
CS450
Structure of Higher Level Languages

Lecture 07: Delayed evaluation

Tiago Cogumbreiro

1 / 28

Homework 2
Deadline: February 26, Tuesday 5:30pm EST

2 / 28

Unit 3
Delayed evaluation

First steps of interpreter

3 / 28

Today we will…
1. Learn about delayed evaluation
2. Promises and their implementation
3. Streams of data

Acknowledgment: Today's lecture is inspired by Professor Dan Grossman's wonderful lecture in
CSE341 from the University of Washington: (Video 1) (Video 2) (Video 3) (Video 4) (Video 5)

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 4 / 28

https://courses.cs.washington.edu/courses/cse341/18au/lec14slides.pdf
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/095-thunks.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/096-avoid-computations.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/097-delay-and-force.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/098-using-streams.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/099-defining-streams.mp4

Recall the evaluation order
Function application

The evaluation of function application can be called eager
Evaluating a function application, �rst evaluates each argument before evaluating the body of
the function.

Condition

The evaluation of cond can be called lazy, in the sense that a branch of cond is only evaluated
when its guard yields true (and only the one branch is evaluated).

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 5 / 28

How to encode an if-then-else?
(define (factorial n)
 (cond [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

Example

(define (if b then-branch else-branch)
 (cond [b then-branch] [else else-branch]))

(define (factorial n)
 (if (= n 0) 1 (* n (factorial (- n 1)))))

(factorial 10)

What is wrong with this implementation?

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 6 / 28

How to encode an if-then-else?
(define (factorial n)
 (cond [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

Example

(define (if b then-branch else-branch)
 (cond [b then-branch] [else else-branch]))

(define (factorial n)
 (if (= n 0) 1 (* n (factorial (- n 1)))))

(factorial 10)

What is wrong with this implementation? Why (factorial 10) does not terminate?

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 6 / 28

Our implementation of if is too eager
Because our if is a function, applying evaluates the then-branch and the else-branch before
choosing what to return.
Which, means our factorial no longer has a base case, and, therefore, it does not terminate.

= (factorial 0)
= (if (= 0 0) 1 (* 0 (factorial (- 0 1))))
= (if #t 1 (* 0 (factorial (- 0 1))))
= (if #t 1 (* 0 (factorial -1)))
= (if #t 1 (* 0 (if (= 0 -1) (= 0 -1) (* -1 (factorial (- -1 1))))))
= ...

Any idea how we can work around this limitation?

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 7 / 28

Using lambdas to delay computation
We can use a zero-argument lambda to hold each branch, as a lambda delays computation!

(define (if b then-branch else-branch)
 (cond [b (then-branch)] [else (else-branch)]))

(define (factorial n)
 (if (= n 0) (lambda () 1) (lambda () (* n (factorial (- n 1))))))

(factorial 10)

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 8 / 28

Thunks: zero-argument functions
The pattern of using zero-argument functions to delay evaluation is called a thunk. You can use
thunk as a verb which is a synonym of delaying evaluation.

(lambda () e) delays expression e
(e) evaluates thunk e and calls that thunk

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 9 / 28

Using thunk
Racket offers (thunk e) as a short-hand notation for (lambda () e); both notations are
equivalent.

(define (if b then-branch else-branch)
 (cond [b (then-branch)] [else (else-branch)]))

(define (factorial n)
 (if (= n 0) (thunk 1) (thunk (* n (factorial (- n 1))))))

(factorial 10)

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 10 / 28

Functional patterns: promises

11 / 28

Repeated delayed computation
In functional programming, there are cases where you have an intertwined pipeline of functions
where a thunk might be carried around. Since, we aim at side-effect free programming models, it
is wasteful to compute a thunk multiple times, when at most one would do.

Example

(define (runner count thunk call-back)
 (cond [(�� count 0) (call-back (thunk) thunk)] ; invokes thunk once, and passes it along
 [else (call-back count thunk)])) ; does not invoke thunk once

It might not possible to know, at the function-level, if thunk was already called, as it depends on
the caller and, in this case, on call-back as well.

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 12 / 28

Promises: memoize delayed computation
(delay e) delays the evaluation of an expression (yielding a thunk)
(force e) caches the result of evaluating e, so that multiple applications of that thunk return
the result.

Did you know?
Memoization: optimization technique that caches the result of an expensive function and
returns the cached result
Haskell does not share the same evaluation model as we have in Racket. Instead, all
expressions of the language are lazily evaluate.
The idea of memoized delayed evaluation provides an elegant way to parallelize code. The
concept is usually known as a future.
The idea of memoized delayed evaluation (promises) is also very important in asynchronous
code (networking, and GUI), eg in JavaScript, in Python

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 13 / 28

Thunks

(define (thunk-repeat n th)
 (cond [(�� n 0) (void)]
 [else
 (th)
 (thunk-repeat (- n 1) th)]))

(thunk-repeat 3 (thunk (sleep 1) 3))

Promises

(define (promise-repeat n prom)
 (cond [(�� n 0) (void)]
 [else
 (force prom)
 (promise-repeat (- n 1) prom)]))

(promise-repeat 3 (delay (sleep 1) 3))

Example: delay/force

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 14 / 28

Promises versus thunks
Accessor

Promises: must call function force
Thunks: call the object itself

Evaluation count

(force p) evaluates the promise at most once; subsequent calls are cached
(thnk) calling a thunk evaluates its contents each and every time

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 15 / 28

Implementing promises: state
Promises are usually implemented with mutable references. Can we get away with implementing
promises without using mutation?

A promise has two states:

1. when the thunk has not been run yet
2. when the thunk has been run at least once

A promise must hold:
the thunk we want to cache
the empty/full status

We need to separate the operations that mutate the state, from the ones that query the state.

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 16 / 28

Implementing promises: operations
Function (force c) can be though of a few smaller operations:

1. checking if the promise is empty
2. if the promise is empty, update the promise state to full and store the result of the thunk
3. if the promise is full, does nothing to the promise state, and returns the cached result

Let us separate the operations that change the state from the one that return the value.
Function (promise-sync p) returns a new promise state. When the promise is empty, it
computes the thunk and stores it in a full promise. When the promise is full, it just returns the
promise given.
Function (promise-get p) can only be called when the promise is full and returns the result of
the promise.

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 17 / 28

Immutable promise implementation
(struct promise (empty? result))
(define (make-promise thunk) (promise #t thunk))
(define (promise-run w)
 (define th (promise-result w))
 (th))
(define (promise-get p)
 (cond [(promise-empty? p) (error "promise: call (promise-sync p) first.")]
 [else (promise-result p)]))
(define (promise-sync p)
 (cond [(not (promise-empty? p)) p]
 [else (promise #t (promise-run p))]))

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 18 / 28

Example of immutable promises
Immutable Promises

(define (promise-repeat n prom)
 (cond [(�� n 0) (void)]
 [else
 (promise-repeat (- n 1) (promise-sync prom))]))
(promise-repeat 3 (make-promise (thunk (sleep 1) 3)))

Standard promises

(define (promise-repeat n prom)
 (cond [(�� n 0) (void)]
 [else
 (force prom)
 (promise-repeat (- n 1) prom)]))

(promise-repeat 3 (delay (sleep 1) 3))

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 19 / 28

Functional patterns: streams

20 / 28

Stream
A stream is an in�nite sequence of values.

Did you know? The concept of streams is also used in:
Reactive programming (eg, a stream of GUI events for Android development)
Stream processing for digital signal processing (eg, image/video codecs with the language
StreamIt)
Unix pipes (eg, a pipeline of Unix process producing and consuming a stream of data)
See also Microsoft LINQ and Java 8 streams

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 21 / 28

Streams in Racket
A stream can be recursively de�ned as a a pair holds a value and another stream
stream = (cons some-value (thunk stream))

Powers of two

(cons 1 (thunk (cons 2 (thunk (cons 4 (thunk ...))))))
Visually

1 2 4 ...
Using streams

(check-equal? 1 (car (powers-of-two))) ; the 1st element of the stream
(check-equal? 2 (car ((cdr (powers-of-two))))) ; the 2nd element of the stream
(check-equal? 4 (car ((cdr ((cdr (powers-of-two))))))) ; the 3rd element of the stream

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 22 / 28

Revisiting our example with helper functions
; Retrieves the current value of the stream
(define (stream-get stream) (car stream))
; Retrieves the thunk and evaluates it, returning a thunk
(define (stream-next stream) ((cdr stream)))

(check-equal? 1 (stream-get (powers-of-two)))
(check-equal? 2 (stream-get (stream-next (powers-of-two))))
(check-equal? 4 (stream-get (stream-next (stream-next (powers-of-two)))))

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 23 / 28

Programming with streams
Let us write a function that given a stream and a predicate, counts how many times a predicate
holds true until it becomes false.

Spec

(check-equal? 3 (count-until (powers-of-two) (lambda (x) (< x 8))))
(check-equal? 0 (count-until (powers-of-two) (lambda (x) (�� x 0))))
(check-equal? 3 (count-until (powers-of-two) (curryr < 8))) ; Reverse Currying
(check-equal? 0 (count-until (powers-of-two) (curryr �� 0))) ; Reverse Currying

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 24 / 28

Programming with streams
Let us write a function that given a stream and a predicate, counts how many times a predicate
holds true until it becomes false.

Spec

(check-equal? 3 (count-until (powers-of-two) (lambda (x) (< x 8))))
(check-equal? 0 (count-until (powers-of-two) (lambda (x) (�� x 0))))
(check-equal? 3 (count-until (powers-of-two) (curryr < 8))) ; Reverse Currying
(check-equal? 0 (count-until (powers-of-two) (curryr �� 0))) ; Reverse Currying

Solution

(define (count-until stream pred)
 (define (count-until-iter s count)
 (cond [(pred (stream-get s)) (count-until-iter (stream-next s) (+ count 1))]
 [else count]))
 (count-until-iter stream 0))

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 24 / 28

Example: powers of two
Implement the stream powers-of-two

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 25 / 28

Example: powers of two
Implement the stream powers-of-two

Solution

(define (powers-of-two)
 (define (powers-of-two-iter n)
 (thunk
 (cons n (powers-of-two-iter (* 2 n)))))
 ((powers-of-two-iter 1)))

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 25 / 28

Example: constant
Implement a function const that given a value it returns a stream that always yields that value.

(check-equal? 20 (stream-get (const 20))
(check-equal? 20 (stream-get (stream-next (const 20)))
(check-equal? 20 (stream-get (stream-next (stream-next (const 20)))))

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 26 / 28

Example: constant
Implement a function const that given a value it returns a stream that always yields that value.

(check-equal? 20 (stream-get (const 20))
(check-equal? 20 (stream-get (stream-next (const 20)))
(check-equal? 20 (stream-get (stream-next (stream-next (const 20)))))

Solution

(define (const v)
 (define (const-iter) (cons v const-iter))
 (const-iter))

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 26 / 28

Common mistakes (1)
(define (const v)
 (define const-iter (cons v const-iter))
 (const-iter))

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 27 / 28

Common mistakes (1)
(define (const v)
 (define const-iter (cons v const-iter))
 (const-iter))

const-iter is not a thunk. The error is that const-iter is not de�ned (as the body of the
de�nition is evaluated).

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 27 / 28

Common mistakes (2)
(define (const v)
 (define (const-iter) (cons v (const-iter)))
 (const-iter))

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 28 / 28

Common mistakes (2)
(define (const v)
 (define (const-iter) (cons v (const-iter)))
 (const-iter))

in the body of const-iter the thunk const-iter is evaluated. This function does not terminate.

CS450 ☽ Delayed evaluation ☽ Lecture 07 ☽ Tiago Cogumbreiro 28 / 28

