Structure of Higher Level Languages

| ecture 4: Recursion, nested definitions

Tiago Cogumbreiro

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

-xercises with lists

2/32

Summation of all elements of a list
Spec

(require rackunit)
(check-equal? 10 (sum-list (list 1 2 3 4)))
(check-equal? 8 (sum-list (list)))

CS450) Recursion, nested definitions) Lecture4) Tiago Cogumbreiro

Summation of all elements of a list
Spec

(require rackunit)
(check-equal? 10 (sum-list (list 1 2 3 4)))
(check-equal? 8 (sum-list (list)))

Solution

#lang racket

(define (sum-list 1)
(match 1
[(1ist) 0]
[(list h'1 ...) (+ h (sum-list 1))]))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

#lang racket
(define (sum-list 1)
(match 1
[empty 6]
[(list h 1 ...) (+ h (sum-1list 1))]))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

#lang racket
(define (sum-list 1)
(match 1
[empty 6]
[(list h 1 ...) (+ h (sum-1list 1))]))

o Formatch consider empty to be defined as (define empty (list)), notas a keyword

e Pattern empty means: any thing you find assign it to a variable called empty; same as
writing [x 0]
e The first branch matches with anything you give it, so this function never recurses

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

#lang racket
(define (sum-list 1)
(match 1
[(1list) 0]
[(list h t ...) (+ h (sum-list 1))]))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

#lang racket
(define (sum-list 1)
(match 1
[(1list) 0]
[(list h t ...) (+ h (sum-list 1))]))

 We wanted to recurse on t, but instead recursed on the original list 1
e This leads to an infinite loop

e Good practice: use 1 as the rest of the list, and make this error impossible.

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

#lang racket
(define (sum-list 1)
(match 1
[(1list) 0]
[(h1...) (+h (sum-list 1))]))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

#lang racket
(define (sum-list 1)
(match 1
[(1list) 0]
[(h1...) (+h (sum-list 1))]))

 We forgot to specify the data-type list in the second pattern
o Racket will raise an exception notifying us that the patternis incorrect

ex.rkt:5:5: match: syntax error in pattern
in: (h1...)
location...:
ex.rkt:5:5

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Returns a list from n down to 1
Spec

(require rackunit)
(check-equal? (list) (count-down 0))
(check-equal? (list 3 2 1) (count-down 3))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Returns a list from n down to 1
Spec

(require rackunit)
(check-equal? (list) (count-down 0))
(check-equal? (list 3 2 1) (count-down 3))

Solution

#lang racket
(define (count-down n)
(cond [(<= n 8) (list)]
[else (cons n (count-down (- n 1)))]))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Point-wise pairing of two lists
Spec

(require rackunit)

(check-equal? (list (cons 3 38) (cons 2 20) (cons 1 18))
(zip (list 3 2 1) (list 36 20 108)))

(check-equal? (list (cons 3 38) (cons 2 20) (cons 1 18))
(zip (list 3 2 1) (list 308 20 10 5 4 3 2 1)))

(check-equal? (list (cons 3 38) (cons 2 20) (cons 1 18))
(zip (list 3 2 1 90 180 278) (list 36 26 10)))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Point-wise pairing of two lists

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Point-wise pairing of two lists
Solution

#lang racket
(define pair list)
(define (zip 11 12)

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Point-wise pairing of two lists
Solution

#lang racket
(define pair list)
(define (zip 11 12)

(match* (11 12) e Use match* to pattern match two values
[((1ist) _) (list)] at once
[(_ (list)) (1list)]
[((list h1 11 ...) (list h2 12 ...))
(cons
(pair hl h2)

(zip 11 12))1))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Using nested definitions

Our goal is to build a list from 1 up to some number. Here is a template of our function and

a test case for us to play with. For the sake of simplicity, we will not handle non-positive
numbers.

flang racket
(define (countup-froml x) #f)

(require rackunit)

(check-equal? (list 1) (countup-froml 1))
(check-equal? (list 1 2) (countup-froml 2))
(check-equal? (list 1 2 3 4 5) (countup-froml 5))

I Hint: write a helper function count that builds counts from n up to m.

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

| We write a helper function count that builds counts from nup tom.

flang racket
(define (countup-froml x)
(count 1 x))

(define (count from to)
(cond
[(equal? from to) (list to)]
[else (cons from (count (+ 1 from) to))]))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

| We write a helper function count that builds counts from nup tom.

flang racket
(define (countup-froml x)
(count 1 x))

(define (count from to)
(cond
[(equal? from to) (list to)]
[else (cons from (count (+ 1 from) to))]))

Let us refactor the code and hide function count

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

We move function count to be internal to function countup-£froml, as it is a helper function
and therefore it is good practice to make it private to countup-froml.

(define (countup-froml x)

(define (count from to)
(cond [(equal? from to) (list to)]
[else (cons from (count (+ 1 from) to))]))

(count 1 x))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Nest functions:
e |f they are unnecessary outside
e |If they are under development

e |f you want to hide them: Every function in the public interface of your codeis
something you'll have to maintain!

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

INntermission:

Nested deftinitions

Nested definitions bind a variable within the body of a function and are only visible within
that function (these are local variables)

flang racket

(define (f x)
(define z 3)
(+ x z))

(+ 1 z)

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

| Nested definitions silently shadow any already defined variable

flang racket

(define z 18)

(define (f x)
(define x 3)
(define z 20)

(+ x 2))
(f 1)

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

| Itisan error to re-define local variables

flang racket
(define (f b)

(define b (+ b 1))
(define a 1)

(define a (+ a 1))
(+ ab))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Back to Exercise]

Notice that we have some redundancy in our code. In function count, parameter to
remains unchanged throughout execution.

(define (countup-froml x)

(define (count from to)
(cond [(equal? from to) (list to)]
[else (cons from (count (+ 1 from) to))]))

(count 1 x))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

We removed parameter to from function count as it was constant throughout the
execution. Variable to is captured/copied when count is defined.

(define (countup-froml to)

(define (count from)
(cond [(equal? from to) (list to)]
[else (cons from (count (+ 1 from)))]))

(count 1))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

e Use a nested definition to hide a function that is only used internally.
e Nested definitions can refer to variables defined outside the scope of their definitions.
e The last expression of a function's body is evaluated as the function's return value

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Measuring performance

PASYARY

Example 2

Maximum number from a list of integers

| Finding the maximum element of a list.

flang racket
(define (max xs)
(cond
[(empty? xs) (error "max: expecting a non-empty list!")]
[(empty? (rest xs)) (first xs)]
[(> (first xs) (max (rest xs))) (first xs)]
[else (max (rest xs))]))

(require rackunit)
(check-equal? 18 (max (list 1 2 18 4 8)))

I We use function error to abort the program with an exception.

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

| Finding the maximum element of a list.

Let us benchmark max with sorted list (worst-case scenario):
e 20 elements:18.43ms
e 21 elements: 36.63ms
e 22 elements: 75.78ms

| Whenever we add an element we double the execution time. Why?

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

Whenever we hit the else branch (because we can't find the maximum), we re-compute
the max element.

(define (max xs)
(cond
[(empty? xs) (error "max: expecting a non-empty list!")]
[(empty? (rest xs)) (first xs)]
[(> (first xs) (max (rest xs))) (first xs)]
[else (max (rest xs))]))

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

| We use a local variable to cache a duplicate computation.

(define (max xs)
(cond
[(empty? xs) (error "max: expecting a non-empty list!")]
[(empty? (rest xs)) (first xs)]
[else
(define rest-max (max (rest xs)))
(cond
[(> (first xs) rest-max) (first xs)]
[else rest-max])]))

o Attempt #1: 20 elementsin 75.78ms
e Attempt #2:1,000,000 elementsin 101.15ms

CS450) Recursion, nested definitions) Lecture4) Tiago Cogumbreiro

e Use nested definitions to cache intermediate results
o |ldentify repeated computations and cache them in nested (local) definitions

CS450) Recursion, nested definitions) Lecture4 Y Tiago Cogumbreiro

