Structure of Higher Level Languages

Lecture 5: Modules, structs, updating lists, exercises

Tiago Cogumbreiro

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

Modules

Modules encapsulate a unit of functionality

A module groups a set of constants and functions

A module encapsulates (hides) auxiliary top-level functions
Each file represents a module

CS450) Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

Each file represents a module. A bindings becomes visible through the provide construct.
Function (require "filename") loads a module

e (provide (all-defined-out)) makes all bindings visible
e (provide a c¢) makes binding a and c visible

e (require "foo.rkt") makes all bindings of the module in file foo.rkt visible in the
current module. Both files have to be in the same directory.

File: foo.rkt File:main.rkt

#lang racket (require "foo.rkt")

(c a)

(provide a c)
(define a 10)
(define b (+ a 308)
(define (¢ x) b)

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

Revisiting user data structures

Recall the 3D point from Lecture 3 And the name data structure

(define (point x y z) (list x y z)) (define (name f m 1) (list £ m 1))
(define (point-x pt) (first pt)) (define (name-first n) (first n))
(define (point-y pt) (second pt)) (define (name-middle n) (second n))
(define (point-z pt) (third pt)) (define (name-last n) (third n))

How do we prevent such errors?

(define p (point 1 2 3))
(name-first p)

CS450) Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

Introducing struct

#lang racket

(require rackunit)

(struct point (x y z) #:transparent)
(define pt (point 1 2 3))
(check-equal? 1 (point-x pt))
(check-equal? 2 (point-y pt))

(struct name (first middle last))
(define n (name "John" "M" "Smith"))
(check-equal? "John" (name-first n))
(check-true (name? n))

(check-false (point? n))
(check-false (1ist? n))

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

e Reduce boilerplate code
e Ensure type-safety

CS450) Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

Implementing Racket's AST

Grammar

erpression = value | variable | apply | define
value = number | void | lambda

apply = (ezpression+)

lambda = (lambda (variable*) term+)

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

value = number | void | lambda
lambda = (lambda (variable*) term+)

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

value = number | void | lambda
lambda = (lambda (variable*) term+)

(define (r:value? v)
(or (r:number? v)
(r:void? v)
(r:lambda? v)))
(struct r:void () #:transparent)
(struct r:number (value) #:transparent)
(struct r:lambda (params body) #:transparent)

I We are using a prefix r: because we do not want to redefined standard-library definitions.

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

erpression = value | variable | apply
apply = (ezpression+)

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

erpression = value | variable | apply
apply = (ezpression+)

(define (r:expression? e)
(or (r:value? e)
(r:variable? e)
(r:apply? e)))
(struct r:variable (name) #:transparent)
(struct r:apply (func args) #:transparent)

In r:apply we distinguish between the expression that represents the function func, and
the (possibly empty) list of arguments args.

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

term = define | ezpression
define = (define identifier ezpression) | (define (variable+) term+)

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

term = define | ezpression
define = (define identifier ezpression) | (define (variable+) term+)

(define (r:term? t)
(or (r:define? t)
(r:expression? t)))
(struct r:define (var body) #:transparent)

For our purposes of defining the semantics in terms of implementing an interpreter, we
do not want to distinguish between a basic definition and a function definition, as this
would unnecessarily complicate our code. We, therefore, represent a definition with a
single structure, which pairs a variable and an expression (eg, a lambda). In our setting, the
distinction between a basic and a function definition is syntactic (hot semantic).

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

STruct

(struct point (x y z) #:transparent)
Simplifies the definition of data structures:

e Creates selectors automatically, eg, point-x

e Creates type query, eg, point?

e Ensures that functions of a given struct can only be used on values of that struct.
Because, not everything is a list.

I What is #: transparent? A transparent struct prints its contents when rendered as a string.

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

Functional pattern:

Updating elements

Spec
(require rackunit)

(check-equal? 3 (exact-floor 3.14))
(check-equal?

(list 1 2 3)

(list-exact-floor (list 1.1 2.6 3.8)))

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

Spec Solution

(require rackunit) (define (list-exact-floor 1)
(match 1
(check-equal? 3 (exact-floor 3.14)) [(list) (list)]
(check-equal? [(list h'1 ...)
(list 1 2 3) (cons
(list-exact-floor (list 1.1 2.6 3.8))) (exact-floor h)

(list-exact-floor 1))1]))

| Can we generalize this for any operation on lists?

(check-equal?
(list-exact-floor (list 1.1 2.6 3.8)))
(l1ist (exact-floor 1.1) (exact-floor 2.6) (exact-floor 3.8)))

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

map

Generic solution Using map
(define (map f 1) (define (list-exact-floor 1)
(match 1 (map exact-floor 1))

[(1ist) (list)]
[(list h'1 ...) (cons (f h) (map f 1))1))

CS450) Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

Overview of our solution

| Recursive code mirrors the structure your datal

Think of how many constructors your data has, those will be your recursive cases.
e Case (list):the empty list constructor
e Case (list h 1 ...):add one element to the list with the (cons x 1) constructor
e Recursive call must handle "smaller” data
o with lists: (rest 1)
o with numbers: (+ n 1) if you approach an upper bound
o with numbers: (- n 1) if you approach a lower bound

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

1. Case (list) (handle-base) (define (rec 1)

- (match 1
2.Case (list h 1 ...) (handle- [(list) handle-base]
step) [(list h 1 ...) (handle-step h (rec 1))1]))

3. Recursive call handles "smaller"

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

1. Case (list) (handle-base) (define (rec 1)

- (match 1
2.Case (list h 1 ...) (handle- [(list) handle-base]
step) [(list h 1 ...) (handle-step h (rec 1))1]))

3. Recursive call handles "smaller"
Example for map

(define (map f 1)
(match 1
[(1ist) (list)]
[(list h'1 ...)
(cons (f h)
(map £ 1))

| In this version, we make the base and handle-steps explicit. Previous solution coalesces nested conds into-one.

CS450 > Modules, structs, updating lists, exercises) Lecture5) Tiago Cogumbreiro

