CS720

Logical Foundations of Computer Science

Lecture 13: Program equivalence

Tiago Cogumbreiro

CS720: Lecture 13 a Tiago Cogumbreiro

Imp.v
Due Thursday October 18, 11:59pm EST

InaProp.v
Due Friday October 19, 11:59pm EST

CQULV.V
Due Thursday October 25,11:59pm EST

Programming Language Foundation

Volume 2 of Software Foundations

CS720: Lecture 13 a Tiago Cogumbreiro

summary m

e Behavioral equivalence
e Properties on behavioral equivalence

e Program transformations

CS720: Lecture 13 a Tiago Cogumbreiro

Program equivalence m

o A framework to compare "equivalent” programs, notation P = Q)
e The notion of equivalent is generic
e Program equivalence can be used to reason about correctness of algorithms

« Program equivalence can be used to reason about the correctness of program transformations

Examples:

e compilable programs

e programs that produce the same output

« programs that perform the same assignments
e programs that read the same variables

CS720: Lecture 13 a Tiago Cogumbreiro

Usual equivalence properties m
o Reflexive: P = P

e Symmetric: P=Q — Q=P

e Transitive: P=Q — Q=R — P=R

e Congruence: P = Q = C(P) = C(Q) where C : P — P is known as a context, a

program with a "whole" that is filled with the input program, outputting a "complete” program;
it is expected that the input occurs in the output.

CS720: Lecture 13 a Tiago Cogumbreiro

Syntactic equivalence m

BOSTON

If two programs are textually equal (are the same syntactic term), then we say that the two
programs are syntactically equivalent.

Example: APlus (ANum 3) (ANum @) is syntactically equivalent to APlus (ANum 3) (ANum 0).
Behavioral equivalence

If two programs start from an initial state and reach the same final state, then we say that the
two programs are behaviorally equivalent.

Example:
X:=3;; WHILE 1=<X DO Y:=Y+1;; X:=X-1 END
is behaviorally equivalent to

X:=0 ;; Y:=3

CS720: Lecture 13 a Tiago Cogumbreiro 9/22

How do we formalize behavioral equivalence for

arithmetic expressions, boolean expressions, commands?

10/22

Behavioral equivalence m

For arithmetic expressions a; = ag, e.g., x — x = 0:

CS720: Lecture 13 a Tiago Cogumbreiro

Behavioral equivalence m

For arithmetic expressions a; = ag, e.g., x — x = 0:

Vs: aeval(s,a;) = aeval(s,as)

a; = a»

For boolean expressions by = bs, e.g., (x —x =0) = T:

CS720: Lecture 13 a Tiago Cogumbreiro

Behavioral equivalence m

For arithmetic expressions a; = ag, e.g., x — x = 0:

Vs: aeval(s,a;) = aeval(s,as)

a; = a»
For boolean expressions by = bs, e.g., (x —x =0) = T:

Vs: beval(s,b;) = beval(s,bs)
bl — b2

For commands ¢; = c¢o:

CS720: Lecture 13 a Tiago Cogumbreiro 11/ 22

Behavioral equivalence m

For arithmetic expressions a; = ag, e.g., x — x = 0:

Vs: aeval(s,a;) = aeval(s,as)

a; = a»
For boolean expressions by = bs, e.g., (x —x =0) = T:

Vs: beval(s,b;) = beval(s,bs)
bl — b2

For commands ¢; = ¢o:

\V/81,\V/822 01/81 \\ SS9 <—— 02/81 \\ So
C1 = Co

CS720: Lecture 13 a Tiago Cogumbreiro 11/ 22

Exercise: skip m

Prove that

SKIP;;c=c

Theorem skip_left: forall c,
cequiv (SKIP;; c) c.

CS720: Lecture 13 a Tiago Cogumbreiro

Exercise: IT m

If b= T, then IFB b THEN ¢; ELSE ¢y FI = ¢;.

Theorem IFB_true: forall b c1 c2,
bequiv b BTrue —
cequiv (IFB b THEN c1 ELSE c2 FI) cl.

What could bin b = T be? For instance, the following statement holds. (By using lemmas
Nat.add_0_r, Nat.egb_refl.)

(xt+x=2%xx2)=T

Require Import PeanoNat.
Goal forall x, bequiv (x + x = 2 * x) BTrue.

CS720: Lecture 13 a Tiago Cogumbreiro 13/22

Exercise: while 7

BOSTON

A similar result to IFB_true is the following.
Theorem: If b = |, then WHILE b DO ¢ END = SKIP.

A more interesting result to show is.

Theorem: If b = T, then -WHILEbDO cEND / s \\ s’.

Lemma WHILE_true_nonterm : forall b ¢ st st',
bequiv b BTrue —
~((WHILE b DO c END) / st \\ st').

Proof.
intros b ¢ st st' Hb.
intros H.
remember (WHILE b DO c END) as cw eqgn:Heqcw.
induction H.

CS720: Lecture 13 a Tiago Cogumbreiro 14 /22

A note on proving reduction by induction m

1 subgoal
b : bexp
c : com

st, st' : state
Hb : bequiv b BTrue
H : (WHILE b DO ¢ END) / st \\ st'

Notice how induction on ¢ does very little, we need to reason about the derivation tree of
reduction and get the induction principle from H. Whenever we need to reason about all possible
derivation trees (say H), it is crucial to:

1. remember the expression that is getting "smaller” (say WHILE b DO ¢ END) before
performing induction, and then

2. invert the equation that results from remember.

CS720: Lecture 13 a Tiago Cogumbreiro

Loop unrolling m

A common code transformation performed by compilers can be proved correct:
Theorem:

WHILE b DO c END = IFB b THEN (c; ; WHILE b DO ¢ END) ELSE SKIP FI

Theorem loop_unrolling: forall b c,
cequiv
(WHILE b DO c END)
(IFB b THEN (c ;; WHILE b DO c¢ END) ELSE SKIP FI).

(Proof in the book.)

CS720: Lecture 13 a Tiago Cogumbreiro 16/ 22

Properties of equivalences m

An equivalence relation is:
e reflexive
e symmetric

e transitive

Show that aquiv, bequiv, and cequiv each is an equivalence relation.

Lemma refl_cequiv : forall (c : com), cequiv c c.
Lemma sym_cequiv : forall (c1 ¢2 : com), cequiv c1 c2 = cequiv c2 cl.
Lemma trans_cequiv : forall (c1 c2 c3 : com), cequiv c¢1 c2 = cequiv c¢2 c3 = cequiv c1 c3.

CS720: Lecture 13 a Tiago Cogumbreiro

. A
= is a congruence s

Generally a congruence can be described as
c=c = C(c)=C(c)

For commands this corresponds to proving

a=d ¢ = ¢} cy = ¢
(zn=a)=(zu=d) (aj;e2) = (ch556)
b= ¢ =¢ cy = b

IFB b THEN c; ELSE ¢, FI = IFB b’ THEN c'1 ELSE 6’2 FI

b=1"V c=c

WHILE b DO c END = WHILE &' DO ¢’ END

CS720: Lecture 13 a Tiago Cogumbreiro

Example: congruence on while m

Theorem CWhile_congruence : forall b1 b1' c1 c1',
bequiv b1 b1' = cequiv c1 c1' —
cequiv (WHILE b1 DO c1 END) (WHILE b1' DO c1' END).
Proof.
unfold bequiv,cequiv.
intros b1 b1' ¢1 c¢1' Hble Hcle st st'.
split; intros Hce.

CS720: Lecture 13 a Tiago Cogumbreiro

Example: congruence on while m

Theorem CWhile_congruence : forall b1 b1' c1 c1',
bequiv b1 b1' = cequiv c1 c1' —
cequiv (WHILE b1 DO c1 END) (WHILE b1' DO c1' END).
Proof.
unfold bequiv,cequiv.
intros b1 b1' ¢1 c¢1' Hble Hcle st st'.
split; intros Hce.

See slide 15. To solve each side, we need to somehow simplify our hypothesis. If we try to do the
proof by induction on the structure of c1, we quickly see that the induction hypothesis is
unhelpful to our goal. We need to reason about all possible derivation trees, so that we can
capture all possible loop executions. It is crucial to remember WHILE b1 DO c1 END before
performing induction, otherwise we loose that information and know nothing about the structure

of WHILE b1 DO c¢1 END and how it relates to the derivation tree.

CS720: Lecture 13 a Tiago Cogumbreiro 19/ 22

Revisiting code transformations m

Fixpoint fold_constants_com (c : com) : com :=
match ¢ with
| SKIP = SKIP
| i ::=a = CAss i (fold_constants_aexp a)
| ¢1 ;; c2 = (fold_constants_com c1) ;; (fold_constants_com c2)
| IFB b THEN c1 ELSE c2 FI =
match fold_constants_bexp b with
| BTrue = fold_constants_com c1
| BFalse = fold_constants_com c2
| b' = IFB b' THEN fold_constants_com c1
ELSE fold_constants_com c2 FI
end
| WHILE b DO ¢ END =
match fold_constants_bexp b with
| BTrue = WHILE BTrue DO SKIP END
| BFalse = SKIP
| b' = WHILE b' DO (fold_constants_com c) END
end
end.

CS720: Lecture 13 a Tiago Cogumbreiro 20/ 22

Code transformations (and congruence) %

Theorem: fold_constants_com is sound (that is, the optimized code is behaviorally equivalent to
the original code).

Definition ctrans_sound (ctrans : com —> com) : Prop :=
forall (c : com), cequiv ¢ (ctrans c).

Theorem fold_constants_com_sound : ctrans_sound fold_constants_com.

CS720: Lecture 13 a Tiago Cogumbreiro

summary m

Behavioral equivalence

Properties on behavioral equivalence

Program transformations

Induction on derivation trees

CS720: Lecture 13 a Tiago Cogumbreiro

