CS720

Logical Foundations of Computer Science

| ecture 5: tactics

Tiago Cogumbreiro

CS720: Lecture 5 & Tiago Cogumbreiro



A,

UMASS

oday we will...

Recap Induction.v and Lists.v

Learn to apply lemmas (and not just rewrite)

Learn to invert an hypothesis

Learn to target hypothesis (and not just the goal)

Why are we learning this?

e To make your proofs smaller/simpler

CS720: Lecture 5 & Tiago Cogumbreiro



7

UMASS

Recap: Induction.v dnss

Theorem mul_1_s:
forall n m,
n*Sm=n*m+n.
Proof.

(Done in class.)

CS720: Lecture 5 & Tiago Cogumbreiro



A,

I HoSTON
Recap: Listv
Fixpoint count (v:nat) (s:bag) : nat. Admitted.
Fixpoint remove_one (v:nat) (s:bag) : bag. Admitted.

Theorem remove_does_not_increase_count: forall (s : bag),
leb (count @ (remove_one @ s)) (count @ s) = true.
Proof.

(Done in class).

CS720: Lecture 5 & Tiago Cogumbreiro



Tacticsy

Due Thursday, September 27, 11:59 EST

5/21



A,

Exercise 1: transitivity over equals s

Theorem eqg_trans : forall (T:Type) (x y z : T),
X =y >y=2z—>x-=2z.

Proof.
intros T x y z eql eq2.
rewrite = eql.

yields

1 subgoal
T : Type
X, ¥, 2 ¢ T
eql : x
eqe : y = z

1
~

How do we conclude this proof?

CS720: Lecture 5 & Tiago Cogumbreiro



A,

Exercise 1: transitivity over equals s

Theorem eqg_trans : forall (T:Type) (x y z : T),
X =y >y=2z—>x-=2z.

Proof.
intros T x y z eql eq2.
rewrite = eql.

yields

1 subgoal
T : Type
X, ¥, 2 ¢ T
eql : x
eqe : y = z

1
~

How do we conclude this proof? Yes, rewrite = eqZ2. reflexivity. works.

CS720: Lecture 5 & Tiago Cogumbreiro



A,

Exercise 1 introducing apply p

Apply takes an hypothesis/lemma to conclude the goal.

apply eqZ2.
Qed.

apply takes 7X to conclude a goal 7X (resolves foralls in the hypothesis).

1 subgoal

T : Type

X, ¥, 2 : T

eql : x =y

eqe2 1y = z
______________________________________ (1/1)
y = Z

CS720: Lecture 5 & Tiago Cogumbreiro 7/21



A,

UMASS

Applying conditional hypothesis

apply uses an hypothesis/theorem of format Hl = ... —= Hn — G, then solves goal G, and
produces new goals H1, ..., Hn.

Theorem eq_trans_2 : forall (T:Type) (x y z: T),
(x=y—>y=z=>x=2) > ("eql )

X =y —> (* eq2 *)
y=z-> (* eq3 *)
X = Z.
Proof.

intros T x y z eql eq?2 eq3.
apply eql. (*x=y—>y=z->x=27%)

(Done in class.)

CS720: Lecture 5 & Tiago Cogumbreiro 8/21



A,

UMASS

Rewrliting conditional hypothesis

apply uses an hypothesis/theorem of format Hl = ... —= Hn — G, then solves goal G, and
produces new goals H1, ..., Hn.

Theorem eq_trans_3 : forall (T:Type) (x y z: T),
(x=y—>y=z->x=2) > ("eql )

X =y —> (* eq2 *)
y =2z > (* eq3 *)
X = Z.
Proof.
intros T x y z eql eq?2 eq3.
rewrite > eql. (*x=y—>y=2z->x=2z%)

(Done in class.)

I Notice that there are 2 conditions in eq1, so we get 3 goals to solve.

CS720: Lecture 5 & Tiago Cogumbreiro 9/21



A,

UMASS
BOSTON

Recap
What's the difference between reflexivity, rewrite, and apply?

1. reflexivity solves goals that can be simplified as an equality like 7X = 7X

2. rewrite — H takes an hypothesis Hof type Hl = ... = Hn = 7X = ?Y, finds any sub-term
of the goal that matches ?X and replaces it by ?Y; it also produces goals H1,..., Hn. rewrite does
not care about what your goal is, just that the goal must contain a pattern 7X.

3. apply Htakes an hypothesis H of type Hl = ... — Hn — G and solves goal G; it creates
ooals H1, ..., Hn.

CS720: Lecture 5 & Tiago Cogumbreiro



Apply with/Rewrite with

Theorem eqg_trans_nat : forall (x y z: nat),

X =1 =
X =y >
y =2z —>
z = 1.
Proof.

intros x y z eql eq2 eq3.
assert (eq4: x = z). {
apply eg_trans.

outputs
Unable to find an instance for the variable y.

We can supply the missing arguments using the keyword with: apply eqg_trans with (y:=y).

Can we solve the same theorem but use rewrite instead?




A,

UMASS

Symmetry

What about this exercise?

Theorem eqg_trans_nat : forall (x y z: nat),

X =1 -
X =y =
y =z —>
1 = z.
Proof.

intros x y z eql eqg2 eq3.
assert (eqd: x = z). {

CS720: Lecture 5 & Tiago Cogumbreiro



A,

UMASS

Symmetry

What about this exercise?

Theorem eqg_trans_nat : forall (x y z: nat),

X =1 -
X =y =
y =z —>
1 = z.
Proof.

intros x y z eql eqg2 eq3.
assert (eq4: x = z). {

We can rewrite a goal ?X = ?Y into ?Y = ?X with symmetry.

CS720: Lecture 5 & Tiago Cogumbreiro 12 /21



A,

UMASS

Apply iIn example

Theorem silly3' : forall (n : nat),
(beg_nat n 5 = true = beg_nat (S (S n)) 7 = true) —
true = beg-nat n 5 -
true = beg_nat (S (S n)) 7.
Proof.
intros n eq H.
symmetry in H.
apply eq in H.

(Done in class.)

CS720: Lecture 5 & Tiago Cogumbreiro



A,

UMASS

argetting hypothesis

e rewrite = H1 in H2
o symmetry in H

o apply H1 in H2

CS720: Lecture 5 & Tiago Cogumbreiro



A,

UMASS

Forward vs backward reasoning

If we have a theorem L: C1 = C2 — G:

o Goal takes last: apply to goal of type G and replaces G by C1 and C2
o Assumption takes first: apply to hypothesis L to an hypothesis H: C1 and rewrites H:C2 = G

Proof styles:

o Forward reasoning: (apply 1n hypothesis) manipulate the hypothesis until we reach a goal.
Standard in math textbooks.
e Backward reasoning: (apply to goal) manipulate the goal until you reach a state where you can

apply the hypothesis.
Idiomatic in Coq.

CS720: Lecture 5 & Tiago Cogumbreiro



A,

Recall our encoding of natural numbers Sosron

Inductive nat : Type :=
| 0 : nat
| S : nat = nat.

1. Does the equation S n = @ hold? Why?

CS720: Lecture 5 & Tiago Cogumbreiro



A,

UMASS

Recall our encoding of natural numbers

Inductive nat : Type :=
| 0 : nat
| S : nat = nat.

1. Does the equation S n = @ hold? Why?
No the constructors are implicitly disjoint.

2. If S n = S m, can we conclude something about the relation between n and m?

CS720: Lecture 5 & Tiago Cogumbreiro



A,

Recall our encoding of natural numbers Sosron

Inductive nat : Type :=
| 0 : nat
| S : nat = nat.

1. Does the equation S n = @ hold? Why?
No the constructors are implicitly disjoint.

2. If S n = S m, can we conclude something about the relation between n and m?
Yes, constructor S is injective. That is, if S n = S m, then n = m holds.

These two principles are available to all inductive definitions! How do we use these two
properties in a proof?

CS720: Lecture 5 & Tiago Cogumbreiro




A,

UMASS

Proving that S is injective (1/2)

Theorem S_injective : forall (n m : nat),
Sn=S8Sm-—>
n =m.
Proof.
intros n m eql.
inversion eql.

If we run inversion, we get:

1 subgoal
n, m : nat

CS720: Lecture 5 & Tiago Cogumbreiro



A,

UMASS

Injectivity in constructors

Theorem S_injective : forall (n m : nat),
Sn=Snm->
n =m.
Proof.
intros n m eql.
inversion eql as [eq2].

If you want to name the generated hypothesis you must figure out the destruction pattern and use
as [...]. For instance, if we run inversion eql as [eq2], we get:

1 subgoal
n, m : nat

CS720: Lecture 5 & Tiago Cogumbreiro



A,

UMASS

Disjoint constructors

Theorem beg_nat_0_1 : forall n,
beg_nat @ n = true = n = 0.
Proof.
intros n eql.
destruct n.

(To do in class.)

CS720: Lecture 5 & Tiago Cogumbreiro



A,

UMASS

Crinciple of explosion

~

-X Talso (sequitur) quodlibet

inversion concludes absurd hypothesis, where there is an equality between different constructors.
Use inversion eql to conclude the proof below.

1 subgoal
n : nat
eql : false = true

CS720: Lecture 5 & Tiago Cogumbreiro



A,

UMASS

What we |learned...

lactics.v

« Exploding principle

Forward and backward proof styles

New tactics: apply Hand apply H in

Differences between apply and rewrite

New tactics: symmetry

New capability: rewrite ... in ...

New capability: simpl in ...

Constructors are disjoint and injective

CS720: Lecture 5 & Tiago Cogumbreiro 21/21



