
CS720
Logical Foundations of Computer Science

Lecture 14: Program veri�cation

Tiago Cogumbreiro

CS720: Lecture 14 ❧ Tiago Cogumbreiro 1 / 25

Imp.v
Due Thursday October 18, 11:59pm EST

2 / 25

IndProp.v
Due Friday October 19, 11:59pm EST

3 / 25

Equiv.v
Due Thursday October 25, 11:59pm EST

4 / 25

Hoare.v
Due Thursday November 1, 11:59pm EST

5 / 25

Summary
Learn how to design a framework to prove properties about programs
(We will develop the Floyd-Hoare Logic.)
Introduce pre and post-conditions on commands

CS720: Lecture 14 ❧ Tiago Cogumbreiro 6 / 25

How do we specify an algorithm?

7 / 25

How do we specify an algorithm?
A formal speci�cation describes what a system does

(and not how a system does it)

7 / 25

How do we observe

what an Imp program does?

8 / 25

Specifying Imp programs
The input and the output of an Imp program is a state. Let us call the formalize reasoning about an
Imp state as an assertion, notation , for some proposition that accesses an implicit state:

Definition Assertion �= state �> Prop.

1. written as fun st �> st X = 3
2. written as fun st �> st X �� st Y
3. written as fun st �> st X = 3 \/ st X �� st Y
4. written as

fun st �> st Z * st Z �� st X /\ ~ (((S (st Z)) * (S (st Z))) �� st X)
5. What about fun st �> True?
6. What about fun st �> False?

{P} P

{x = 3}
{x ≤ y}
{x = 3 ∨ x ≤ y}
z × z ∧ ¬((z + 1) × (z + 1) ≤ x)

CS720: Lecture 14 ❧ Tiago Cogumbreiro 9 / 25

A Hoare Triple
Combining assertions with commands
A Hoare triple, notation , holds if, and only if, from and / \\ we can
obtain for any states and .

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop �=
 forall st st',
 P st �> (* If [P st] holds *)
 c / st \\ st' �> (* And [c] runs with an input state [st] yielding a state [st'] *)
 Q st'. (* Then [Q st'] holds *)

{P} c {Q} P (s) c s s′

Q(s)′ s s′

CS720: Lecture 14 ❧ Tiago Cogumbreiro 10 / 25

Exercise
Which of these programs are provable?

1.

2.
3.

4.
5.

{⊤} x ::= 5; ; y ::= 0 {x = 5}
{x = 2 ∧ x = 3} x ::= 5 {x = 0}
{⊤} x ::= x + 1 {x = 2}
{⊤} SKIP {⊥}
{x = 1} WHILE !(x = 0) DO x ::= x + 1 END {x = 100}

CS720: Lecture 14 ❧ Tiago Cogumbreiro 11 / 25

Let us build a theory on Hoare triples over Imp
(That is, de�ne theorems to help us prove results on Hoare triples.)

12 / 25

Skip
Theorem (H-skip): for any proposition we have that .

Theorem hoare_skip : forall P,
 {{P}} SKIP {{P}}.

P {P} SKIP {P}

CS720: Lecture 14 ❧ Tiago Cogumbreiro 13 / 25

Sequence
Theorem (H-seq): If and , then{P} c {Q}1 {Q} c {R}2

CS720: Lecture 14 ❧ Tiago Cogumbreiro 14 / 25

Sequence
Theorem (H-seq): If and , then .

Theorem hoare_seq : forall P Q R c1 c2,
 {{P}} c1 {{Q}} �>
 {{Q}} c2 {{R}} �>
 {{P}} c1;;c2 {{R}}.

{P} c {Q}1 {Q} c {R}2 {P} c ; ; c {R}1 2

CS720: Lecture 14 ❧ Tiago Cogumbreiro 14 / 25

We have seen how to derive theorems for some commands,

Let us derive a theorem over the assignment

15 / 25

Assignment
How do we derive a general-enough theorem over the assignment?

Idea: try to prove False and simplify the hypothesis.

Goal forall P a,
 {{ fun st �> P st }} X ��= a {{ fun st �> P st /\ False }}.

How do we mention pre-updates?

CS720: Lecture 14 ❧ Tiago Cogumbreiro 16 / 25

Reasoning about pre-update
Goal forall P m a,
 {{ fun st �> P st /\ st X = m }}
 X ��= a
 {{ fun st �> P st }}.

CS720: Lecture 14 ❧ Tiago Cogumbreiro 17 / 25

Reasoning about pre-update
Goal forall P m a,
 {{ fun st �> P st /\ st X = m }}
 X ��= a
 {{ fun st �> P st }}.

we are stuck here

H: st X = m
H0 : P st
______________________________________(1/1)
P (st & {X ��> aeval st a})

What happens if we change our post-condition?

CS720: Lecture 14 ❧ Tiago Cogumbreiro 17 / 25

Second try
Let us change the post-condition to understand how it affects our goal

Goal forall P a m,
 {{ fun st �> P st /\ st X = m }}
 X ��= a
 {{ fun st �> P (st & { X ��> 3 }) }}.

Updating the store of the post-condition shadows the update to a

H: st X = m
H0: P st
______________________________________(1/1)
P (st & {X ��> aeval st a; X ��> 3})

CS720: Lecture 14 ❧ Tiago Cogumbreiro 18 / 25

Second try
Let us change the post-condition to understand how it affects our goal

Goal forall P a m,
 {{ fun st �> P st /\ st X = m }}
 X ��= a
 {{ fun st �> P (st & { X ��> 3 }) }}.

Updating the store of the post-condition shadows the update to a

H: st X = m
H0: P st
______________________________________(1/1)
P (st & {X ��> aeval st a; X ��> 3})

What if we "cancel out" the update?

CS720: Lecture 14 ❧ Tiago Cogumbreiro 18 / 25

Reasoning about the post-update
Goal forall P a m,
 {{ fun st �> P st /\ st X = m }}
 X ��= a
 {{ fun st �> P (st & { X ��> m }) }}.

CS720: Lecture 14 ❧ Tiago Cogumbreiro 19 / 25

Reasoning about the post-update
Goal forall P a m,
 {{ fun st �> P st /\ st X = m }}
 X ��= a
 {{ fun st �> P (st & { X ��> m }) }}.

We are still not there yet. How do we derive the post-value?

CS720: Lecture 14 ❧ Tiago Cogumbreiro 19 / 25

Reasoning about the post-update
Goal forall P a m,
 {{ fun st �> P st /\ st X = m }}
 X ��= a
 {{ fun st �> P (st & { X ��> m }) }}.

We are still not there yet. How do we derive the post-value?

Theorem hoare_asgn_fwd :
 forall m a P,
 {{ fun st �> P st /\ st X = m}}
 X ��= a
 {{ fun st �> P (st & { X ��> m }) /\ st X = aeval (st & { X ��> m }) a }}.

This would be a very dif�cult theorem to apply. Can we do better?

CS720: Lecture 14 ❧ Tiago Cogumbreiro 19 / 25

Rephrasing the assignment rule
Recall that

Goal forall P m a,
 {{ fun st �> P st }} X ��= a {{ fun st �> P st }}.

lead us here

H0 : P st
______________________________________(1/1)
P (st & {X ��> aeval st a})

What if we update the store in the pre-condition?

CS720: Lecture 14 ❧ Tiago Cogumbreiro 20 / 25

Rephrasing the pre-condition
Goal forall P m a,
 {{ fun st �> P (st & { X ��> 3 }) }} X ��= a {{ fun st �> P st }}.

leads us here

H0 : P (st & {X ��> 3})
______________________________________(1/1)
P (st & {X ��> aeval st a})

Why not just set the pre-condition to P (st & { X ��> aeval st a })?

CS720: Lecture 14 ❧ Tiago Cogumbreiro 21 / 25

Backward style assignment rule
Theorem (H-asgn): .

Theorem hoare_asgn: forall a P,
 {{ fun st �> P (st & { X ��> aeval st a }) }}
 X ��= a
 {{ fun st �> P st }}.

{P [x ↦ a]} x ::= a {P}

CS720: Lecture 14 ❧ Tiago Cogumbreiro 22 / 25

Exercise
Does hold?

Goal {{ (fun st : state �> st X = 2) [X |�> X + 1] [X |�> 1] }}
 X ��= 1;; X ��= X + 1
 {{ fun st �> st X = 2 }}.

{x = 2[x ↦ x + 1][x ↦ 1]} x ::= 1; ;x ::= x + 1 {x = 2}

CS720: Lecture 14 ❧ Tiago Cogumbreiro 23 / 25

Exercise
Does hold?

Goal {{ (fun st : state �> st X = 2) [X |�> X + 1] [X |�> 1] }}
 X ��= 1;; X ��= X + 1
 {{ fun st �> st X = 2 }}.

Yes. Does hold? And, can we prove it T-seq and T-
asgn?

Goal {{ fun st �> True }} X ��= 1;; X ��= X + 1 {{ fun st �> st X = 2 }}.

{x = 2[x ↦ x + 1][x ↦ 1]} x ::= 1; ;x ::= x + 1 {x = 2}

{⊤} x ::= 1; ;x ::= x + 1 {x = 2}

CS720: Lecture 14 ❧ Tiago Cogumbreiro 23 / 25

Exercise
Does hold?

Goal {{ (fun st : state �> st X = 2) [X |�> X + 1] [X |�> 1] }}
 X ��= 1;; X ��= X + 1
 {{ fun st �> st X = 2 }}.

Yes. Does hold? And, can we prove it T-seq and T-
asgn?

Goal {{ fun st �> True }} X ��= 1;; X ��= X + 1 {{ fun st �> st X = 2 }}.

No. The pre-condition has to match what we stated H-asgn. But we know that the above
statement holds. Let us write a new theorem that handles such cases.

{x = 2[x ↦ x + 1][x ↦ 1]} x ::= 1; ;x ::= x + 1 {x = 2}

{⊤} x ::= 1; ;x ::= x + 1 {x = 2}

CS720: Lecture 14 ❧ Tiago Cogumbreiro 23 / 25

Summary
Here are theorems we've proved today:

{P} SKIP {P} (H-skip)

 (H-seq)
{P} c ; ; c {R}1 2

{P} c {Q} {Q} c {R}1 2

{P [x ↦ a]} x ::= a {P} (H-asgn)

CS720: Lecture 14 ❧ Tiago Cogumbreiro 24 / 25

Summary
Learn how to design a framework to prove properties about programs
(We will develop the Floyd-Hoare Logic.)
Introduce pre and post-conditions on commands

CS720: Lecture 14 ❧ Tiago Cogumbreiro 25 / 25

