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Logical Foundations of Computer Science

Lecture 8: Logical connectives in Coq

Tiago Cogumbreiro
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Today we will learn... ?/11

e more logic connectives

e constructive logic (and its relation to classical logic)
e building propositions with functions

e building propositions with inductive definitions
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Logic connectives
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Truth
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Truth 7

Truth can be encoded in Coq as a proposition that always holds, which can be described as
a proposition type with a single constructor with O-arity.
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Truth example m

Goal True.

(Doneinclass.)

CS720:Lecture 8 » Tiago Cogumbreiro 6/36



Equivalence

P — @
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Logical equivalence m

Definition iff AB : Prop = (A = B) /\ (B = A).
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Split equivalence in goal ?/11

Goal (1 = 1 <> True).

Theorem mult_0 :
forallnm,n*m=0<>n=0\/m=0.
Admitted.

 When induction is required, prove each side by induction independently.
Split, and prove each side in its own theorem by induction.
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Apply equivalence to assumption ?/11

Goal
forall x y z,
x*(y*z)=0->
x*y=0\/z-=0.

Proof.

Admitted.
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Interpret equivalence as equality ?/11

The Setoid library lets you treat an equivalence as an equals:
Tactics rewrite, reflexivity, and symmetry all handle equivalence as well.

Require Import Coq.Setoids.Setoid.

Goal
forall x y z,

x*(y*z)=0<>x=0\/(y=0\/z-=0).
Proof.
Admitted.
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Existential quantification

Jx. P
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Existential quantification ?/11

Notation:

exists x:A, P x

e To conclude a goal exists x:A, P x we can use tactics exist x. which yields P x.
« To use a hypothesis of type H:exists x:A, P x, you can use destruct H as (x,H)
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Use exist for existential in goal ?/11

To conclude a goal exists x:A, P x we can use tactics exist x. whichyields P x.

Goal
forall v,
exists x, Nat.beq x y = true.

Goal
exists x vy,
3+ X =y.

o Give the value that satisfies the equality.
e You can play around with exists to figure out what makes sense.
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Destruct existential in assumption umase

Goal
forall n,
(exists m, n = 4 + m) =
(exists o, n = 2 + o).
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Constructive logic

IS Not classical logic

16/36




Constructive logic Is not classical logic m

e Coqimplements a constructive logic
e Every proof consists of evidence that is constructed

¢ You cannot assume the law of the excluded middle
(proofs that appear out of thin air)

e Truth tables may fail youl!
Especially if there are negations involved.

The following are unprovable in constructive logic (and therefore in Coq):
Goal forall (P:Prop), P \/ ~ P.
Goal forall P Q, ((P - Q) - P) = P.

Goal forall (P Q:Prop), ~(~P\/~Q) = P \/ Q.
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Sullding propositions

WIth Tunctions




Building propositions with functions ?/11

Fixpoint replicate (P:Prop) (n:nat) :=
match n with

| 8 = True
| Sm = P /\ replicate P m
end.

Print replicate (1 = 0) 3.

Goal forall P,
Replicate P @ <= True.

Goal forall P n,
P <> Replicate (S n).
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LISt membership example ?/11

Fixpoint In {A : Type} (x : A) (1 : list A) : Prop :=
match 1 with

| [] = False
| x" :: 1' = x' =x\/ Inx 1"
end.

e Computation cannot match on propositions
e Computations destruct types, not propositions
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Sullding propositions

wIth data structures

(Inductively)




Enumerated propositions



Recall enumerated types? ?/11

You can think of true as an enumerated type.

Inductive True : Prop :=
| I : True.
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Many equivalent proofs ?/11

Inductive Foo : Prop :=
| A : Foo
| B : Foo.
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A

Many equivalent proofs 7
Inductive Foo : Prop :=

| A : Foo

| B : Foo.

Yet, same as having one

Goal
Foo <= True.

* We can prove Foo with A or with B, we still just have Foo

 What happens when we do a case analysis on Foo? Show when A holds, then show when
B holds.

CS720: Lecture 8 = Tiago Cogumbreiro 24/36



Falsehood Shsss
Falsehood in Coq is represented by an empty type.
Inductive False : Prop :-=.

This explains why case analysis proves the following goal:

Goal
False —
1 = 0.
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Composite inductive propositions



Disjunction 7

Inductive or (A B : Prop) : Prop :=
| or_introl :
A —
or AB
| or_intror :
B —

or A B
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Conjunction m

Inductive and (P Q : Prop) : Prop :=
| conj
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Adding parameters to predicates st

Inductive Bar : nat = Prop :=
| C : Bar 1
| D : Bar 2.
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Adding parameters to predicates ?/11

Inductive Bar : nat = Prop :=
| C : Bar 1
| D : forall n,

Bar (S n).

Goal forall n,
Bar n —
h <> 0.
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Alternative detinition of Bar umss

Definition Bar2 n : Prop := n <> 0.
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EXxistential M

Inductive sig (A : Type) (P : A = Prop) : Type :=
| exist : forall x : A,
Px —
sig A P.
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Recursive inductive propositions



Defining In inductively M

Inductive In {A:Type} : A = list A — Prop :=
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Defining In inductively M

Inductive In {A:Type} : A = list A — Prop :=

| in_eq:
forall x 1,
In x (x::1)

| in_cons:
forall x y 1,
Inx1->
In x (y::1).

CS720: Lecture 8 » Tiago Cogumbreiro 34/36



Fixed parameters in inductive propositions ?/11

Inductive In {A:Type} (x: A) : list A = Prop :=

| in_eq:
forall x 1,
In x (x::1)

| in_cons:
forall x y 1,
Inx1->
In x (y::1).
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Defining even numbers ?/11

Inductive Even : nat — Prop :=
| even_@ : Even 0
| even_s_s : forall n,
Even n =
Even (S (S n)).
Goal forall n,
Even n =
exists m, n =2 * m.
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