## CS720

## Logical Foundations of Computer Science

## Lecture 2: A proof primer

Tiago Cogumbreiro

Programmers program every day

## Programmers program every day

- There are no tests, so no way to invest time later.
- You have a weekly load of work, don't let it build up.
- To master Coq, you must practice every day.
- Once you master Coq, the course is accessible.


## On studying effectively for this course

- Read the chapter before the class: This way we can direct the class to specific details of a chapter, rather than a more topical end-to-end description of the chapter.
- Attempt to write the exercises before the class: We can cover certain details of a difficult exercise.
- Use the office hours and use Discord: Coq is an unusual programming language, so you will get stuck simply because you are not familiar with the IDE or with a quirk of the language.


## On studying effectively for this course

## Setup

1. Have CoqIDE available in a computer you have access to
2. Have lf.zip extracted in a directory you alone have access to

## Homework structure

1. Open the homework file with CoqIDE: that file is the chapter we are covering
2. Read the chapter and fill in any exercise
3. To complete a homework assignment ensure you have 0 occurrences of Admitted (confirm this with Gradescope)
4. Make sure you solve all manually-graded exercises (Gradescope won't notify you of this)

Recap

## Defining enumerate data-types

## We can define booleans with Inductive

Inductive bool := true | false.
(* Use Print to the code of a definition (how a data-type is defined, or a function) *)
Print bool.
(* Inductive bool : Set := true : bool | false : bool. *)
(* Use Check to know of its type *)
Check true.
(* true: bool *)

## Defining a function with multiple arguments

## A function with multiple arguments

## Boolean and (computational, not logical)

## A function with multiple arguments

## Boolean and (computational, not logical)

```
Definition andb (b1:bool) (b2:bool) : bool :=
    match b1, b2 with
        | true, true \(\Rightarrow\) true
        | _, _ \(\Rightarrow\) false
    end.
Alternatively,
Definition andb (b1:bool) (b2:bool) : bool :=
    match b1, b2 with
        true, true \(\Rightarrow\) true
        false, true \(\Rightarrow\) false
        true, false \(\Rightarrow\) false
        | false, false \(\Rightarrow\) false
    end.
```

The forall binder

## A proof on basic data-types

Lemma andb_false_l:
forall (b:bool),
andb false b = false.
Proof.

## A proof on basic data-types

Lemma andb_false_l:
forall (b:bool),
andb false b = false.
Proof.

```
(* Goal: forall b : bool, andb false b = false *)
intros b.
(* Goal: andb false b = false *)
simpl. (* first branch fails because expects / true, true but has false, b *)
        (* second branch succeeds because _ accepts anything: | _, _ # false *)
(* Goal: false = false *)
reflexivity.
```

Qed.

## The forall binder

- The binder forall ( $\mathrm{x}: \mathrm{T}$ ), P ranges over all possible values of $T$ in the context of $P$
- The tactic intros $x$ must be used to remove a forall $(x: T), P$ in a goal


## Case analysis

## Proving another theorem

Lemma andb_true_l:
forall b,
andb true b = b.
Proof.

## Proving another theorem

Lemma andb_true_l:
forall b,
andb true b = b.
Proof.
intros b.
simpl.
We have:
1 goal
b : bool

```
        (1/1)
match b with
    | true }=>\mathrm{ true
    false }=>\mathrm{ false
end = b
```

Boston

## Why can't we use reflexivity?

We have:
1 goal
b : bool

```
match b with
| true \(\Rightarrow\) true
| false \(\Rightarrow\) false
end \(=b\)
```

Issuing reflexivity yields:

$$
\begin{aligned}
& \text { In environment } \\
& \text { b : bool } \\
& \text { Unable to unify "b" with "match b with } \\
& \qquad \left\lvert\, \begin{array}{l}
\text { true } \Rightarrow \text { true } \\
\text { false } \Rightarrow \text { false } \\
\text { end". }
\end{array}\right.
\end{aligned}
$$

## Why are we stuck?

- CoqIDE only knows what we've defined
- We are referring to andb so the source code of andb is what matters (In particular, andb is not the logical notion of disjunction, it's just one implementation.)


## To understand why it's stuck let us view the code:

Print andb.

```
andb =
fun b1 b2 : bool }
match b1 with
| true => match b2 with (* b1 is true, so that's why the goal is this *)
    | true }=>\mathrm{ true
    | false }=>\mathrm{ false
        end
| false }=>\mathrm{ false
end
    : bool }->\mathrm{ bool }->\mathrm{ bool
```


## We are stuck because we do not know b

```
1 goal
b : bool
--------------------------------------------}(1/1
match b with
    true }=>\mathrm{ true
| false }=>\mathrm{ false
end = b
```


## Case analysis

## Also known as, proof by exhaustion, proof by cases

In a written proof, can rely on a case analysis on $b$ to consider all possible values of b

## Case analysis

## Also known as, proof by exhaustion, proof by cases

In a written proof, can rely on a case analysis on b to consider all possible values of b

## Case 1

Variable b is replaced by true

```
match true with
| true }=>\mathrm{ true (* }\leftarrow\mathrm{ true = true *)
| false }=>\mathrm{ false
end = true
```


## Case 2

Variable b is replaced by false
1 goal
match false with
| true $\Rightarrow$ true
| false $\Rightarrow$ false (* $\leftarrow$ false $=$ false *)
end = false

## Case analysis

- Case analysis on $b$ is done with tactic destruct $b$.
- Each branch is introduced with braces

Lemma andb_true_l:
forall $b$,
andb true b = b.
Proof.
intros b.
simpl.
destruct b.
$\{(* b=$ true *) reflexivity. \} $\left\{\left(* b=f a l s e{ }^{*}\right)\right.$ reflexivity. $\}$
Qed.

## Compound types

## Compound types

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a constructor.

```
Inductive rgb : Type :=
    red : rgb
    green : rgb
    blue : rgb.
```


## Compound types

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a constructor.

```
Inductive rgb : Type :=
    red : rgb
    green : rgb
    blue : rgb.
```

A compound type builds on other existing types. Their constructors accept multiple parameters, like functions do.

```
Inductive color : Type :=
    | black : color
    white : color
    | primary : rgb \(\rightarrow\) color.
```


## Manipulating compound values

Definition monochrome (c : color) : bool := match c with
black $\Rightarrow$ true
| white $\Rightarrow$ true
primary $\mathrm{p} \Rightarrow$ false end.

## Manipulating compound values

Definition monochrome (c : color) : bool := match c with
black $\Rightarrow$ true
| white $\Rightarrow$ true
| primary $p \Rightarrow$ false end.

We can use the place-holder keyword _ to mean a variable we do not mean to use.
Definition monochrome (c : color) : bool := match c with
black $\Rightarrow$ true
white $\Rightarrow$ true
primary _ $\Rightarrow$ false
end.

## Compound types

Allows you to: type-tag, fixed-number of values

Inductive types

## Inductive types

How do we describe arbitrarily large/composed values?

## Inductive types

How do we describe arbitrarily large/composed values?
Here's the definition of natural numbers, as found in the standard library:
Inductive nat : Type :=
| 0 : nat
| $S:$ nat $\rightarrow$ nat.

- 0 is a constructor of type nat. Think of the numeral 0 .
- If $n$ is an expression of type nat, then $S n$ is also an expression of type nat. Think of expression $n+1$.
| What's the difference between nat and uint32?


## Example

Let us implement is_zero

Recursive functions

## Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition. Let us implement addition.

## Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition. Let us implement addition.

```
Fixpoint plus (n : nat) (m : nat) : nat :=
    match n with
        | | m
        S n' }=>\mathrm{ S (plus n'm)
    end.
```

Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope.

Using Definition instead of Fixpoint will throw the following error:
The reference eqb was not found in the current environment.
Not all recursive functions can be described. Coq has to understand that one value is getting "smaller."
All functions must be total: all inputs must produce one output. All functions must terminate.

## Back to proofs

## An example

Example plus_0_4 : 0 + 5 = 4. Proof.
| How do we prove this?

## An example

Example plus_0_4 : 0 + 5 = 4 .
Proof.
| How do we prove this?

- We cannot. This is unprovable, which means we are not able to write a script that proves this statement.
- Coq will not tell you that a statement is false.


## Another example

Example plus_0_5 : 0 + $5=5$.
Proof.
[How do we prove this? We "know" it is true, but why do we know it is true?

## Another example

Example plus_0_5 : 0 + $5=5$. Proof.
| How do we prove this? We "know" it is true, but why do we know it is true?
There are two ways:

1. We can think about the definition of plus.
2. We can brute-force and try the tactics we know (simpl, reflexivity)

## Another example

Example plus_0_6 : 0 + $6=6$. Proof.
| How do we prove this?

## Another example

Example plus_0_6 : 0 + $6=6$.
Proof.
| How do we prove this?
The same as we proved plus_0_5. This result is true for any natural n !

## Ranging over all elements of a set

Theorem plus_0_n : forall $n$ : nat, $0+n=n$. Proof.

```
intros n.
simpl.
reflexivity.
```

Qed.

- Theorem is just an alias for Example and Definition.
- forall introduces a variable of a given type, eg nat; the logical statement must be true for all elements of the type of that variable.
- Tactic intros is the dual of forall in the tactics language


## Forall example

```
Given
    1 \text { subgoal}
--------------------------------------------
forall n : nat, 0 + n = n
and applying intros n yields
1 \text { subgoal}
n : nat
--------------------------------------------
0 + n = n
```

The n is a variable name of your choosing.
| Try replacing intros n by intros m .

## simpl and reflexivity work under forall

1 subgoal

```
-------------------------------------------}(1/1
forall n : nat, 0 + n = n
```

Applying simpl yields
1 subgoal

forall n : nat, $\mathrm{n}=\mathrm{n}$
Applying reflexivity yields No more subgoals.

## reflexivity also simplifies terms

```
1 \text { subgoal}
-------------------------------------------
forall n : nat, 0 + n = n
```

Applying reflexivity yields No more subgoals.

## Summary

- simpl and reflexivity work under forall binders
- simpl only unfolds definitions of the goal; does not conclude a proof
- reflexivity concludes proofs and simplifies


## Multiple pre-conditions in a lemma

Theorem plus_id_example : forall n m:nat, $n=m \rightarrow$ $\mathrm{n}+\mathrm{n}=\mathrm{m}+\mathrm{m}$.
Proof.
intros $n$.
intros m.

## Multiple pre-conditions in a lemma

Theorem plus_id_example : forall n m:nat,
$\mathrm{n}=\mathrm{m} \rightarrow$
$\mathrm{n}+\mathrm{n}=\mathrm{m}+\mathrm{m}$.
Proof.
intros $n$.
intros m.
yields
1 subgoal
n, m : nat
--------------------------------------------(1/1)
$\mathrm{n}=\mathrm{m} \rightarrow \mathrm{n}+\mathrm{n}=\mathrm{m}+\mathrm{m}$

## Multiple pre-conditions in a lemma

```
applying intros Hyields
1 subgoal
n, m : nat
H : n = m
--------------------------------------------}(1/1
n + n = m + m
How do we use H? New tactic: use rewrite }->\mathrm{ H (lhs becomes rhs)
1 \text { subgoal}
n, m : nat
H : n = m
-------------------------------------------
m + m = m + m
```

- How do we conclude? Can you write a Theorem that replicates the proof-state above?


## Computing equality of naturals

## Computing equality of naturals

```
Fixpoint eqb (n1:nat) (n2:nat) : bool :=
    match n1 with
    | \(0 \Rightarrow\)
    match n2 with
        | \(0 \Rightarrow\) true
        _ \(\Rightarrow\) false
        end
| S n1 \({ }^{\prime} \Rightarrow\)
    match n2 with
        \(0 \Rightarrow\) false
        S n2' \(\Rightarrow\) eqb n1 n2
        end
    end.
```


## How do we prove this example?

```
Require Import Nat.
Theorem plus_1_neq_0_firsttry : forall n : nat,
    eqb (plus n 1) 0 = false.
Proof.
    intros n.
yields
1 \text { subgoal}
n : nat
-------------------------------------------
eqb (plus n 1) 0 = false
```


## How do we prove this example?

```
Require Import Nat.
Theorem plus_1_neq_0_firsttry : forall n : nat,
    eqb (plus n 1) 0 = false.
Proof.
    intros n.
yields
1 subgoal
n : nat
eqb (plus n 1) 0 = false
```

Apply simpl and it does nothing. Apply reflexivity:
In environment
n : nat
Unable to unify "false" with "eqb (plus n 1) 0".

## Why does simpl fail?

Q: Why can't eqb ( $n+1$ ) be simplified? (Hint: inspect its definition.)

## Why does simpl fail?

Q: Why can't eqb ( $n+1$ ) be simplified? (Hint: inspect its definition.)
A: eqb expects the first parameter to be either 0 or $S$ ?n, but we have an expression $n+1$ (or plus $n 1$ ).

## Why does simpl fail?

Q: Why can't eqb ( $n+1$ ) be simplified? (Hint: inspect its definition.)
A: eqb expects the first parameter to be either 0 or $S$ ?n, but we have an expression $n+1$ (or plus $n 1$ ).
Q: Can we simplify plus n 1?

## Why does simpl fail?

Q: Why can't eqb ( $n+1$ ) be simplified? (Hint: inspect its definition.)
A: eqb expects the first parameter to be either 0 or $S$ ? $n$, but we have an expression $n+1$ (or plus $n 1$ ).
Q: Can we simplify plus n 1 ?
A: No because plus decreases on the first parameter, not on the second!

## Case analysis (1/3)

Let us try to inspect value $n$. Use: destruct $n$ as [| $\left.n^{\prime}\right]$.
2 subgoals

```
---------------------------------------------(1/2)
eqb (0 + 1) 0 = false
--------------------------------------------(2/2)
eqb (S n' + 1) 0 = false
```

Now we have two goals to prove!
1 subgoal

eqb $(0+1) 0=$ false
How do we prove this?

## Case analysis (2/3)

After we conclude the first goal we get:
This subproof is complete, but there are some unfocused goals:


And prove the goal above as well.

## Why can this goal be simplified to false = false?

```
    (1/1)
eqb (S n' + 1) 0 = false
```


## Why can this goal be simplified to false =

 false?```
--------------------------------------------
eqb (S n' + 1) 0 = false
```

1. because $S n^{\prime}+1=S\left(n^{\prime}+1\right)$ (follows the second branch of plus)
2. because eqb (S ...) 0 = false (follows the second branch of eqb)

## Recap

- We are currently learning the Logical Foundations (volume 1 of the SF book)
- We are learning a programming language that allows us formalize programming languages
| What do we mean by formalizing programming languages?


## Recap

- We are currently learning the Logical Foundations (volume 1 of the SF book)
- We are learning a programming language that allows us formalize programming languages
| What do we mean by formalizing programming languages?

1. A way to describe the abstract syntax (do we know how to do this?)
2. A way to describe how language executes (do we know how to do this?)
3. A way to describe properties of the language (do we know how to do this?)
