snd (p : natprod) : nat :=
match p with
| \((\mathrm{x}, \mathrm{y}) \Rightarrow \mathrm{y}\) (* using notations in a pattern to be matched *)
end.
```

How do we prove the correctness of our accessors?
(What do we expect fst/snd to do?)

Proving the correctness of our accessors:

```
Theorem surjective_pairing : forall (p : natprod),
    p = (fst p, snd p).
Proof.
    intros p.
1 \text { subgoal}
p : natprod
----------------------------------------------(1/1)
p = (fst p, snd p)
```

| Does simpl work? Does reflexivity work? Does destruct work? What about induction?

How do we define a list of nats?

A list of nats

Inductive natlist : Type :=
| nil : natlist
| cons : nat \rightarrow natlist \rightarrow natlist.
(* You don't need to learn notations, just be aware of its existence:*)
Notation "x :: l" := (cons x l) (at level 60, right associativity).
Notation "[]" := nil.
Notation "[x ; .. ; y]" := (cons x .. (cons y nil) ..).
Compute cons 1 (cons 2 (cons 3 nil)).
outputs:
$=[1 ; 2 ; 3]$
: list nat

How do we concatenate two lists?

Concatenating two lists

```
Fixpoint app (11 12 : natlist) : natlist :=
    match 11 with
    | nil \(\Rightarrow\) l2
    | h :: t \(\Rightarrow \mathrm{h}::(\mathrm{app} \mathrm{t} 12)\)
end.
```

Notation "x ++ y" := (app x y) (right associativity, at level 60).

Proving results on list concatenation

```
Theorem nil_app_l : forall l:natlist,
    [] ++ l = l.
    Proof.
    intros 1.
```

| Can we prove this with reflexivity? Why?

Proving results on list concatenation

```
Theorem nil_app_l : forall l:natlist,
    [] ++ l = l.
Proof.
    intros 1.
```

【 Can we prove this with reflexivity? Why?
reflexivity.
Qed.

Nil is a neutral element wrt app

```
Theorem nil_app_l : forall l:natlist,
    l ++ [] = 1.
Proof.
    intros l.
```

| Can we prove this with reflexivity? Why?

Nil is a neutral element wrt app

```
Theorem nil_app_l : forall l:natlist,
    l ++ [] = 1.
Proof.
    intros l.
```

| Can we prove this with reflexivity? Why?
In environment
1 : natlist
Unable to unify "l" with "l ++ []".
| How can we prove this result?

We need an induction principle of natlist

For some property P we want to prove.

- Show that $P([])$ holds.
- Given the induction hypothesis $P(l)$ and some number n, show that $P(n:: l)$ holds.

Conclude that $P(l)$ holds for all l.
| How do we know this principle? Hint: compare natlist with nat.

Comparing nats with natlists

```
Inductive natlist : Type :=
    | 0 : natlist
    S : nat \(\rightarrow\) nat.
        | A: T
    B: T \(\rightarrow\) T
1. \(\vdash P(A)\)
2. \(t: T, P(t) \vdash P(B t)\)
Inductive natlist : Type :=
    \(\left\{\begin{array}{l}\text { nil }: \text { natlist } \\ \text { cons }: \text { nat } \rightarrow \text { natlist } \rightarrow \text { natlist. } \quad \left\lvert\, \begin{array}{l}A: T \\ B: X \rightarrow T \rightarrow T\end{array} ~\right.\end{array}\right.\)
    1. \(\vdash P(A)\)
2. \(x: X, t: T, P(t) \vdash P(B t)\)
```


How do we know the induction principle?

Use search

Search natlist.
which outputs
nil: natlist
cons: nat \rightarrow natlist \rightarrow natlist
(* trimmed output *)
natlist_ind:
forall P : natlist \rightarrow Prop,
P [] \rightarrow
(forall ($n:$ nat) (l : natlist), $P l \rightarrow P(n:: l)) \rightarrow$ forall $n:$ natlist, $P n$

Nil is neutral on the right (1/2)

```
Theorem nil_app_r : forall l:natlist,
    l ++ [] = l.
Proof.
    intros l.
    induction l.
    - reflexivity.
```

yields
1 subgoal
n : nat
1 : natlist
IHl : l ++ [] = 1
(n : : $: \mathrm{l})^{++}[]=\mathrm{n}:: \mathrm{l}$

Nil is neutral on the right (2/2)

```
1 subgoal
n : nat
l : natlist
IHl : l ++ [ ] = l
(n :: l) ++ [] = n :: l

\section*{Nil is neutral on the right (2/2)}

1 subgoal
n : nat
l : natlist
IHl : l ++ [ ] = 1
(n :: l) + [ \(]=\mathrm{n}:: \mathrm{l}\)

reflexivity. (* conclude *)
Can we apply rewrite directly without simplifying?
Hint: before and after stepping through a tactic show/hide notations.
How do we state a theorem that leads to the same proof state (without Itac)?```

