CS720

Logical Foundations of Computer Science

Lecture 14: Program verification

Tiago Cogumbreiro

CS720: Lecture 14 a Tiago Cogumbreiro

Imp.v
Due Thursday October 18, 11:59pm EST

InaProp.v
Due Friday October 19, 11:59pm EST

CQULV.V
Due Thursday October 25,11:59pm EST

Hoare.v
Due Thursday November 1 11:59pm EST

summary m

e Learn how to design a framework to prove properties about programs
(We will develop the Floyd-Hoare Logic.)

e Introduce pre and post-conditions on commands

CS720: Lecture 14 a Tiago Cogumbreiro

How do we specify an algorithm?

How do we specify an algorithm?

A tformal specification describes what a system does

(and not how a system does it)

How do we observe

what an Imp program does?

Specifying Imp programs m

The input and the output of an Imp program is a state. Let us call the formalize reasoning about an
Imp state as an assertion, notation {P }, for some proposition P that accesses an implicit state:

Definition Assertion := state — Prop.

. {x = 3} written as fun st = st X = 3
{x < y} written as fun st = st X < st Y
Ax =3V x <y} writtenas fun st => st X =3 \/ st X =< stV

.2 X z/\—l((z—l—l) X (z—l—l) < at)writtenas

funst > st Z*stZ =<stX /\~ (((S(stZ) *(S(stZ))) =< stX)
5. What about fun st = True?

6. What about fun st = False?

B~ W DN =

CS720: Lecture 14 a Tiago Cogumbreiro

A Hoare Iriple m

Combining assertions with commands

A Hoare triple, notation { P} ¢ {@Q}, holds if, and only if, from P(s) and ¢ / s \\ s’ we can
obtain Q(s') for any states s and s'.

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st',

Pst — (* If [P st] holds *)
c /st \\st' = (*And [c] runs with an input state [st] yielding a state [st'] *)
Q st'. (* Then [Q st'] holds *)

CS720: Lecture 14 a Tiago Cogumbreiro

Exercise shass
Which of these programs are provable?

1.{T}x ==5;;y ==0{z =5}

2.{x =2ANz=3}x:=5{zx =0}
3.{T}xu=x+1{x =2}

4. {T}skIp {1}

5.{x = 1} WHILE !(z = 0) DO = ::= « + 1 END {z = 100}

CS720: Lecture 14 a Tiago Cogumbreiro

Let us build a theory on Hoare triples over Imp

(That is, define theorems to help us prove results on Hoare triples.)

Skip 4.
Theorem (H-skip): for any proposition P we have that { P} SKIP {P}.

Theorem hoare_skip : forall P,

{{P}} SKIP {{P}}.

CS720: Lecture 14 a Tiago Cogumbreiro

Seqguence 5%

Theorem (H-seq): If { P} ¢; {Q} and {Q} co {R}, then

CS720: Lecture 14 a Tiago Cogumbreiro

Seqguence g%

Theorem (H-seq): If { P} ¢; {Q} and {Q} co {R}, then {P} c1;;c0 {R}.

Theorem hoare_seq : forall P Q R c1 c2,

{1P}} c1 {{0}} =
1103} c2 {{R}} =
{{P}} 15502 {{R}}.

CS720: Lecture 14 a Tiago Cogumbreiro

We have seen how to derive theorems for some commands,

Let us derive a theorem over the assignment

Assignment m

How do we derive a general-enough theorem over the assignment?

I Idea: try to prove False and simplify the hypothesis.

Goal forall P a,
f{ fun st = P st }} X ::= a {{ fun st = P st /\ False }}.

I How do we mention pre-updates?

CS720: Lecture 14 a Tiago Cogumbreiro

Reasoning about pre-update m

Goal forall P m a,

{{ fun st = P st /\ st X = m }}
X = a

{{ fun st = P st }}.

CS720: Lecture 14 a Tiago Cogumbreiro

Reasoning about pre-update 7

BOSTON

Goal forall P m a,

{{ fun st = P st /\ st X = m }}
X 1:=
{4 funast = P st }}.

we are stuck here

H: st X = m
HO : P st

P (st & {X — aeval st a})

I What happens if we change our post-condition?

CS720: Lecture 14 a Tiago Cogumbreiro

Second try 7

BOSTON

Let us change the post-condition to understand how it affects our goal

Goal forall P a m,
{{ fun st => P st /\ st X = m }}
X i= 2
{{ fun st =P (st &8 { X — 3 }) }}.

I Updating the store of the post-condition shadows the update to a

H: st X = m
HO: P st

CS720: Lecture 14 a Tiago Cogumbreiro

Second try .

UMASS
BOSTON

Let us change the post-condition to understand how it affects our goal

Goal forall P a m,
f{ fun st => P st /\ st X = m }}

X = a
{{ fun st =P (st 8 { X — 3 }) }}.
I Updating the store of the post-condition shadows the update to a

H: st X = m
HO: P st

I What if we "cancel out” the update?

CS720: Lecture 14 a Tiago Cogumbreiro

Reasoning about the post-update m

Goal forall P a m,
{{ fun st = P st /\ st X = m }}
X i= a
{{ funst >P (st &8 {X —m}) }}.

CS720: Lecture 14 a Tiago Cogumbreiro

Reasoning about the post-update 7

BOSTON

Goal forall P a m,
{{ fun st = P st /\ st X = m }}
X i= a
{{ funst >P (st &8 {X —m}) }}.

I We are still not there yet. How do we derive the post-value?

CS720: Lecture 14 a Tiago Cogumbreiro

Reasoning about the post-update 7

BOSTON

Goal forall P a m,
{{ fun st = P st /\ st X = m }}
X i= a
{{ funst >P (st &8 {X —m}) }}.

I We are still not there yet. How do we derive the post-value?

Theorem hoare_asgn_fwd :
forall m a P,

{{ fun st = P st /\ st X = m}}
X i= 2

f{funst=>P(st&{X—m}) /\stX=aeval (st&{X—m}) a }}.

I This would be a very difficult theorem to apply. Can we do better?

CS720: Lecture 14 a Tiago Cogumbreiro

Rephrasing the assignment rule m

Recall that

Goal forall P m a,
{{ fun st = P st }} X ::= a {{ fun st = P st }}.

lead us here

P (st & {X — aeval st a})

I What if we update the store in the pre-condition?

CS720: Lecture 14 a Tiago Cogumbreiro

Rephrasing the pre-condition m

Goal forall P m a,
f{ funst =P (st 8 {X—31}) }} X ::=a {{ fun st = P st }}.

leads us here
HO : P (st & {X — 3})
P (st & {X — aeval st a})

I Why not just set the pre-condition to P (st & { X — aeval st a })?

CS720: Lecture 14 a Tiago Cogumbreiro

Backward style assignment rule m

Theorem (H-asgn): { P|z — a]} x ::= a {P}.

Theorem hoare_asgn: forall a P,
{{ fun st > P (st & { X — aeval st a }) }}
X 1= a
{{ fun st = P st }}.

CS720: Lecture 14 a Tiago Cogumbreiro

Exercise m

| Does {z =2[z = z+ 1][x = 1]} z == 1552 i=z + 1 {z = 2} hold?

Goal {{ (fun st : state = st X =2) [X |[=> X+ 1] [X |= 1] }}
K= 15 X ii= X+ 1
f{ fun st = st X = 2 }}.

CS720: Lecture 14 a Tiago Cogumbreiro

Exercise m

| Does {z =2[z = z+ 1][x = 1]} z == 1552 i=z + 1 {z = 2} hold?
Goal {{ (fun st : state = st X =2) [X |[= X+ 1] [X |= 1] }}
X =1 X ti= X + 1

£{ fun st = st X = 2 }}.

Yes. Does { T} ¢ :=1;;x ::= x + 1 {& = 2} hold? And, can we prove it T-seq and T-
asgn?

Goal {{ fun st = True }} X ::=1;; X ::=X+1 {{ fun st = st X = 2 }}.

CS720: Lecture 14 a Tiago Cogumbreiro

Exercise m

| Does {z =2[z = z+ 1][x = 1]} z == 1552 i=z + 1 {z = 2} hold?
Goal {{ (fun st : state = st X =2) [X |[= X+ 1] [X |= 1] }}
X =1 X ti= X + 1

£{ fun st = st X = 2 }}.

| Yes. Does { T} ¢ :=1;;x ::= x + 1 {& = 2} hold? And, can we prove it T-seq and T-
asgn?

Goal {{ fun st = True }} X ::=1;; X ::=X+1 {{ fun st = st X = 2 }}.

No. The pre-condition has to match what we stated H-asgn. But we know that the above
statement holds. Let us write a new theorem that handles such cases.

CS720: Lecture 14 a Tiago Cogumbreiro

Summa Yy TS
Here are theorems we've proved today:

(P} SKIP {P} (H-skip)

{P}c {Q} {Q} 2 {R}
{P} C1,5C2 {R}

{Plr — al} z :=a {P} (H-asgn)

(H-seq)

CS720: Lecture 14 a Tiago Cogumbreiro

summary m

e Learn how to design a framework to prove properties about programs
(We will develop the Floyd-Hoare Logic.)

e Introduce pre and post-conditions on commands

CS720: Lecture 14 a Tiago Cogumbreiro

