
CS450
Structure of Higher Level Languages

Lecture 09: Dynamically-created funcs, storing funcs in lists, currying

Tiago Cogumbreiro

1 / 19

Today we will learn…
academic honesty policy
storing functions in data-structures
creating functions dynamically
currying functions

Section 2.2.1 in SICP. Try out the interactive version of section 2.2 of the SICP book.

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 2 / 19

https://xuanji.appspot.com/isicp/2-2-closure.html

Academic dishonesty

3 / 19

Plagiarism in University
Copying code from others is wrong because:

you do not learn
you risk being expelled
you are risking the other person being expelled
you risk not completing your degree
you risk being put on a list of cheaters (other universities may reject your application)

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 4 / 19

Plagiarism in the Industry
Is wrong, because:

it is illegal
you risk being dismissed from employment
you risk being sued

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 5 / 19

Copying code (when it is right)
software licenses de�ne clear rules on
how you can copy, use, and change other people's code
open source promotes sharing of code

attribution is important (unless public domain)
good way to land on a job

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 6 / 19

Plagiarism in CS 450
Zero Tolerance

student's responsibility to learn the Student's code of conduct
we use plagiarism detection (renaming functions is not enough)
we compare against solutions from past years (and instructor)
be careful when working with others, any sharing code may trigger
the plagiarism detection tool can detect code sharing among students

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 7 / 19

Plagiarism in CS 450
Last call

statistically, there will be plagiarism this semester
if I contact you regarding plagiarism, there will be zero tolerance (no second chances)
you may void a submission before I contact you without repercussions
I give you enough time to complete assignments, there is no excuse

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 8 / 19

Functions in data structures

9 / 19

Functions stored in data structures
"Freeze" one parameter of a function

In this example, a frozen data-structure stores a binary-function and the �rst argument.
Function apply1 takes a frozen data structure and the second argument, and applies the
stored function to the two arguments.

(struct frozen (func arg1) #:transparent)

(define (apply1 fr arg)
 (define func (frozen-func fr)) ; Bind a function to a local variable
 (define arg1 (frozen-arg1 fr))
 (func arg1 arg)) ; Call a function bound to a local variable

(define frozen-double (frozen * 2)) ; Store function '*' in a data structure
(define (double x) (apply1 frozen-double x))
(check-equal? (* 2 3) (double 3))

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 10 / 19

Unfolding (double 3)
 (double 3)
= (apply1 frozen-double 3)
= (apply1 (frozen * 2) 3)
= (define fr (frozen * 2))
 ((frozen-func fr) (frozen-arg1 fr) 3)
= (* 2 3)
= 6

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 11 / 19

Functions stored in data structures
Apply a list of functions to a value

#lang racket
(define (double n) (* 2 n))
; A list with two functions:
; * doubles a number
; * increments a number
(define p (list double (lambda (x) (+ x 1))))
; Applies each function to a value
(define (pipeline funcs value)
 (cond [(empty? funcs) value]
 [else (pipeline (rest funcs) ((first funcs) value))]))
; Run the pipeline
(check-equal? (+ 1 (double 3)) (pipeline p 3))

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 12 / 19

Creating functions dynamically

13 / 19

Example

#lang racket
(define (frozen-� arg1)
 (define (get-arg2 arg2)
 (* arg1 arg2))
 ; Returns a new function
 ; every time you call frozen-�
 get-arg2)
(require rackunit)
(define double (frozen-� 2))
(check-equal? (* 2 3) (double 3))

Evaluating (frozen-� 2)

 (frozen-� 2)
= (define (get-arg2 arg2) (* 2 arg2)) get-arg2
= (lambda (arg2) (* 2 arg))

Evaluating (double 3)

 (double 3)
= ((frozen-� 2) 3)
= ((lambda (arg2) (* 2 arg2)) 3)
= (* 2 3)
= 6

Returning functions
Functions in Racket automatically capture the value of any variable referred in its body.

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 14 / 19

Currying functions

15 / 19

Freezing binary-function Attempt #1

(define (freeze f arg1)
 (define (get-arg2 arg2)
 (f arg1 arg2))
 get-arg2)

(define double (freeze * 2))
(check-equal? (* 2 3) (double 3))

Revisiting "freeze" function

Our freeze function is more general than freeze-� and simpler than frozen-double. We
abstain from using a data-structure and use Racket's variable capture capabilities.

(struct frozen (func arg1) #:transparent)

(define (apply1 fr arg)
 (define func (frozen-func fr))
 (define arg1 (frozen-arg1 fr))
 (func arg1 arg))

(define frozen-double (frozen * 2))
(define (double x) (apply1 frozen-double x)
(check-equal? (* 2 3) (double 3))

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 16 / 19

Attempt #2

(define (freeze f)
 (define (expect-1 arg1)
 (define (expect-2 arg2)
 (f arg1 arg2))
 expect-2)
 expect-1)

(define frozen-� (freeze *))
(define double (frozen-� 2))
(check-equal? (* 2 3) (double 3))

Evaluation

 (define frozen-� (freeze *))
= (define frozen-�
 (define (expect-1 arg1)
 (define (expect-2 arg2)
 (* arg1 arg2))
 expect-2)
 expect-1)

 (define double (frozen-� 2))
= (define double
 (define (expect-2 arg2) (* 2 arg2))
 expect-2)

 (double 3)
= (* 2 3)

Generalizing "frozen" binary functions

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 17 / 19

Currying functions
Currying is the general technique of "freezing" functions with multiple parameters. It
provides a way of delaying (and caching) the passage of multiple arguments by means of
new functions.

A curried function is a unary function annotated with an uncurried function

 arguments and a number of expected arguments that can be recursively de�ned as:

#lang racket
(define frozen-� (curry *))
(define double (frozen-� 2))
(require rackunit)
(check-equal? (* 2 3) (double 3))

curry (x)f ,n,a
f a n

curry (x) =f ,n+1,[a ,…,a]1 n
curryf ,n,[a ,…,a ,x]1 n

 curry (x) =f ,0,[a ,…,a]1 n
f(a ,…, a , x)1 n

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 18 / 19

In some programming languages
functions are curried by default.
Examples include Haskell and ML.
The term currying is named after
Haskell Curry, a notable logician who
developed combinatory logic and the
Curry-Howard correspondence
(practical applications include proof
assistants).
Haskell was born in Millis, MA (1 hour
drive from UMB).

Source: public domain

Haskell Curry
Did you know?

CS450 ☽ Dynamically-created funcs, storing funcs in lists, currying ☽ Lecture 09 ☽ Tiago Cogumbreiro 19 / 19

http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Curry.html

