
CS720

Logical Foundations of Computer Science

Lecture 1: course structure, Coq basics

Tiago Cogumbreiro

CS720: Lecture 1 �� Tiago Cogumbreiro 1 / 36

Do computers do

what we tell them to?

2 / 36

How do we talk to computers?

3 / 36

How do we talk to computers?

With programs

3 / 36

How do we construct a program?

4 / 36

How do we construct a program?

We write code and we give it to a
compiler/interpreter

4 / 36

Does the code match our intent?

CS720: Lecture 1 �� Tiago Cogumbreiro 5 / 36

Does the code match our intent?

Do we check inputs/outputs? Eg, for an input of x, expect an output of y

Do we check all inputs/outputs? Eg, the result is a sorted list

Do we check resource usage? Eg, takes under X-seconds to run

Do we check all resource usage? Eg, takes at most X-second for any run

CS720: Lecture 1 �� Tiago Cogumbreiro 5 / 36

Does the code match our intent?

Do we check inputs/outputs? Eg, for an input of x, expect an output of y

Do we check all inputs/outputs? Eg, the result is a sorted list

Do we check resource usage? Eg, takes under X-seconds to run

Do we check all resource usage? Eg, takes at most X-second for any run

How do we even assess our intent?

CS720: Lecture 1 �� Tiago Cogumbreiro 5 / 36

Does the code match our intent?

Do we check inputs/outputs? Eg, for an input of x, expect an output of y

Do we check all inputs/outputs? Eg, the result is a sorted list

Do we check resource usage? Eg, takes under X-seconds to run

Do we check all resource usage? Eg, takes at most X-second for any run

How do we even assess our intent?

How do we convince ourselves that our intent is correct? Tests, coverage, audit, logic

How do we convince others that our intent is correct? Tests, coverage, audit, logic

CS720: Lecture 1 �� Tiago Cogumbreiro 5 / 36

Does the code match our intent?

Do we check inputs/outputs? Eg, for an input of x, expect an output of y

Do we check all inputs/outputs? Eg, the result is a sorted list

Do we check resource usage? Eg, takes under X-seconds to run

Do we check all resource usage? Eg, takes at most X-second for any run

How do we even assess our intent?

How do we convince ourselves that our intent is correct? Tests, coverage, audit, logic

How do we convince others that our intent is correct? Tests, coverage, audit, logic

Does the compiler/interpreter preserve the intent?

CS720: Lecture 1 �� Tiago Cogumbreiro 5 / 36

Welcome to

Programming Language Theory

6 / 36

About the course
Course web page: cogumbreiro.github.io/teaching/cs720/s24/

Of�ce hours

Syllabus

Course schedule

Gitlab to share homework assignments

Discord for communication (announcements, links)
Discord is preferable to email!

Gradescope for homework submission

CS720: Lecture 1 �� Tiago Cogumbreiro 7 / 36

https://cogumbreiro.github.io/teaching/cs720/s24/

About the course
A programming course (Coq)

A theoretical course (logic)

A forum to practice paper presentation (PhD)

CS720: Lecture 1 �� Tiago Cogumbreiro 8 / 36

Course structure
Course: 28 lectures

12 homework assignments (85%) + 1 paper presentation (15%)

No exams; around 1 homework assignment per week; assignments are not small (but
with practice, you can do them quickly)

Course structure inspired by UPenn's CIS500; their grading is stricter (12 homework
assignments + midterm + exam).

CS720: Lecture 1 �� Tiago Cogumbreiro 9 / 36

https://www.seas.upenn.edu/~cis500/current/index.html

Homework (85%)
No late homework. Late homework = 0 points.

Homework is your personal individual work.

It is acceptable to discuss the concept in general terms, but unacceptable to discuss
speci�c solutions to any homework assignment.

CS720: Lecture 1 �� Tiago Cogumbreiro 10 / 36

Grading
Work is partially graded by Gradescope.

Unreadable solutions will get 0 points.

If Gradescope gives you 0 points, then your grade is 0 points.

Some questions are manually graded by me.

CS720: Lecture 1 �� Tiago Cogumbreiro 11 / 36

Presentation (15%)
Each paper is handled by 1 student

Each student must present for 15 minutes

Each student must review their colleagues presentations

CS720: Lecture 1 �� Tiago Cogumbreiro 12 / 36

Textbooks
Logical Foundations (Software Foundations - Volume 1). Benjamin C. Pierce, et al. 2021.
Version 6.1.

Programming Languages Foundations (Software Foundations - Volume 2). Benjamin C.
Pierce,et al. 2021. Version 6.1.

Recommended

Types and programming languages. Benjamin C. Pierce. 2002.

Software foundations @ YouTube

Oregon PL Summer School Archives (in particular: 2013, 2014,)

CS720: Lecture 1 �� Tiago Cogumbreiro 13 / 36

https://www.seas.upenn.edu/~cis500/current/sf/lf-current/index.html
https://www.seas.upenn.edu/~cis500/current/sf/plf-current/index.html
https://mitpress.mit.edu/books/types-and-programming-languages
https://www.youtube.com/watch?v=KKrD4JcfW90&list=PLGCr8P_YncjUT7gXUVJWSoefQ40gTOz89
https://www.cs.uoregon.edu/research/summerschool/archives.html
https://www.cs.uoregon.edu/research/summerschool/summer13/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer14/curriculum.html

Programming language semantics
Describes a computation model

De�nes the set of possible behaviors through some primitives

Mathematically precise properties of a computation model

CS720: Lecture 1 �� Tiago Cogumbreiro 14 / 36

Bird's eye view
Here is what we will learn

15 / 36

How do check if a program is correct?

Does the program meet the intent?

let division (a b: int) : int
 requires { true }
 ensures { exists r: int. a = b * result + r /\ 0 �� r < b }
=
 let q = ref 0 in
 let r = ref a in
 while !r �� b do
 invariant { true }
 q �= !q + 1;
 r �= !r - b
 done;
 !q

Examples: WhyML, Dafny.

CS720: Lecture 1 �� Tiago Cogumbreiro 16 / 36

http://why3.lri.fr/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

How does the compiler check if a program is correct?

 let division (a b: int) : int
 =
 let q = ref 0 in
 let r = ref a in
 while !r �� b do
 q �= !q + 1;
 r �= !r - b
 done;
 !q

Examples: OCaml, F#, ReasonML

CS720: Lecture 1 �� Tiago Cogumbreiro 17 / 36

https://ocaml.org/
https://fsharp.org/
https://reasonml.github.io/

Specifying a functional language

Language grammar

Evaluation rules

t ::= x ∣ v ∣ t t v ::= λx : T .t T ::= T → T ∣ unit

 (E-app1) (E-app2)
t t ⟶ t t 1 2 1

′
2

t ⟶ t 1 1
′

t t ⟶ t t 1 2 1 2
′

t ⟶ t 2 2
′

(λx : T .t) v ⟶11 12 2 [x ↦ v]t (E-abs)2 12

CS720: Lecture 1 �� Tiago Cogumbreiro 18 / 36

Specifying a functional language

Type checking rules

 (T-var) (T-abs)
Γ ⊢ x : T
Γ(x) = T

Γ ⊢ λx : T .t : T → T 1 2 1 2

Γ[x ↦ T] ⊢ t : T 1 2 2

 (T-app)
Γ ⊢ λx : T .t : T → T 1 2 1 2

Γ ⊢ t : T → T Γ ⊢ t : T 1 11 12 2 11

CS720: Lecture 1 �� Tiago Cogumbreiro 19 / 36

What about all programs of a given language?

Progress: valid programs execute one step

Any valid program is either a value or can evaluate.

If , then either is a value, or there exists some such that .

Subject reduction: valid programs remain valid

The validity of a program is preserved while evaluating it.

If and , then .

Can you give an example of a property?

Γ ⊢ t : T t t′ t ⟶ t′

Γ ⊢ t : T t ⟶ t′ Γ ⊢ t :′ T

CS720: Lecture 1 �� Tiago Cogumbreiro 20 / 36

What we will learn in this course

Course summary

Speci�cation: logical reasoning, describing program behavior

Abstraction: capturing the fundamentals, thinking from �rst principles

Testing: unit and property testing

CS720: Lecture 1 �� Tiago Cogumbreiro 21 / 36

Basics.v: Part 1

A primer on the programming language Coq

We will learn the core principles behind Coq

CS720: Lecture 1 �� Tiago Cogumbreiro 22 / 36

https://www.seas.upenn.edu/~cis500/current/sf/lf-current/Basics.html

Enumerated type
A data type where the user speci�es the various distinct values that inhabit the type.

Examples?

CS720: Lecture 1 �� Tiago Cogumbreiro 23 / 36

Enumerated type
A data type where the user speci�es the various distinct values that inhabit the type.

Examples?

boolean

4 suits of cards

byte

int32

int64

CS720: Lecture 1 �� Tiago Cogumbreiro 23 / 36

Declare an enumerated type

Inductive day : Type �=
 | monday : day
 | tuesday : day
 | wednesday : day
 | thursday : day
 | friday : day
 | saturday : day
 | sunday : day.

Inductive de�nes an (enumerated) type by cases.

The type is named day and declared as a : Type (Line 1).

Enumerated types are delimited by the assignment operator (�=) and a dot (.).

Type day consists of 7 cases, each of which is is tagged with the type (day).

CS720: Lecture 1 �� Tiago Cogumbreiro 24 / 36

Printing to the standard output
Compute prints the result of an expression (terminated with dot):

Compute monday.

prints

 = tuesday
 : day

CS720: Lecture 1 �� Tiago Cogumbreiro 25 / 36

Interacting with the outside world
Programming in Coq is different most popular programming paradigms

Programming is an interactive development process

The IDE is very helpful: work�ow similar to using a debugger

It's a REPL on steroids!

Compute evaluates an expression, similar to printf

CS720: Lecture 1 �� Tiago Cogumbreiro 26 / 36

Inspecting an enumerated type

match d with
| monday �> tuesday
| tuesday �> wednesday
| wednesday �> thursday
| thursday �> friday
| friday �> monday
| saturday �> monday
| sunday �> monday
end

CS720: Lecture 1 �� Tiago Cogumbreiro 27 / 36

Inspecting an enumerated type

match d with
| monday �> tuesday
| tuesday �> wednesday
| wednesday �> thursday
| thursday �> friday
| friday �> monday
| saturday �> monday
| sunday �> monday
end

match performs pattern matching on variable d.

Each pattern-match is called a branch; the branches are delimited by keywords with and
end.

Each branch is pre�xed by a mid-bar (|) (�>), a pattern (eg, monday), an arrow (�>), and a
return value

CS720: Lecture 1 �� Tiago Cogumbreiro 27 / 36

Pattern matching example

Compute match monday with
| monday �> tuesday
| tuesday �> wednesday
| wednesday �> thursday
| thursday �> friday
| friday �> monday
| saturday �> monday
| sunday �> monday
end.

CS720: Lecture 1 �� Tiago Cogumbreiro 28 / 36

Create a function

Definition next_weekday (d:day) : day �=
 match d with
 | monday �> tuesday
 | tuesday �> wednesday
 | wednesday �> thursday
 | thursday �> friday
 | friday �> monday
 | saturday �> monday
 | sunday �> monday
 end.

CS720: Lecture 1 �� Tiago Cogumbreiro 29 / 36

Create a function

Definition next_weekday (d:day) : day �=
 match d with
 | monday �> tuesday
 | tuesday �> wednesday
 | wednesday �> thursday
 | thursday �> friday
 | friday �> monday
 | saturday �> monday
 | sunday �> monday
 end.

Definition is used to declare a function.

In this case next_weekday has one parameter d of type day and returns (:) a value of type
day.

Between the assignment operator (�=) and the dot (.), we have the body of the function.

CS720: Lecture 1 �� Tiago Cogumbreiro 29 / 36

Example 2

Compute (next_weekday friday).

yields (Message pane)

 = monday
 : day

next_weekday friday is the same as monday (after evaluation)

CS720: Lecture 1 �� Tiago Cogumbreiro 30 / 36

Your �rst proof

Example test_next_weekday:
 next_weekday (next_weekday saturday) = tuesday.
Proof.
 simpl. (* simplify left-hand side *)
 reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.

CS720: Lecture 1 �� Tiago Cogumbreiro 31 / 36

Your �rst proof

Example test_next_weekday:
 next_weekday (next_weekday saturday) = tuesday.
Proof.
 simpl. (* simplify left-hand side *)
 reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.

Example pre�xes the name of the proposition we want to prove.

The return type (:) is a (logical) proposition stating that two values are equal (after
evaluation).

The body of function test_next_weekday uses the ltac proof language.

The dot (.) after the type puts us in proof mode. (Read as "de�ned below".)

This is essentially a unit test.

CS720: Lecture 1 �� Tiago Cogumbreiro 31 / 36

Ltac: Coq's proof language
ltac is imperative! You can step through the state with CoqIDE

Proof begins an ltac-scope, yielding

1 subgoal
______________________________________(1/1)
next_weekday (next_weekday saturday) = tuesday
Tactic simpl evaluates expressions in a goal (normalizes them)

CS720: Lecture 1 �� Tiago Cogumbreiro 32 / 36

Ltac: Coq's proof language
1 subgoal
______________________________________(1/1)
tuesday = tuesday

reflexivity solves a goal with a pattern ?X = ?X

No more subgoals.
Qed ends an ltac-scope and ensures nothing is left to prove

CS720: Lecture 1 �� Tiago Cogumbreiro 33 / 36

Function types
Use Check to print the type of an expression:

Check next_weekday.

which outputs

next_weekday
 : day �> day
Function type day �> day takes one value of type day and returns a value of type day.

CS720: Lecture 1 �� Tiago Cogumbreiro 34 / 36

Basic.v
New syntax: Definition declares a non-recursive function

New syntax: Compute evaluates an expression and outputs the result + type

New syntax: Check prints the type of an expression

New syntax: Inductive de�nes inductive data structures

New syntax: Fixpoint declares a (possibly) recursive function

New syntax: match performs pattern matching on a value

New tactic: simpl evaluates functions if possible

New tactic: reflexivity concludes a goal ?X = ?X

CS720: Lecture 1 �� Tiago Cogumbreiro 35 / 36

Ltac vocabulary
simpl
reflexivity

CS720: Lecture 1 �� Tiago Cogumbreiro 36 / 36

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.simpl
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.reflexivity

