

Logical Foundations of Computer Science

Lecture 2: A proof primer

Tiago Cogumbreiro

Programmers program every day

Programmers program every day

- There are no tests, so no way to invest time later.
- You have a **weekly** load of work, don't let it build up.
- To master Coq, you must practice every day.
- Once you master Coq, the course is accessible.

On studying effectively for this course

• Read the chapter before the class:

This way we can direct the class to specific details of a chapter, rather than a more topical end-to-end description of the chapter.

- Attempt to write the exercises before the class: We can cover certain details of a difficult exercise.
- Use the office hours and use Discord: Coq is an unusual programming language, so you will get stuck simply because you are not familiar with the IDE or with a quirk of the language.

On studying effectively for this course

Setup

1. Have CoqIDE available in a computer you have access to

2. Have <u>lf.zip</u> extracted in a directory **you alone** have access to

Homework structure

- 1. Open the homework file with CoqIDE: that file is the chapter we are covering
- 2. Read the chapter and fill in any exercise
- 3. To complete a homework assignment ensure you have 0 occurrences of Admitted (confirm this with Gradescope)
- 4. Make sure you solve all manually-graded exercises (Gradescope won't notify you of this)

Defining enumerate data-types

We can define booleans with Inductive

```
Inductive bool := true | false.
```

(* Use Print to the code of a definition (how a data-type is defined, or a function) *)
Print bool.
(* Inductive bool : Set := true : bool | false : bool. *)
(* Use Check to know of its type *)
Check true.
(* true: bool *)

Defining a function with multiple arguments

A function with multiple arguments

Boolean and (computational, **not** logical)

A function with multiple arguments

Boolean and (computational, **not** logical)

Alternatively,

The forall binder

A proof on basic data-types

Lemma andb_false_1:
 forall (b:bool),
 andb false b = false.
Proof.

A proof on basic data-types

```
Lemma andb_false_1:
   forall (b:bool),
   andb false b = false.
Proof.
```

```
(* Goal: forall b : bool, andb false b = false *)
intros b.
(* Goal: andb false b = false *)
simpl. (* first branch fails because expects | true, true but has false, b *)
        (* second branch succeeds because _ accepts anything: | _, _ ⇒ false *)
        (* Goal: false = false *)
reflexivity.
Qed.
```


The forall binder

- The binder forall (x:T), P ranges over all possible values of T in the context of P
- The tactic intros x must be used to remove a forall (x:T), P in a goal

Case analysis

Proving another theorem

Lemma andb_true_1:
 forall b,
 andb true b = b.
Proof.

Proving another theorem

```
Lemma andb_true_1:
  forall b,
  and b = b.
Proof.
  intros b.
  simpl.
We have:
1 goal
b : bool
              _____(1/1)
match b with
  true ⇒ true
  false ⇒ false
end = b
```


Why can't we use reflexivity?

end".

We have:

```
1 goal
b : bool
    .....(1/1)
match b with
  true ⇒ true
 false ⇒ false
end = b
Issuing reflexivity yields:
In environment
b : bool
Unable to unify "b" with "match b with
                        true ⇒ true
                        false ⇒ false
```


Why are we stuck?

- CoqIDE only knows what we've defined
- We are referring to andb so the source code of andb is what matters (In particular, andb is *not* the logical notion of disjunction, it's just one implementation.)

To understand why it's stuck let us view the code:

Print andb.

We are stuck because we do not know b

b : bool(1/1)
<pre>match b with true ⇒ true</pre>
false ⇒ false
end = b

1 goal

Case analysis

Also known as, proof by exhaustion, proof by cases

In a written proof, can rely on a **case analysis on b** to consider all possible values of b

Case 1

Case analysis

Also known as, proof by exhaustion, proof by cases

In a written proof, can rely on a **case analysis on b** to consider all possible values of b

Case 2

Variable <mark>b</mark> is replaced by true

1 goal _____(1/1) match true with | true ⇒ true (* ← true = true *) | false ⇒ false end = true Variable b is replaced by false
1 goal
.....(1/1)
match false with
| true ⇒ true
| false ⇒ false (* ← false = false *)
end = false

Case analysis

- Case analysis on **b** is done with tactic **destruct b**.
- Each branch is introduced with braces

```
Lemma andb_true_1:
    forall b,
    andb true b = b.
Proof.
    intros b.
    simpl.
    destruct b.
    { (* b = true *) reflexivity. }
    { (* b = false *) reflexivity. }
    Qed.
```


Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

```
Inductive rgb : Type :=
    | red : rgb
    | green : rgb
    | blue : rgb.
```

A **compound type** builds on other existing types. Their constructors accept *multiple parameters*, like functions do.

```
Inductive color : Type :=
    | black : color
    white : color
    primary : rgb → color.
```


Manipulating compound values

```
Definition monochrome (c : color) : bool :=
  match c with
  | black ⇒ true
  | white ⇒ true
  | primary p ⇒ false
  end.
```


Manipulating compound values

```
Definition monochrome (c : color) : bool :=
  match c with
  | black ⇒ true
  | white ⇒ true
  | primary p ⇒ false
  end.
```

We can use the place-holder keyword _ to mean a variable we do not mean to use.

```
Definition monochrome (c : color) : bool :=
  match c with
    | black ⇒ true
    | white ⇒ true
    | primary _ ⇒ false
    end.
```


Allows you to: type-tag, fixed-number of values

Inductive types

Inductive types

How do we describe arbitrarily large/composed values?

Inductive types

How do we describe arbitrarily large/composed values? Here's the definition of natural numbers, as found in the standard library:

```
Inductive nat : Type :=
  | 0 : nat
  | S : nat → nat.
```

- 0 is a constructor of type nat.
 Think of the numeral 0.
- If n is an expression of type nat, then S n is also an expression of type nat.
 Think of expression n + 1.

What's the difference between nat and uint32?

Let us implement is_zero

Recursive functions

Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition. Let us implement addition.

Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition. Let us implement addition.

Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope.

Using **Definition** instead of **Fixpoint** will throw the following error:

The reference eqb was not found in the current environment.

Not all recursive functions can be described. Coq has to understand that one value is getting "smaller."

All functions must be total: all inputs must produce one output. All functions must terminate.

Back to proofs

An example

Example plus_0_4 : 0 + 5 = 4.
Proof.

How do we prove this?

An example

Example plus_0_4 : 0 + 5 = 4.
Proof.

How do we prove this?

- We cannot. This is unprovable, which means we are not able to write a script that proves this statement.
- Coq will **not** tell you that a statement is false.

Example plus_0_5 : 0 + 5 = 5. **Proof**.

How do we prove this? We "know" it is true, but why do we know it is true?

Example plus_ 0_5 : 0 + 5 = 5. **Proof**.

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

1. We can think about the definition of plus.

2. We can brute-force and try the tactics we know (simpl, reflexivity)

Example plus_0_6 : 0 + 6 = 6.
Proof.

How do we prove this?

Example plus_0_6 : 0 + 6 = 6.
Proof.

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural n!

Ranging over all elements of a set

```
Theorem plus_0_n : forall n : nat, 0 + n = n.
Proof.
intros n.
simpl.
reflexivity.
```

Qed.

- Theorem is just an alias for Example and Definition.
- forall introduces a variable of a given type, eg nat; the logical statement must be true for all elements of the type of that variable.
- Tactic intros is the dual of forall in the tactics language

Forall example

Given

1 subgoal

```
.....(1/1)
```

forall n : nat, 0 + n = n

and applying intros n yields

1 subgoal n : nat _____(1/1) 0 + n = n

The **n** is a variable name of your choosing.

Try replacing intros n by intros m.

simpl and reflexivity work under forall

```
1 subgoal
_____(1/1)
forall n : nat, 0 + n = n
Applying simpl yields
1 subgoal
_____(1/1)
forall n : nat, n = n
Applying reflexivity yields
No more subgoals.
```


reflexivity also simplifies terms

1 subgoal

-----(1/1)
forall n : nat, 0 + n = n

Applying reflexivity yields

No more subgoals.

Summary

- simpl and reflexivity work under forall binders
- simpl only unfolds definitions of the *goal*; does not conclude a proof
- reflexivity concludes proofs and simplifies

Multiple pre-conditions in a lemma

```
Theorem plus_id_example : forall n m:nat,
  n = m →
  n + n = m + m.
Proof.
  intros n.
  intros m.
```


Multiple pre-conditions in a lemma

```
Theorem plus_id_example : forall n m:nat,
  n = m \rightarrow
  n + n = m + m.
Proof.
  intros n.
  intros m.
yields
1 subgoal
n, m : nat
  .....(1/1)
n = m \rightarrow n + n = m + m
```


Multiple pre-conditions in a lemma

applying intros H yields

```
1 subgoal

n, m : nat

H : n = m

------(1/1)

n + n = m + m

How do we use H? New tactic: use rewrite \rightarrow H (Ihs becomes rhs)

1 subgoal

n, m : nat

H : n = m

------(1/1)

m + m = m + m
```

How do we conclude? Can you write a **Theorem** that replicates the proof-state above?

Computing equality of naturals

Computing equality of naturals

```
Fixpoint eqb (n1:nat) (n2:nat) : bool :=
  match n1 with
  | 0 ⇒
    match n2 with
    0 \Rightarrow true
     \Rightarrow  false
    end
    S n1' ⇒
    match n2 with
     0 ⇒ false
    | S n2' \Rightarrow eqb n1 n2
    end
  end.
```


How do we prove this example?

```
Require Import Nat.
Theorem plus_1_neq_0_firsttry : forall n : nat,
    eqb (plus n 1) 0 = false.
Proof.
    intros n.

yields
1 subgoal
n : nat
______(1/1)
eqb (plus n 1) 0 = false
```


How do we prove this example?

```
Require Import Nat.
 Theorem plus_1_neq_0_firsttry : forall n : nat,
  eqb (plus n 1) 0 = false.
 Proof.
  intros n.
yields
 1 subgoal
n : nat
                      .....(1/1)
eqb (plus n 1) 0 = false
Apply simpl and it does nothing. Apply reflexivity:
```

```
In environment
n : nat
Unable to unify "false" with "eqb (plus n 1) 0".
```


Q: Why can't eqb (n + 1) be simplified? (Hint: inspect its definition.)

Q: Why can't eqb (n + 1) be simplified? (Hint: inspect its definition.) A: eqb expects the first parameter to be either 0 or S?n, but we have an expression n + 1 (or plus n 1).

Q: Why can't eqb (n + 1) be simplified? (Hint: inspect its definition.)

A: eqb expects the first parameter to be either 0 or S ?n, but we have an expression n + 1 (or plus n 1).

Q: Can we simplify plus n 1?

Q: Why can't eqb (n + 1) be simplified? (Hint: inspect its definition.)

A: eqb expects the first parameter to be either 0 or S ?n, but we have an expression n + 1 (or plus n 1).

Q: Can we simplify plus n 1?

A: No because plus decreases on the first parameter, not on the second!

Case analysis (1/3)

Let us try to inspect value n. Use: destruct n as [| n'].

2 subgoals

eqb (0 + 1) 0 = false (2/2) eqb (S n' + 1) 0 = falseNow we have two goals to prove! 1 subgoal (1/1)

eqb (0 + 1) 0 = false How do we prove this?

Case analysis (2/3)

After we conclude the first goal we get: This subproof is complete, but there are some unfocused goals:

```
-----(1/1)
eqb (S n' + 1) 0 = false
Use another bullet (-).
1 subgoal
n' : nat
------(1/1)
eqb (S n' + 1) 0 = false
```

And prove the goal above as well.

Why can this goal be simplified to false = false?

eqb (S n' + 1) 0 = false

Why can this goal be simplified to false = false?

_____(1/1) eqb (S n' + 1) 0 = false

because S n' + 1 = S (n' + 1) (follows the second branch of plus)
 because eqb (S ...) 0 = false (follows the second branch of eqb)

Recap

- We are currently learning the Logical Foundations (volume 1 of the SF book)
- We are learning a **programming language** that allows us formalize programming languages

What do we mean by formalizing programming languages?

Recap

- We are currently learning the Logical Foundations (volume 1 of the SF book)
- We are learning a **programming language** that allows us formalize programming languages

What do we mean by formalizing programming languages?

A way to describe the abstract syntax (do we know how to do this?)
 A way to describe how language executes (do we know how to do this?)
 A way to describe properties of the language (do we know how to do this?)

