CS720

Logical Foundations of Computer Science

| ecture 3: data structures

Tiago Cogumbreiro

CS720: Lecture 3 & Tiago Cogumbreiro

A,

UMASS

R e Ca p BOSTON

o We are currently learning the Logical Foundations (volume 1 of the SF book)

e We are learning a programming language that allows us formalize programming languages

I What do we mean by formalizing programming languages?

CS720: Lecture 3 a Tiago Cogumbreiro 2/33

A,

UMASS

R e Ca p BOSTON

o We are currently learning the Logical Foundations (volume 1 of the SF book)

e We are learning a programming language that allows us formalize programming languages
I What do we mean by formalizing programming languages?

1. A way to describe the abstract syntax (do we know how to do this?)
2. A way to describe how language executes (do we know how to do this?)

3. A way to describe properties of the language (do we know how to do this?)

CS720: Lecture 3 a Tiago Cogumbreiro 2/33

A,

UMASS

Homework submission reminder

The star system was confusing, so we no longer use it: Complete all non-optional exercises.

« For instance, if an exercise says Exercise: 3 stars, optional, then that exercise is nof be
oraded.

« For instance, if an exercise says Exercise: 3 stars, then that exercise is graded.

A quick sure way to check if your homework is acceptable by the autograder is to run coqc
YourHomework.v it should compile without errors

CS720: Lecture 3 a Tiago Cogumbreiro 3/33

Today we will...

e Review how to define data structures and how to prove

Why are we learning this?

e Today we will be honing the tools you have learned so far.

CS720: Lecture 3 a Tiago Cogumbreiro 4/33

Homework 2 (Induction.v, Lists.v) due:
Tuesday, September 18, 11.59 EST

By email: Tiago.Cogumbreiro@umb.edu

CS720: Lecture 3 & Tiago Cogumbreiro

Listyv

Due Tuesday, September 18, 11:59 EST

6/33

How do we define a data structure that holds two nats?

7/33

A,

UMASS

A pair of nats

Inductive natprod : Type :=
| pair : nat = nat —> natprod.

Notation "(x , vy)" := (pair x y).

Explicit vs implicit: be cautious when declaring notations, they make your code harder to
understand.

CS720: Lecture 3 & Tiago Cogumbreiro

How do we read the contents of a pair?

9/33

Accessors ofapair &%

CS720: Lecture 3 & Tiago Cogumbreiro

A,

UMASS

Accessors of a pair

Definition fst (p : natprod) : nat :=

CS720: Lecture 3 & Tiago Cogumbreiro

A,

UMASS

Accessors of a palr

Definition fst (p : natprod) : nat :
match p with
| pair x y = x
end.

Definition snd (p : natprod) : nat :=
match p with
| (x, y) = vy (* using notations in a pattern to be matched *)
end.

CS720: Lecture 3 a Tiago Cogumbreiro 11/ 33

How do we prove the correctness of our accessors?
(What do we expect fst/snd to do?)

12/ 33

A,

UMASS

Proving the correctness of our accessors: ==

Theorem surjective_pairing : forall (p : natprod),
p = (fst p, snd p).

Proof.
intros p.

1 subgoal
p : natprod

I Does simpl work? Does reflexivity work? Does destruct work? What about induction?

CS720: Lecture 3 a Tiago Cogumbreiro 13/33

How do we define a list of nats?

14 /33

A,

UMASS

A lIst of nats

Inductive natlist : Type :=
| nil : natlist
| cons : nat = natlist — natlist.

(* You don't need to learn notations, just be aware of its existence:*)
Notation "x :: 1" := (cons x 1) (at level 6@, right associativity).
Notation "[]" := nil.

Notation "[x ; .. ; v]" := (cons x .. (cons y nil) ..).

Compute cons 1 (cons 2 (cons 3 nil)).

outputs:

= [1; 2; 3]
: list nat

CS720: Lecture 3 & Tiago Cogumbreiro

How do we concatenate two lists?

CS720: Lecture 3 & Tiago Cogumbreiro

A,

UMASS

Concatenating two lists

Fixpoint app (11 12 : natlist) : natlist :=
match 11 with

| nil = 12
| h :: t =h :: (app t 12)
end.

Notation "x ++ y" := (app x y) (right associativity, at level 60).

CS720: Lecture 3 & Tiago Cogumbreiro

A,

Proving results on list concatenation e
Theorem nil_app_1 : forall l:natlist,

[1++1=1.
Proof.

intros 1.

I Can we prove this with reflexivity? Why?

CS720: Lecture 3 & Tiago Cogumbreiro

A,

Proving results on list concatenation e
Theorem nil_app_1 : forall l:natlist,

[1++1=1.
Proof.

intros 1.

I Can we prove this with reflexivity? Why?

reflexivity.
Qed.

CS720: Lecture 3 & Tiago Cogumbreiro

A,

Nil is a neutral element wrt app stes
Theorem nil_app_1 : forall l:natlist,

1 ++[]=1.
Proof.

intros 1.

I Can we prove this with reflexivity? Why?

CS720: Lecture 3 a Tiago Cogumbreiro 19/ 33

A,

Nil is a neutral element wrt app stes
Theorem nil_app_1 : forall l:natlist,

1 ++[]=1.
Proof.

intros 1.

I Can we prove this with reflexivity? Why?

In environment
1 : natlist
Unable to unify "1" with "1 ++ []".

I How can we prove this result?

CS720: Lecture 3 a Tiago Cogumbreiro 19/ 33

A,

UMASS

We need an induction principle of natlist ==

For some property P we want to prove.

e Show that P([]) holds.
e Given the induction hypothesis P (l) and some number 1, show that P (n e l) holds.

Conclude that P (l) holds for all [.

I How do we know this principle? Hint: compare natlist with nat.

CS720: Lecture 3 a Tiago Cogumbreiro 20/ 33

7

UMASS

Comparing nats with natlists

Inductive natlist : Type :=
| 0 : natlist |
| S : nat = nat. |

w >
— —
\’
_|

1. P(A)
2.t: T, P(t) - P(Bt)
Inductive natlist : Type :=

| nil : natlist | A: T
B: X

| cons : nat = natlist — natlist. | > T ->T7

1. P(A)
2.xz: X,t: T,P(t)- P(Bt)

CS720: Lecture 3 a Tiago Cogumbreiro 21/ 33

A,

UMASS

How do we know the induction principle?

Use search

Search natlist.

which outputs

nil: natlist
cons: nat = natlist — natlist
(* trimmed output *)
natlist_ind:
forall P : natlist — Prop,
PL] -
(forall (n : nat) (1 : natlist), P1 = P (n::1)) — forall n : natlist, P n

CS720: Lecture 3 a Tiago Cogumbreiro 22 /33

Nil is neutral on the right (1/2) e

Theorem nil_app_r : forall l:natlist,
1 ++ []=1.
Proof.
intros 1.
induction 1.
- reflexivity.

yields

1 subgoal

n : nat

1 : natlist

IHL : 1 ++ []=1

Nil is neutral on the right (2/2) =

1 subgoal
n : nat
1 : natlist

IHL : 1 ++ []=1

(h:1)++[]=n:1

CS720: Lecture 3 & Tiago Cogumbreiro

Nil is neutral on the right (2/2) =

1 subgoal
n : nat
1 : natlist
IHl : 1 ++ [] =1
______________________________________ (1/1)
(n::1)++ []=nz:1
simpl. (*app (n::1) []=n:: (app 1[]) *)
rewrite = IHl. (* n :: (app 1 []) =n 2 17%)

(*x oo ~ %)

reflexivity. (* conclude *)

Can we apply rewrite directly without simplifying?
Hint: before and after stepping through a tactic show/hide notations.
How do we state a theorem that leads to the same proof state (without Itac)?

CS720: Lecture 3 & Tiago Cogumbreiro

How do we signal failure in a functional language?

25/ 33

A,

UMASS

Partial functions

I How declare a function that is not defined for empty lists?

(* Pairs the head and the list *)
Fixpoint indexof n (1l:natlist) :=
match 1 with

| [1 = 772
| h :: t =
match beqg_nat h n with
| true = 0
| false = S (indexof t)
end
end.

CS720: Lecture 3 & Tiago Cogumbreiro

7

UMASS

Optional results

Inductive natoption : Type :=
| Some : nat — natoption
| None : natoption.

CS720: Lecture 3 a Tiago Cogumbreiro 27 /33

A,

UMASS

How do we declare indexof with optional ==
types?

Fixpoint indexof n (1l:natlist) : natoption :=

CS720: Lecture 3 & Tiago Cogumbreiro

A,

UMASS

How do we declare indexot with optional
types?

Fixpoint indexof n (1:natlist) : natoption :=
match 1 with
| [] = None
| h :: t =
match beq_nat h n with
| true = Some 0
| false = S (indexof n t)
end
end.

CS720: Lecture 3 a Tiago Cogumbreiro 29/33

A,

UMASS

How do we declare indexot with optional
types?

Fixpoint indexof n (1:natlist) : natoption :=
match 1 with
| [] = None
| h :: t =
match beq_nat h n with
| true = Some 0
| false = S (indexof n t)
end
end.

| false = S (indexof n t)

AAAAAAAAAAA

The term "indexof n t" has type "natoption" while it is expected to have type "nat".

CS720: Lecture 3 a Tiago Cogumbreiro 29/33

A,

UMASS

How do we declare indexof with optional
types?

Fixpoint indexof (n:nat) (1:natlist) : natoption :=
match 1 with
| [] = None
| h :: t =
match beq_nat h n with
| true = Some 0 (* element found at the head *)
| false =
match indexof n t with (* check for error *)
| Some i = Some (S i) (* increment successful result *)
| None = None (* propagate error *)
end
end
end.

CS720: Lecture 3 a Tiago Cogumbreiro 30/33

A,

UMASS

summary

CS720: Lecture 3 & Tiago Cogumbreiro

A,

UMASS

summary

implemented containers: pair, list, option

partial functions via option types

reviewed case analysis, proof by induction

used Search to browse definitions

CS720: Lecture 3 a Tiago Cogumbreiro 31/33

Next class: read Polyv

CS720: Lecture 3 a Tiago Cogumbreiro 32/33

A,

UMASS

L tac vocabulary

e simpl
o reflexivity

e intros
e rewrite
e destruct

e induction

e assert

(Nothing new from Lesson 2.)

CS720: Lecture 3 a Tiago Cogumbreiro 33/33

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.simpl
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.reflexivity
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.intros
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.rewrite
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.destruct
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.induction
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.assert

