
CS720
Logical Foundations of Computer Science

Lecture 10: Inductive propositions

Tiago Cogumbreiro

CS720: Lecture 10 ❧ Tiago Cogumbreiro 1 / 25

Summary
How is Coq being used in research
Exercises on inductive propositions
Proofs by re�ection

CS720: Lecture 10 ❧ Tiago Cogumbreiro 2 / 25

Logic.v

Due Thursday, October 4, 11:59 EST

3 / 25

Poly.v (2nd attempt)

Due Friday, October 5, 11:59 EST

4 / 25

Tactics.v (2nd attempt)

Due Monday, October 8, 11:59 EST

5 / 25

IndProp.v

Due Thursday, October 11, 11:59 EST

6 / 25

Projects that use Coq
Coq Proof of the Four Color Theorem (Georges Gonthier, 2008) (Proposed in 1852, �rst proof
in 1976 by Appel and Haken, proved in Coq in 2005). Four colors suf�ce to color any �at map.
CompCert (2009): "CompCert is the �rst commercially available optimizing compiler that is
formally veri�ed, using machine assisted mathematical proofs, to be free from mis-
compilation."
Programming language formalization: Rust (2015), Haskell (2018)
Verdi (2015): Verdi is a framework from the University of Washington to implement and
formally verify distributed systems.
A Formal Proof of the Expressiveness of Deep Learning (2017): A Formal Proof of the
Expressiveness of Deep Learning.
Coq: The world's best macro assembler (2013)
Deadlock Avoidance in Parallel Programs with Futures (2017): formalized a task parallel
programming model and the result that Data-Race-Freedom implies Deadlock-Freedom.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 7 / 25

http://www.ams.org/notices/200811/tx081101382p.pdf
http://compcert.inria.fr/
https://plv.mpi-sws.org/rustbelt/popl18/
https://deepspec.org/entry/Project/Haskell+CoreSpec
http://verdi.uwplse.org/
http://matryoshka.gforge.inria.fr/pubs/deep_learning_paper.pdf
https://www.microsoft.com/en-us/research/publication/coq-worlds-best-macro-assembler/
http://cogumbreiro.github.io/assets/cogumbreiro-gorn.pdf

Presentations (15% of the grade)
Choose a paper on programming language semantics and present it (15~20 minutes)
Present a lecture (1 hour long; it can be a chapter we are not covering, see syllabus)

CS720: Lecture 10 ❧ Tiago Cogumbreiro 8 / 25

Recall the de�nition on even numbers
Fixpoint evenb (n:nat) : bool �=
 match n with
 | O �> true
 | S O �> false
 | S (S n') �> evenb n'
 end.

Inductive ev : nat �> Prop �=
| ev_0 : ev 0
| ev_SS : forall n : nat, ev n �> ev (S (S n)).

CS720: Lecture 10 ❧ Tiago Cogumbreiro 9 / 25

Let us prove that these two propositions are equivalent

Theorem evenb_to_ev:
 forall n,
 evenb n = true �>
 ev n.
 (* Hint: use [even_bool_prop]; no need for induction. *)

Theorem ev_to_evenb:
 forall n,
 ev n �>
 evenb n = true.

Theorem ev_iff_evenb:
 forall n,
 ev n <�> evenb n = true.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 10 / 25

Re�ection
We say that a proposition is re�ected by a boolean value according to the following de�nition.

Inductive reflect (P : Prop) : bool �> Prop �=
| ReflectT : P �> reflect P true
| ReflectF : ~ P �> reflect P false.

Theorem iff_reflect : forall P b, (P <�> b = true) �> reflect P b.
Theorem reflect_iff : forall P b, reflect P b �> (P <�> b = true). (* Homework*)

Let us prove that ev n re�ects evenb n.

Lemma ev_reflect : forall n, reflect (ev n) (evenb n).

CS720: Lecture 10 ❧ Tiago Cogumbreiro 11 / 25

Recall proving that 6 is even
It is much easier to compute that 6 is even, than to derive a proposition for it.

Theorem ev_6: ev 6.
Proof.
 apply ev_SS, ev_SS, ev_SS, ev_0.
Qed.

Theorem evenb_6: evenb 6 = true.
 reflexivity.
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 12 / 25

Prove that 6 is even with re�ection
Lemma reflect_true:
 forall P,
 reflect P true �>
 P.
Proof.
 intros.
 inversion H.
 apply H0.
Qed.

Theorem ev_6_reflect: ev 6.
Proof.
 apply (reflect_true (ev 6) (ev_reflect 6)).
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 13 / 25

Proof by Re�ection
The term re�ection applies because we will need to translate Gallina propositions into values of
inductive types representing syntax, so that Gallina programs may analyze them, and
translating such a term back to the original form is called re�ecting it.

– Certi�ed Programming with Dependent Types

A bit more than what we have seen so far…

CS720: Lecture 10 ❧ Tiago Cogumbreiro 14 / 25

http://adam.chlipala.net/cpdt/html/Reflection.html

Re�ecting the Logical And
Lemma reflect_and:
 forall P b1 Q b2,
 reflect P b1 �>
 reflect Q b2 �>
 reflect (P /\ Q) (andb b1 b2).

CS720: Lecture 10 ❧ Tiago Cogumbreiro 15 / 25

Re�ecting the Logical Or
Lemma reflect_or:
 forall P b1 Q b2,
 reflect P b1 �>
 reflect Q b2 �>
 reflect (P \/ Q) (orb b1 b2).

CS720: Lecture 10 ❧ Tiago Cogumbreiro 16 / 25

A mini-language of expressions
Inductive Lang �=
| Eq: nat �> nat �> Lang (* x = n *)
| Even: nat �> Lang (* ev n *)
| And: Lang �> Lang �> Lang (* P /\ Q *)
| Or: Lang �> Lang �> Lang. (* P \/ Q *)

CS720: Lecture 10 ❧ Tiago Cogumbreiro 17 / 25

Evaluate our mini-language
Fixpoint eval (exp:Lang) �=
 match exp with
 | Eq n m �> beq_nat n m
 | Even n �> evenb n
 | And l r �> andb (eval l) (eval r)
 | Or l r �> orb (eval l) (eval r)
 end.

Goal eval (Or (Even 3) (Eq 3 3)) = true.
 reflexivity.
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 18 / 25

Generate a proposition
Fixpoint as_prop (exp:Lang) �=
 match exp with
 | Eq n m �> n = m
 | Even n �> ev n
 | And l r �> as_prop l /\ as_prop r
 | Or l r �> as_prop l \/ as_prop r
 end.

Goal as_prop (Or (Even 3) (Eq 3 3)).
 (* ev 3 \/ 3 = 3 *)
 simpl.
 right.
 reflexivity.
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 19 / 25

Show that our language is re�ective
Lemma reflect_lang:
 forall p,
 reflect (as_prop p) (eval p).

Goal ev 3 \/ 3 = 3.
 assert (H�=reflect_lang (Or (Even 3) (Eq 3 3))).
 apply reflect_true, H.
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 20 / 25

Automating the translation
Ltac trans P �=
 match P with
 | ?P1 /\ ?P2 �>
 let t1 �= trans P1 in
 let t2 �= trans P2 in constr:(And t1 t2)
 | ev ?x �> constr:(Even x)
 | ?P1 \/ ?P2 �>
 let t1 �= trans P1 in
 let t2 �= trans P2 in constr:(Or t1 t2)
 | ?x = ?y �> constr:(Eq x y)
 end.

Goal ev 3 \/ 3 = 3.
 let t �= trans (ev 3 \/ 3 = 3) in
 assert (H�= reflect_lang t).

CS720: Lecture 10 ❧ Tiago Cogumbreiro 21 / 25

Automating the translation
Ltac solve �=
 match goal with
 | [|- ?P] �>
 let t �= trans P in
 let H �= fresh "H" in
 assert (H �= reflect_lang t);
 apply reflect_true, H
 end.

Goal ev 3 \/ 3 = 3.
 solve.
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 22 / 25

Summary on Proof by Re�ection
Re�ection establishes a deep connection between a proposition and the function that decides it
We can leverage Ltac to automate trivial operations and build solvers (Not covered in this
course.)

CS720: Lecture 10 ❧ Tiago Cogumbreiro 23 / 25

Exercises on Less-Than
Prove that

1. < is transitive
2. < is irre�exive
3. < is asymmetric
4. < is decidable

CS720: Lecture 10 ❧ Tiago Cogumbreiro 24 / 25

Summary
We looked at Coq being used in research
Exercises on inductive propositions
A deep dive in proofs by re�ection

CS720: Lecture 10 ❧ Tiago Cogumbreiro 25 / 25

