
CS450

Structure of Higher Level Languages

Lecture 10: TypedRacket, thunks, and promises

Tiago Cogumbreiro

1 / 29

Benchmark evaluation
Unoptimized foldr
Tail-recursive foldr

Processing a list of size: 1000000

Throughoutput (unopt): 7310 elems/ms
Mean (unopt): 136.8±7.56ms

Throughoutput (tailrec): 12349 elems/ms
Mean (tailrec): 80.98±1.49ms
Speed-up (tailrec): 1.7

A speed improvement of 1.7

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 2 / 29

What if we use foldl + reverse?

3 / 29

What if we use foldl + reverse?
Instead of creating nested functions,

We reverse the list and apply foldl

(define (foldr step base-case l)
 (foldl step base-case (reverse l)))

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 4 / 29

What if we use foldl + reverse?
Instead of creating nested functions,

We reverse the list and apply foldl

(define (foldr step base-case l)
 (foldl step base-case (reverse l)))

Simpler implementation!

But is it faster?

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 4 / 29

Rev+fold runs the slower (0.7)

Processing a list of size: 1000000

Throughoutput (unopt): 7310 elems/ms
Mean (unopt): 136.8±7.56ms

Throughoutput (tailrec): 12349 elems/ms
Mean (tailrec): 80.98±1.49ms
Speed-up (tailrec): 1.7

Throughoutput (rev+foldl): 4846 elems/ms
Mean (rev+foldl): 206.34±3.33ms
Speed-up (rev+foldl): 0.7

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 5 / 29

Easier to understand (self-contained)

(define (reverse l)
 (define (rev accum l)
 (match l
 [(list) accum]
 [(list h l ...) (rev (cons h accum) l)]))
 (rev l (list)))

Harder to understand (what is foldl?)

(define (reverse l)
 (define (on-elem elem accum)
 (cons elem accum))
 (foldl on-elem (list) l))

Conclusion
We learned to generalize two reduction patterns (foldl and foldr)

Pro: generalizing code can lead to a central point to optimize code

Pro: generalizing code can reduce our code base
(less code means less code to maintain)

Con: one level of indirection increases the cognitive code
(more cognitive load, code harder to understand)

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 6 / 29

Module 4:

Lazy evaluation

7 / 29

Module 4

Lazy evaluation

TypedRacket: typing annotations on top of Racket

Using functions to delay computation

Lazy evaluation as a form of controlling execution

Lazy evaluations as data-structures

Functional patterns applied to delayed

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 8 / 29

TypedRacket

9 / 29

1. #lang typed/racket
2. (: factorial (-> Number Number))
3. (define (factorial n)
4. (cond [(= n 0) 1]
5. [else (* n (factorial (- n 1)))]))

Typing a factorial example

Line 1. Speci�es that we are using TypedRacket with typed/racket
Line 2. Function signature: (: name-of-function (-> TypeOfArg1 TypeOfArg2
ReturnType))
Running a script is the same as with Racket. Run racket script.rkt as usual!

Run racket -I typed/racket to start the TypedRacket REPL.

Write #lang typed/racket/no-check to disable type-checking (not advised).

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 10 / 29

Delayed evaluation

11 / 29

Recall the evaluation order
Function application

The evaluation of function application can be called eager

Evaluating a function application, �rst evaluates each argument before evaluating the
body of the function.

Condition

The evaluation of cond can be called lazy, in the sense that a branch of cond is only evaluated
when its guard yields true (and only the one branch is evaluated).

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 12 / 29

How to encode an if-then-else?

(: factorial (-> Number Number))
(define (factorial n)
 (cond [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 13 / 29

(: if (All [T] (-> Boolean T T T)))
(define (if b then-branch else-branch)
 (cond [b then-branch] [else else-branch]))

(: factorial (-> Number Number))
(define (factorial n)
 (if (= n 0) 1 (* n (factorial (- n 1)))))

(factorial 10)

The type (All [T] (-> Boolean T
T T)) speci�es a type-parameter,
akin to a generic of Java or a
template parameter of C++

How to encode an if-then-else?

(: factorial (-> Number Number))
(define (factorial n)
 (cond [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

Example

What is wrong with this implementation?

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 13 / 29

(: if (All [T] (-> Boolean T T T)))
(define (if b then-branch else-branch)
 (cond [b then-branch] [else else-branch]))

(: factorial (-> Number Number))
(define (factorial n)
 (if (= n 0) 1 (* n (factorial (- n 1)))))

(factorial 10)

The type (All [T] (-> Boolean T
T T)) speci�es a type-parameter,
akin to a generic of Java or a
template parameter of C++

How to encode an if-then-else?

(: factorial (-> Number Number))
(define (factorial n)
 (cond [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

Example

What is wrong with this implementation? Why (factorial 10) does not terminate?

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 13 / 29

Our implementation of if is too eager
Because our if is a function, applying evaluates the then-branch and the else-branch before
choosing what to return.

Which, means our factorial no longer has a base case, and, therefore, it does not terminate.

= (factorial 0)
= (if (= 0 0) 1 (* 0 (factorial (- 0 1))))
= (if #t 1 (* 0 (factorial (- 0 1))))
= (if #t 1 (* 0 (factorial -1)))
= (if #t 1 (* 0 (if (= 0 -1) (= 0 -1) (* -1 (factorial (- -1 1))))))
= ...

Any idea how we can work around this limitation?

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 14 / 29

Using lambdas to delay computation
We can use a zero-argument lambda to hold each branch, as a lambda delays computation!

(: if (All [T] (-> Boolean (-> T) (-> T) T)))
(define (if b then-branch else-branch)
 (cond [b (then-branch)] [else (else-branch)]))
(: factorial (-> Number Number))
(define (factorial n)
 (if (= n 0) (lambda () 1) (lambda () (* n (factorial (- n 1))))))

(factorial 10)

Now each parameter is of type (-> T), a function that takes 0 arguments and returns a
value of type T

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 15 / 29

foo.rkt:8:2: Type Checker: Polymorphic function `if'
 could not be applied to arguments:
Argument 1:
 Expected: Boolean
 Given: Boolean
Argument 2:
 Expected: (-> T)
 Given: One
Argument 3:
 Expected: (-> T)
 Given: (-> Number)

Result type: T
Expected result: Number

in:(if (= n 0) 1 (lambda () (* n (factorial (- n 1)))

Value Expected Given

1. (= n 0) Boolean Boolean
2. 1 (-> T) One

3. (lambda) (-> T) (->
Number)

return T Number
Ignore row when same type (Arg 1)

Ignore when type param T vs Number
Only interesting is Argument 2, (-> T)
vs One, which is the type of 1

Typechecking errors

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 16 / 29

Thunks: zero-argument functions
The pattern of using zero-argument functions to delay evaluation is called a thunk. You can
use thunk as a verb which is a synonym of delaying evaluation.

(lambda () e) delays expression e
(e) evaluates thunk e and calls that thunk

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 17 / 29

Using thunk
Racket offers (thunk e) as a short-hand notation for (lambda () e); both notations are
equivalent.

(: if (All [T] (-> Boolean (-> T) (-> T) T)))
(define (if b then-branch else-branch)
 (cond [b (then-branch)] [else (else-branch)]))

(: factorial (-> Number Number))
(define (factorial n)
 (if (= n 0) (thunk 1) (thunk (* n (factorial (- n 1))))))

(factorial 10)

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 18 / 29

Thunks for delayed evaluation
You can use (lambda () some-computation) to delay the evaluation of some-computation.

To initiate some-computation you need to run the lambda.

You can use (thunk some-computation) as a short-hand notation.

Using a lambda to delay computation also lets you run the same computation multiple
times.

(: f (-> Number))
; (define (f) (displayln "Called (f)") 0) ; <- equivalent
(define f
 (thunk
 (displayln "Called (f)")
 0
)
)
(f) ; Outputs: Called (f)
(f) ; Outputs: Called (f)

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 19 / 29

Functional patterns: promises

20 / 29

Repeated delayed computation
In functional programming, there are cases where you have an intertwined pipeline of
functions where a thunk might be carried around. Since, we aim at side-effect free
programming models, it is wasteful to compute a thunk multiple times, when at most one
would do.

Example

(define (runner count thunk call-back)
 (cond [(<= count 0) (call-back (thunk) thunk)] ; invokes thunk once, and passes it along
 [else (call-back count thunk)])) ; does not invoke thunk once

It might not possible to know, at the function-level, if thunk was already called, as it
depends on the caller and, in this case, on call-back as well.

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 21 / 29

Promises: memoize delayed computation
(delay e) delays the evaluation of an expression (yielding a thunk)

(force e) caches the result of evaluating e, so that multiple applications of that thunk
return the result.

Did you know?

Memoization: optimization technique that caches the result of an expensive function
and returns the cached result

Haskell does not share the same evaluation model as we have in Racket. Instead, all
expressions of the language are lazily evaluate.

The idea of memoized delayed evaluation provides an elegant way to parallelize code.
The concept is usually known as a future.

The idea of memoized delayed evaluation (promises) is also very important in
asynchronous code (networking, and GUI), eg in JavaScript, in Python

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 22 / 29

Thunks

(define (thunk-repeat n th)
 (cond [(<= n 0) (void)]
 [else
 (th)
 (thunk-repeat (- n 1) th)]))

(thunk-repeat 3 (thunk (sleep 1) 3))

Promises

(define (promise-repeat n prom)
 (cond [(<= n 0) (void)]
 [else
 (force prom)
 (promise-repeat (- n 1) prom)]))

(promise-repeat 3 (delay (sleep 1) 3))

Example: delay/force

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 23 / 29

Promises versus thunks
Accessor

Promises: must call function force
Thunks: call the object itself

Evaluation count

(force p) evaluates the promise at most once; subsequent calls are cached

(thnk) calling a thunk evaluates its contents each and every time

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 24 / 29

Implementing promises

25 / 29

Implementing promises: state
Promises are usually implemented with mutable references. Can we get away with
implementing promises without using mutation?

A promise has two states:

1. when the thunk has not been run yet

2. when the thunk has been run at least once

A promise must hold:

the thunk we want to cache

the empty/full status

We need to separate the operations that mutate the state, from the ones that query the
state.

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 26 / 29

Implementing promises: operations
Function (force c) can be though of a few smaller operations:

1. checking if the promise is empty

2. if the promise is empty, update the promise state to full and store the result of the thunk

3. if the promise is full, does nothing to the promise state, and returns the cached result

Let us separate the operations that change the state from the one that return the value.

Function (promise-sync p) returns a new promise state. When the promise is empty, it
computes the thunk and stores it in a full promise. When the promise is full, it just
returns the promise given.

Function (promise-get p) can only be called when the promise is full and returns the
result of the promise.

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 27 / 29

Immutable promise implementation

(struct promise (empty? result))
(define (make-promise thunk) (promise #t thunk))
(define (promise-run w)
 (define th (promise-result w))
 (th))
(define (promise-get p)
 (cond [(promise-empty? p) (error "promise: call (promise-sync p) first.")]
 [else (promise-result p)]))
(define (promise-sync p)
 (cond [(not (promise-empty? p)) p]
 [else (promise #t (promise-run p))]))

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 28 / 29

Example of immutable promises
Immutable Promises

(define (promise-repeat n prom)
 (cond [(<= n 0) (void)]
 [else
 (promise-repeat (- n 1) (promise-sync prom))]))
(promise-repeat 3 (make-promise (thunk (sleep 1) 3)))

Standard promises

(define (promise-repeat n prom)
 (cond [(<= n 0) (void)]
 [else
 (force prom)
 (promise-repeat (- n 1) prom)]))

(promise-repeat 3 (delay (sleep 1) 3))

CS450 ☽ TypedRacket, thunks, and promises ☽ Lecture 10 ☽ Tiago Cogumbreiro 29 / 29

