CS450

Structure of Higher Level Languages

Lecture 15: Exercises

Tiago Cogumbreiro

Press arrow keys [-][~]to change slides.

Solving the homework assignment

1. learn what each symbol means for each language: relate the AST to the data-
structures (Exercise 1, Exercise 2, Exercise 3)

2.learn how to write environment operations: using functions e:env-get and e:env-put.
(Exercise 3)

3.learn how to implement a function defined by branches: understand pattern matching
and any extra conditions (Exercise 1)

4. learn how to implement inductive definitions: reading "fraction" rules; implementing
constraints (Exercise 2, Exercise 3)

5. formal methods: discussed in the first lecture of this module; investigate and cite your
sources (Exercise 4 and 5) — not covered by this lecture

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

(1) Learn what each symbol means for each language

4/31

e The homework assignment shows 2 different languages!
» Ag: Exercise 1 and Exercise 2

e Ar: Exercise 3

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

ex=uv| x| (e e) vi=n| Az.e

(define-type s:value (U s:number s:lambda))
(define-type s:expression (U s:value s:variable s:apply))

(struct s:number ([value : Number]))
(struct s:variable ([name : Symboll]))
(struct s:lambda ([param : s:variable] [body : s:expression]))
(struct s:apply ([func : s:expression] [arg : s:expression]))

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

viu=mn|{E, \z.e}
(define-type e:value (U e:number e:closure))

(struct e:number ([value : Number]))

(struct e:closure (
[env : e:environ]
[param : e:variable]
[body : e:expression]
)
)

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

ex=v|x| (e e) | Azr.e
(define-type e:expression (U e:value e:variable e:apply e:lambda))
(struct e:variable ([name : Symbol]))

(struct e:apply (
[func : e:expression]
[arg : e:expression]

))

(struct e:lambda (
[param : e:variable]
[body : e:expression]

))

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

(2) Learn how to write environment operations

9/31

« How can we encode an empty environment ():

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

« How can we encode an empty environment (): (hash)

e How can we encode a lookup E(z):

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

« How can we encode an empty environment (): (hash)

« How can we encode a lookup E(z): (e:env-get E x)

 How can we encode environment extension E|z — v|:

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

« How can we encode an empty environment (): (hash)

« How can we encode a lookup E(z): (e:env-get E x)

 How can we encode environment extension E'|x +— v]: (e:env-put E x v)

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

lest-cases

Function (check-e:eval? env exp val) is given in the template to help you test effectively
your code.

l The use of check-e:eval is optional. You are encouraged to play around with e:eval directly.

1. The first parameter is an S-expression that represents an environment. The S-
expression must be a list of pairs representing each variable binding. The keys must be

symbols, the values must be serialized \g values

[]
[(x . 1)]
[x. 1) (y.2)]

2. The second parameter is an S-expression that represents the a valid A expression

3. The third parameter is an S-expression that represents a valid Ag value

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

Each line represents a quoted expression as a parameter of function e:parse-ast. For

instance, (e:parse-ast '(x y)) should return (e:apply (e:variable 'x) (list
(e:variable 'y))).

1
X

(closure [(y . 20)] (lambda (x) x))

(lambda (x) x)
(x y)

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

(check-e:eval? '[(x . 1)] 'x 1)

(check-e:eval? '[(x . 2)] 28 20)

(check-e:eval? '[] '(lambda (x) x) '(closure [] (lambda (x) x)))
(check-e:eval? '[(y . 3)] '(lambda (x) x) '(closure [(y . 3)] (lambda (x) x)))
(check-e:eval? '{(y . 3)} '(lambda (x) x) '(closure [(y . 3)] (lambda (x) x)))
(check-e:eval? '{} '((lambda (x) x) 3) 3)

(check-e:eval? '{} '((lambda (x) (lambda (y) x)) 3) '(closure {[x . 3]} (lambda (y) x)))

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

Implementing

inductive definitions

A primer

15/31

A primer

Disciplining an ambiguous presentation medium to communicate a precise mathematical
meaning (notation and convention)

e Implementing algorithms written in a mathematical notation
e Discuss recursive functions (known as inductive definitions)
» Present various design choices

e We are restricting ourselves to the specification of functions
(If M(xz) =yand M(z) = 2z, theny = 2)

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

e Function M (n) has one input n and one output after the equals sign.

e Each rule declares some pre-conditions
e The result of the function is only returned if the pre-conditions are met

Formally

M(n)=n—-10 ifn > 100
M(n)=M(M(n+11)) ifn <100

Implementation

e Each branch of the cond represents a
rule

e The condition of each branch should be
the pre-condition

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

e Function M (n) has one input n and one output after the equals sign.

e Each rule declares some pre-conditions
e The result of the functionis only returned if the pre-conditions are met

Formally

M(n)=n—10 ifn > 100

M(n) = M(M(n+11)) ifn < 100

Implementation

e Each branch of the cond represents a (define (M n)
rule (cond
« The condition of each branch should be [(> n 160) (- n 18)]
the pre-condition [(<=n 1088) (M (M (+ n 11)))]))

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

 We can use the "fraction"-based notation to represent pre-conditions
e Above is a pre-condition, below is the result of the function
e The result is only available if the pre-condition holds

Formally

n > 100 n < 100
M(n)=n—10 M(n) = M(M(n + 11))

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

 We can use the "fraction"-based notation to represent pre-conditions
e Above is a pre-condition, below is the result of the function
e The result is only available if the pre-condition holds

Formally

n > 100 n < 100
M(n)=n—10 M(n) = M(M(n + 11))

Implementation

(define (M n)
(cond
[(> n 108) (- n 18)]
[(<=n 168) M (M (+ n 11)))]))

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

e Fraction-based notation admits multiple pre-conditions

e Theresult only happens if all pre-conditions are met (logical conjunction)

e We are only interested in function calls that do always succeed (ighore errors)
¢ Since we are defining functions, only one output is possible at any time

n > 100 M(n+11) ==z M(z) =y n < 100
M(n)=n—-10 M(n) =y

e Inthe second rule, note the implicit
dependency between variables

e The dependency between variables,
specifies the implementation order
(eg, x must be defined before y)

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

e Fraction-based notation admits multiple pre-conditions

e Theresult only happens if all pre-conditions are met (logical conjunction)

e We are only interested in function calls that do always succeed (ighore errors)
¢ Since we are defining functions, only one output is possible at any time

n > 100 M(n+11) ==z M(z) =y n < 100
M(n)=n—-10 M(n) =y
e |n the second rule, note the implicit (define (M n)
dependency between variables (cond
e The dependency between variables, [(>n 1088) (- n 10)]
specifies the implementation order [(<= n 160)

(define x (M (+ n 11)))
(define y (M x))

y1))

(eg, x must be defined before y)

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

e The distinction between input and output should be made clear by the author of the
formalism

n > 100 M(n+11) ==z M(z) =y n < 100
M(n)=n—-10 M(n) =y

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

e The distinction between input and output should be made clear by the author of the
formalism

n > 100 M(n+11) ==z M(z) =y n < 100
M(n)=n—-10 M(n) =y

We can use any symbol!

Let us define the M function with the g symbol. The intent of notation is to aid the reader
and reduce verbosity.

n > 100 n-+11 €
=n — 10 n

= 1 n < 100
=Y

i
i
8
8
iy

n

| How do we write M (M (n + 11))?

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

e The pre-condition is implicitly defined according to the structure of the input
e Firstrule: can only be applied if the list is empty
e Second rule: can only be applied if there is at least one element in the list

as([]) =[]

as(lz |z <przel)=1 gs(lz |z >pArxel]) =1
ags(p =) =1 - [p] - I

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

(define (gs 1)
(cond [(empty? 1) empty]
[else

(define p (first 1))
(define r (rest 1))

(define 11 (gs (filter (lambda (x) (< x p)) r)))
(define 12 (gs (filter (lambda (x) (>= x p)) r)))

(append 11 (cons p 12))]))

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

(4) Implementing constraints

define 1 define 2 define 3

eval(e;) = (A(z) e) T eval(e,) =v, eval(subst(ep,z,v.)) = v
N——
pattern match the return value!
eval((er e — v
(ere)) = o,

return this

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

» Exercise 1. Function e[x := v| is (s:subst exp var val), where eis exp, z is var, and v is
val.

e Exercise 2. Functione || vis (s:eval subst exp), where e is exp, v is the return value
(not displayed in the function signature).

In the exercise, parameter subst represents the substitution function (local tests use
your own implementation, remote tests use a correct implementation of subst).

e Exercise 3. Functione || vis (e:eval env exp), where eis exp, F is env, v is the return
value (not displayed in the function sighature).

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

Church's encoding

e Alonzo Church created the A-calculus

e Church's Encoding is a treasure trove of
A-calculus expressions: it shows how
natural numbers can be encoded

e Let us go through Church's encoding of
booleans

e Examples taken from Colin Kemp's PhD
thesis (page 17)

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Church_encoding
https://ia600202.us.archive.org/11/items/TheoreticalFoundationsForPracticaltotallyFunctionalProgramming/33429551_PHD_totalthesis.pdf

| Why? Because you will be needing test-cases.

(require rackunit)
(define ns (make-base-namespace))
(define (run-bool b) (((eval b ns) #t) #f))

(define TRUE '(lambda (a) (lambda (b) a)))
(define FALSE '(lambda (a) (lambda (b) b)))
(define (OR a b) (list (list a TRUE) b))

(define (AND a b) (list (list a b) FALSE))
(define (NOT a) (list (list a FALSE) TRUE))
(define (EQ a b) (list (list a b) (NOT b)))

(check-equal?
(run-bool (EQ TRUE (OR (AND FALSE TRUE) TRUE)))
(equal? #t (or (and #f #t) #t)))

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

TL;DR: A data-structure that stores pairs of key-value entries. There is a lookup operation
that given a key retrieves the value associated with that key. Keys are unique in a hash-table,
so inserting an entry with the same key, replaces the old value by the new value.

e Hash-tables represent a (partial) injective function.

e Hash-tables were covered in CS310.

e Hash-tables are also known as maps, and dictionaries. We use the term hash-table,
because that is how they are known in Racket.

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

http://mathworld.wolfram.com/Injection.html
https://www.cs.umb.edu/academics/courses/CS310/

Constructors

1. Function (hash k1 vl ... kn vn) a hash-table with the given key-value entries. Passing
zero arguments, (hash), creates an empty hash-table.

2. Function (hash-set h k v) copies hash-table h and adds/replaces the entry k v in the
new hash-table.

Accessors

e Function (hash? h) returns ttt if h is a hash-table, otherwise it returns #f
e Function (hash-count h) returns the number of entries stored in hash-table h

e Function (hash-has-key? h k) returns tt if the key is in the hash-table, otherwise it
returns #£

e Function (hash-ref h k) returns the value associated with key k, otherwise aborts

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

(define h (hash))
(check-equal? 0 (hash-count h))
(check-true (hash? h))

(define hl (hash-set h "foo" 20))
(check-equal? (hash "foo" 20) hl)

(define h2 (hash-set hl "foo" 308))
(check-equal? (hash "foo" 30) h2)
(check-equal? 38 (hash-ref h2 "foo"))
(check-equal? (hash "foo" 20) hl)

CS450) Exercises) Lecturel5) Tiago Cogumbreiro

