
CS450

Structure of Higher Level Languages

Lecture 3: Lists and code serialization

Tiago Cogumbreiro

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 1 / 31

Today we will learn…
Using and building lists

Data-structures encoded as lists

Serializing code and analyzing it

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 2 / 31

Data structures

3 / 31

Data structures
When presenting each data structure we will introduce two sets of functions:

Constructors: functions needed to build the data structure

Accessors: functions needed to retrieve each component of the data structure. Also
known as selectors.

Each example we discuss is prefaced by some unit tests. We are following
a Test Driven
Development methodology.

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 4 / 31

Lists

5 / 31

Lists
Constructors

empty: creates an empty list

list: creates a list by specifying its elements

cons: add an element to the left-hand-side (the end) of the list

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 6 / 31

Lists
Constructor: empty

Empty lists are rendered as '()

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 7 / 31

#lang racket
(list (+ 0 1) (+ 0 1 2) (+ 0 1 2 3))
(list)

$ racket list-ex1.rkt
'(1 3 6)
'()

Lists
Constructor: list

expression = | list
list = (list expression*)

Function call list constructs a list with the evaluation of a possibly-empty sequence of
expressions e1 up to en as values v1 up to vn which Racket prints as: '(v1 ... v2)

⋯

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 8 / 31

Lists
Constructor: cons

(define l (list 1 2 3))
(cons 5 l)
; '(5 1 2 3)

There is no direct constructor to add an element to the right, but
we can implement one.

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 9 / 31

cons vs list

#lang racket
(require rackunit)
(check-equal?
 (cons 1
 (cons 2
 (cons 3
 (cons 4 empty)))) (list 1 2 3 4))

Graphical representation

Textual representation

'(1 .
 '(2 .
 '(3 .
 '(4 . '()))))

Constructors: cons vs list

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 10 / 31

Accessing lists
Accessor: empty?
You can test if a list is empty with function empty?. An empty list is printed
as '().

#lang racket
(require rackunit)
(check-false (empty? (list (+ 0 1) (+ 0 1 2) (+ 0 1 2 3))))
(check-true (empty? (list)))

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 11 / 31

Accessors: first, rest
Lists in Racket are implemented as a
linked-list using pairs terminated by the
empty list '().

Function first returns the head of the
list, given a nonempty list.

Function rest returns the tail of the list,
given a nonempty list.

(list 1 2 3 4)

Lists are linked-lists of pairs

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 12 / 31

User data-structures

13 / 31

(require rackunit)
(define p (point 1 2 3))
(check-true (point? p))
(check-equal? (list 1 2 3) p)
(check-equal? 1 (point-x p))
(check-equal? 2 (point-y p))
(check-equal? 3 (point-z p))
(check-true (origin? (list 0 0 0)))
(check-false (origin? p))

User data-structures
We can represent data-structures using pairs/lists.

For instance, let us build a 3-D point data type.

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 14 / 31

(require rackunit)
(define p (point 1 2 3))
(check-true (point? p))
(check-equal? (list 1 2 3) p)
(check-equal? 1 (point-x p))
(check-equal? 2 (point-y p))
(check-equal? 3 (point-z p))
(check-true (origin? (list 0 0 0)))
(check-false (origin? p))

; Constructor
(define (point x y z) (list x y z))
(define (point? x)
 (and (list? x)
 (= (length x) 3)))
; Accessors
(define (point-x pt) (first pt))
(define (point-y pt) (second pt))
(define (point-z pt) (third pt))
; Example function
(define (origin? p) (equal? p (list 0 0 0))

User data-structures
We can represent data-structures using pairs/lists.

For instance, let us build a 3-D point data type.

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 14 / 31

On data-structures
We only specified immutable data structures

The effect of updating a data-structure is encoded by creating/copying a data-
structure

This pattern is known as a persistent data structure

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 15 / 31

https://en.wikipedia.org/wiki/Persistent_data_structure

Serializing code

16 / 31

Quoting: a specification
Function (quote e) serializes expression e. Note that expression e is not evaluated.

A variable x becomes a symbol 'x. You can consider a symbol to be a special kind of
string in Racket. You can test if an expression is a symbol with
function symbol?
A function application becomes a list of the serialization of each .

Serializing a (define x e) yields a list with: symbol 'define, the serialization of variable x,

and
the serialization of e. Serializing yields a list with symbol

'define followed by a nonempty list of symbols followed by serialized .

Serializing yields a list with
symbol 'lambda, followed by a

possibly-empty list of symbols , and the serialized expression .

Serializing a becomes a list
with symbol 'cond followed by a

serialized branch. Each branch is a list
with two components: serialized expression and

serialized expression
 .

(e ⋯e ​)1 n e ​i

(define (x ⋯x ​) e)1 n

x′ i e

(lambda (x ...x) e)1 n

xi e

(cond (b e) ⋯ (b ​ e ​))1 1 n n

bi
ei

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 17 / 31

Quoting exercises:
We can write 'term rather than (quote term)
How do we serialize term (lambda (x) x) with quote?

How do we serialize term (+ 1 2) with quote?

How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?

Can we serialize a syntactically invalid Racket program?

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 18 / 31

Quoting exercises:
We can write 'term rather than (quote term)
How do we serialize term (lambda (x) x) with quote?

How do we serialize term (+ 1 2) with quote?

How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?

Can we serialize a syntactically invalid Racket program? No! You would not be able to
serialize this expression (. Quote only accepts a S-expressions (parenthesis must be
well-balanced, identifiers must be valid Racket identifiers, number literals must be valid).

Can we serialize an invalid Racket program?

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 18 / 31

Quoting exercises:
We can write 'term rather than (quote term)
How do we serialize term (lambda (x) x) with quote?

How do we serialize term (+ 1 2) with quote?

How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?

Can we serialize a syntactically invalid Racket program? No! You would not be able to
serialize this expression (. Quote only accepts a S-expressions (parenthesis must be
well-balanced, identifiers must be valid Racket identifiers, number literals must be valid).

Can we serialize an invalid Racket program? Yes. For instance, try to quote the term:
(lambda)

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 18 / 31

Quote example

#lang racket
(require rackunit)
(check-equal? 3 (quote 3)) ; Serializing a number returns the number itself
(check-equal? 'x (quote x)) ; Serializing a variable named x yields symbol 'x
(check-equal? (list '+ 1 2) (quote (+ 1 2))) ; Serialization of function as a list
(check-equal? (list 'lambda (list 'x) 'x) (quote (lambda (x) x)))
(check-equal? (list 'define (list 'x)) (quote (define (x))))

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 19 / 31

Tips for HW1/Exercise 4

20 / 31

Learn how to read each spec
parenthesis means list, must check:

1. correct data type with list?
2. check length of list with length
3. the contents of the list (see below)

4. The order in which you perform checks matters!

keywords must be compared against a symbol with the same name, e.g.,
for keyword
define check if element equals to 'define
identifiers must be checked with symbol?
terms and expressions are not checked, you only need to know how many of them exist

The operator + means >= 1
The operator * means >= 0

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 21 / 31

Racket spec
HW1: Question 4

program = #lang racket term*

term = definition | expression

definition = basic-def | function-def
basic-def = (define identifier expression)
function-def = (define (identifier+) term+)

expression = value | identifier | function-call | function-decl |
value = number |
function-call = (expression+)
function-dec = (lambda (identifiers*) term+)

⋯
⋯

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 22 / 31

basic-def = (define identifier expression)

1. Ensure node is a list

2. Ensure node has 3 elements

3. Ensure define is the first element of the list
(what function can you use?)

4. Ensure identifier (the second element of node)
is a symbol

function-call = (expression+)

1. Ensure node is a list

2. Ensure node hast at least 1
element (because of operator +)

Checklist for boolean functions
Examples

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 23 / 31

HW1: Exercise 4

Solve exercises in this order

1. Do all parts except lambda?, define?, and define-func?.

2. Write lambda?
3. Write define-func?
4. Write define? by calling define-func? and define-basic? (do not copy/paste code)

More tips

Function application is simpler than it seems

All acceptance-tests from define-func? should pass in define?

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 24 / 31

Being successful in CS 450

25 / 31

Forum questions policy
1. Private questions (Discord) have the lowest priority

2. Instructor/TAs cannot comment on why a student's submission is not working

3. If a student lists which test-cases have been used, then the instructor/TAs can give more
inputs or test cases

4. Private questions regarding code must always be accompanied by the URL of latest
Gradescope submission

5. Students cannot share their solutions (partial/full) in public posts

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 26 / 31

The final grade is given by the instructor

(not by the autograder)

We are grading the correctness of a solution

The autograder only approximates your grade

Students may request for manual grading

Grading partial solutions automatically is hard:

Solution may be using disallowed functions

Solution may be tricking the autograder system

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 27 / 31

Tip #1: avoid fighting the autograder
1. It's not personal: The autograder is not against you

2. It's not picky: The autograder is not against one specific solution

3. Correlation is not causation: Having a colleague with the same problem as you have,
does not imply that the autograder is wrong

4. Spend your time wisely: don't spend it thinking the autograder is wrong

Instead, discuss

1. Use the autograder for your benefit: submit solution to test your hypothesis

2. Think before resubmitting: try explaining your solution to someone

3. Ask before resubmitting: write test cases and discuss those test cases with others

10% of your grade is participation, so discuss!

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 28 / 31

Tip #2: participate
10% of your grade is participation

Software engineering and academic life is about communication: you are expected to
interact to
solve your homework assignments.

1. Exercises are explained succinctly on purpose: ask questions to know more

2. Exercises have few test cases on purpose: share test-cases to know more

Make time in your schedule to interact

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 29 / 31

Tip #3: time management
Work on your homework assignment incrementally

after each class you can solve a new exercise (with few exceptions)

when you get stuck in an exercise: (1) ask in our forum, and while you are waiting
(2) continue working on other exercises

don't leave everything to the weekend before submission

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 30 / 31

Tip #4: learn to ask questions

The better your formulate a question,

The faster you will get an answer

Ask yourself

1. Which slides do you think the exercise relates to?

2. Which test-cases have you tried that counter your intuition?

Asking question

1. Describe the problem you are having (relate exercise and lessons)

2. Explain your attempts at fixing the problem (list used tests)

CS450 ☽ Lists and code serialization ☽ Lecture 3 ☽ Tiago Cogumbreiro 31 / 31

