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Today we will…
Recall the difference between value, type, Type, evidence, proposition, Prop

Logical connectives in Coq

Why are we learning this?

The building blocks of any interesting property

⊤ ⊥ ¬P P ⟺ Q ∃x.P
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Recall product, conjunction
Inductive prod (A B : Type) : Type �=
| pair : A �> B �> prod A B.

Inductive and (P Q : Prop) : Prop �=
| conj : P �> Q �> and P Q.
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Recall product, conjunction
Inductive prod (A B : Type) : Type �=
| pair : A �> B �> prod A B.

Inductive and (P Q : Prop) : Prop �=
| conj : P �> Q �> and P Q.

P, Q are propositions (instances of Prop)
A, B, and nat are types (instances of Type)
A value is any instance of an instance of a Type (eg, 3 is a value)
An evidence is any instance of an instance of a Prop (eg, if H:P and P:Prop, then H is an
evidence)
pair is a constructor (function) that builds values; conj is a constructor (function) that builds
evidence
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Recall a proof state

1 subgoal
T : Type
x : T
P : Prop
H1 : 1 = x
H2 : P
______________________________________(1/1)
1 = 2 /\ P

All hypothesis are variables of a speci�c type, Type, or proposition
Goals are (usually) propositions
Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod? Can a proposition mention conj, the
constructor of and?
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Recall a proof state

1 subgoal
T : Type
x : T
P : Prop
H1 : 1 = x
H2 : P
______________________________________(1/1)
1 = 2 /\ P

All hypothesis are variables of a speci�c type, Type, or proposition
Goals are (usually) propositions
Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod? Can a proposition mention conj, the
constructor of and? Yes and no, respectively.
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Where do constructors of propositions appear?

Theorem and_conj: forall P Q:Prop,
  P �> Q �> P /\ Q.
Proof.
  intros P Q H1 H2.
   apply conj.
  - apply H1.
  - apply H2.
Qed.
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Theorems are expressions too

Theorem and_conj: forall P Q:Prop,
  P �> Q �> P /\ Q.
Proof.
  intros P Q H1 H2.
  apply (conj H1 H2).
Qed.

Proposition-constructors and theorems are functions whose parameters are evidences.
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Truth

⊤
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Truth
Truth can be encoded in Coq as a proposition that always holds, which can be described as a
proposition type with a single constructor with 0-arity.

Inductive True : Prop �= I : Truth.

You will note that proposition True is not a very useful one.
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Truth example
Goal True.

(Done in class.)
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Falsehood

⊥
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So far we only seen results that are provable (eg, plus is commutative, equals is
transitive)

How to encode falsehood in Coq?
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Falsehood
Falsehood in Coq is represented by an empty type.

Inductive False : Prop �=.

The only way to reach it is by using the exploding principle
No constructors available. Thus, no way to build an inhabitant of False.
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Example:

Goal 1 = 2 �> False.

Goal False �> 1 = 2.

Goal False.

(Done in class.)
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Negation

¬P
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Negation
The negation of a proposition  is de�ned as

(* As defined in Coq's stdlib *)
Definition not (H:Prop) �= H �> False.

Goal not (1 = 2).

Outputs:

1 subgoal
______________________________________(1/1)
1 <> 2

(Done in class.)

¬P
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Negation-related notations
not P is the same as ~ P, typeset as 

not (x = y) is the same as x <> y, typeset as 

Can we rewrite not with an inductive proposition?

¬P

x  ≠ y
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Equivalence

P ⟺ Q
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Logical equivalence
Definition iff A B : Prop = (A �> B) /\ (B �> A).
(* Notation <�> *)
Goal (1 = 1 <�> True).

Tactics rewrite, reflexivity, and symmetry all handle equivalence as well.

Can we rewrite iff with an inductive proposition?
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Equivalence exercise
Theorem mult_0 :
  forall n m, n * m = 0 <�> n = 0 \/ m = 0.

Theorem or_assoc :
  forall P Q R : Prop, P \/ (Q \/ R) <�> (P \/ Q) \/ R.

Theorem mult_0_3 :
  forall n m p, n * m * p = 0 <�> n = 0 \/ m = 0 \/ p = 0.
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Existential quanti�cation

∃x.P
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Existential quanti�cation
Inductive ex (A : Type) (P : A �> Prop) : Prop �=
  | ex_intro : forall (x : A) (_ : P x), ex P.

Notation:

exists x:A, P x

To conclude a goal exists x:A, P x we can use tactics exist x. which yields P x.
Alternatively, we can use apply ex_intro.
To use a hypothesis of type H:exists x:A, P x, you can use destruct H as (x,H), or
inversion H
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Equality

X = Y
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Equality
Even equality is de�ned as an inductive proposition

Inductive eq (A : Type): A �> A �> Prop �=
| eq_refl :
  forall x:A,
  eq x x.

Hide notations to see eq in action.
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Programming with propositions
List membership

Fixpoint In {A : Type} (x : A) (l : list A) : Prop �=
  match l with
  | [] �> False
  | x' �� l' �> x' = x \/ In x l'
  end.
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Example
Goal In 4 [1; 2; 3; 4; 5].
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Example 3 stars
Takes as arguments two properties of numbers, Podd and Peven, and it should return a property P
such that P n is equivalent to Podd n when n is odd and equivalent to Peven n otherwise.

Definition combine_odd_even (Podd Peven : nat �> Prop) : nat �> Prop

Theorem combine_odd_even_intro :
  forall (Podd Peven : nat �> Prop) (n : nat),
    (oddb n = true �> Podd n) �>
    (oddb n = false �> Peven n) �>
    combine_odd_even Podd Peven n.

Theorem combine_odd_even_elim_odd :
  forall (Podd Peven : nat �> Prop) (n : nat),
    combine_odd_even Podd Peven n �>
    oddb n = true �>
    Podd n.
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Example 3 starts (contd)
Theorem combine_odd_even_elim_even :
  forall (Podd Peven : nat �> Prop) (n : nat),
    combine_odd_even Podd Peven n �>
    oddb n = false �>
    Peven n.

CS720: Lecture 8  ❧  Tiago Cogumbreiro 28 / 28


