
CS450

Structure of Higher Level Languages

Lecture 1: Course info, arithmetic in Racket, evaluation

Tiago Cogumbreiro

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 1 / 58

About the course
Instructor: Tiago (蒂亚戈) Cogumbreiro (he/him)

How to reach me

Office hours in person (have priority), or remotely via Zoom

Announcements in #cs450-news (Discord)

Q&A in #cs450 (Discord)

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 2 / 58

How we are doing remote teaching
Open door policy, via Discord.

Message me at any time, any day with your questions.

Channel questions answered first, direct-messages answered second.

I reply as soon as possible, during office hours in the latest.

Homework assignments we use a grading server (Gradescope)

Course webpage

cogumbreiro.github.io/teaching/cs450/f23/

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 3 / 58

https://cogumbreiro.github.io/teaching/cs450/f23/

Course divided into 9 modules

1 homework assignment per module

Final grade: 90% homework + 10%
participation

Homework grade: average of 9
assignments (possibly weighted)

Participation grade: in-class quizzes,
attendance classroom/online,
participation in forum

You must pass 7 out of 9 assignments.
If you fail 3 or more assignments (<40
points), then you fail the course.

Syllabus
cogumbreiro.github.io/teaching/cs450/f23/syllabus.pdf

A A- B+ B B- C+ C C- D+ D D- F

100..95 94..90 89..85 84..80 79..75 74..70 69..65 59..55 54..50 49..45 44..40 39..0

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 4 / 58

https://cogumbreiro.github.io/teaching/cs450/f23/syllabus.pdf

Academic dishonesty

5 / 58

Plagiarism in University
Copying code from others is wrong because:

you do not learn

you risk being expelled

you are risking the other person being expelled

you risk not completing your degree

you risk being put on a list of cheaters (other universities may reject your application)

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 6 / 58

Plagiarism in the Industry
Is wrong, because:

it is illegal

you risk being dismissed from employment

you risk being sued

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 7 / 58

Copying code (when it is right)
software licenses define clear rules on
how you can copy, use, and change other people's code

open source promotes sharing of code

attribution is important (unless public domain)

good way to land on a job

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 8 / 58

Plagiarism in CS 450
student's responsibility to learn the Student's code of conduct

we use plagiarism detection (renaming functions is not enough)

we compare against solutions from past years (and instructor)

be careful when working with others, any sharing code may trigger

the plagiarism detection tool can detect code sharing among students

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 9 / 58

Plagiarism in CS 450

Zero Tolerance

statistically, there will be plagiarism this semester

if I contact you regarding plagiarism, there will be zero tolerance:

You will get an F in this course

You will be reported to the university

If you need more time to complete an assignment, ASK

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 10 / 58

Course requirements

11 / 58

Course requirements
Checklist

Install Racket 8.2: racket-lang.org
Sign in on GitLab (invitation by email)

Sign in on Discord, say "Hi" in #cs450-lounge (invitation link in the GitLab page)

Sign in on Gradescope, upload the template hw1.rkt (invitation by email)

Heads up

Please, register using your UMB email address, otherwise you won't
be able to submit
your first homework.

The deadline of homework assignment n is last class of module n plus 1 week

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 12 / 58

https://racket-lang.org/

Why learn

the Structure of

Higher Level Languages?

13 / 58

Structure of Higher Level Languages
I postponed this discussion, because I felt that you are now better suited to understand
and relate to the points being made.

Why learn the fundamental concepts in all programming languages?

Why learn different languages?

Why focus on functional programming?

Why use Racket?

Disclaimer

Most of these claims are opinions

These will be mostly informal claims

We are not trying to find the best language (or programming model)

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 14 / 58

Overview
Languages are just tools, learn which language is amenable to what context

The best programming language does not exist (theoretically most languages are
equivalent)

Different languages have different characteristics that favour different domains: for
instance, functional languages being used in Programming Language research,
C/Fortran in scientific/high-performance computing

A programming language is a computing interface: it is crucial to understand its
meaning

The importance of first-class functions and avoiding mutation

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 15 / 58

Semantics and idioms
Why should we care about language semantics?

A language is a computing user interface.
We are learning reusable, cross-cutting patterns.

The semantics must be unambiguous and precise.
It is not a matter of personal opinion how a conditional expression works.
Language
features must be described unambiguously to users.

The semantics defines a software contract.
Is the bug in the client's bug, or is it in our code?

Language idioms (patterns) are transferrable knowledge.
Understanding idioms (patterns) teaches you something that can be applied across
languages and technologies.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 16 / 58

How are all languages similar?

17 / 58

How are all languages the same?
Theoretical: Any input-output behavior implementable in language X is implementable

in language Y (Church-Turing thesis), and equivalent to the -calculus without numbers

Practical: Reoccurring fundamentals: variables, abstraction, recursive definitions

λ

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 18 / 58

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

How are languages different?

19 / 58

Disclaimer

Languages are not slow/fast

A language implementation is fast/slow, not the language itself

Certain languages computational models are more amenable to implement efficiently

Languages are user interfaces of computational models

How different languages behave in different contexts?

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 20 / 58

Why is C faster than all other languages?
Is it because C is "close to the metal?" That is, is C fast because its semantics matches the
processor's semantics?

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 21 / 58

Why is C faster than all other languages?
Is it because C is "close to the metal?" That is, is C fast because its semantics matches the
processor's semantics?
No!

Which processor? How could it match the semantics of all processors?

Which compiler? The key of C's success lays in having good compilers.

C compilers are fast because C is old and its interface remains stable!

Popular C compilers are really good at optimizing the target language.

There is a set of good practices to write optimizer-ready C code

Take away

The facts above make C quite successful in High Performance Computing (large scale
scientific
codes).

Source: C Is Not a Low-level Language: Your computer is not a fast PDP-11. David Chisnall. ACM Queue vol. 16, no. 2.
2018

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 21 / 58

https://queue.acm.org/detail.cfm?id=3212479

Why is Python slow multithreading?
CPython (the main implementation of Python) is conditioned by the GIL (the
Global
Interpreter Lock) which effectively serializes parallel execution

To parallelize code we must run multiple processes, where shared memory is especially
slow, which, in turn, slows down compute-bound programs

Take away

Avoid running compute-bound parallel codes in Python. Maybe choose C?

Source: Global Interpreter Lock. Python Wiki. Last edit in 2017, accessed in 2019.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 22 / 58

https://wiki.python.org/moin/GlobalInterpreterLock

Constraint language programming
We solve the equation SEND+MORE=MONEY where each letter represents a digit in Prolog
using a constraint language programming module:

sendmore(Digits) :- % Source: https://en.wikipedia.org/wiki/Constraint_programming
 Digits = [S,E,N,D,M,O,R,E], % Create variables
 Digits ins 0..9, % Associate domains to variables
 S #\= 0, % Constraint: S must be different from 0
 M #\= 0,
 all_different(Digits), % all the elements must take different values
 1000*S + 100*E + 10*N + D % Other constraints
 + 1000*M + 100*O + 10*R + E
 #= 10000*M + 1000*O + 100*N + 10*E + Y,
 label(Digits). % Start the search

Take away

Some problems are more amenable to certain programming languages.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 23 / 58

How are languages different?
1. The implementation matters: A language implementation may be conditioned

(faster/slower) in certain contexts

2. The model matters: Certain problems are simpler/more efficient to write in specific
languages

3. The domain matters: A technology your business needs may only be available in some
language (say TensorFlow in Python)

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 24 / 58

Why learn different languages?
Learn at least one new language every year.

Source: The Pragmatic Programmer. Andrew Hunt and David Thomas. 1999.

Why should you care

Deeper understanding of the differences and the similarities between languages

Learn different approaches to the same problems

More job opportunities

Better technology choices (some technologies are only available in specific languages)

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 25 / 58

https://pragprog.com/book/tpp/the-pragmatic-programmer

Why functional programming?

26 / 58

What is functional programming?
Mutation is discouraged

Higher-order functions serve as a generalization device

Why should we care?

These features help designing correct, elegant, and efficient software

Functional programming languages are heavily favoured by PL researchers, which
means they serve as a test bed for PL design. Functional programming is close(r) to
math formalism, thus implementation is usually simpler in functional programming
languages.

Functional programming is trendy! C++/Java/C#/Python/Javascript are all incorporating
functional programming idioms.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 27 / 58

Why should we discourage mutation?
Simpler to reason about: no surprises passing a data-structure to functions/objects

Concurrency-ready: read-only means no race conditions (and no locks), which leads to
simpler, faster code

Who is using it?

immutable.js for JavaScript by Facebook

vavr, PCollections, the Scala runtime, and the Closure runtime for Java

immer for C++

immutable collections for .NET

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 28 / 58

Why should we use higher-order functions?
Simpler interface than objects (which method? which order?)

Can be combined effectively (frameworks on combining functions)

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 29 / 58

A researcher's Petri Dish
Most programming languages features started out in functional programming
languages.

Garbage collection (LISP, 1959)

Generics (Hindley-Milner-Damas type system 1969/1978, implemented in ML in ~1977)

Higher-order functions (lambda expressions in C++, C#, Java, Python) introduced in LISP
(1959) and in ISWIM (1966)

Type inference, e.g., auto in C++, var in C# (Hindley-Milner-Damas)

Algebraic-data types and pattern matching (1970s in Hope)

Recursion

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 30 / 58

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.5276&rep=rep1&type=pdf
http://www.cs.cmu.edu/~crary/819-f09/Landin66.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.8135&rep=rep1&type=pdf

A new wave of languages
Many new interesting programming languages

Swift: next-generation programming language for Apple systems

Rust: functional programming meets system programming

F#: an ML derivate for the .NET ecosystem

Elixir: highly-available distributed system

Clojure: a LISP-influenced language for the JVM and the web

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 31 / 58

How are we using functional programming ?
OCaml: web development
(Facebook/Meta), distributed systems (Docker), finance
(Tezos, Jane Street, Bloomberg, Aesthetic
Integration), hardware virtualization (Citrix)

Haskell: verification
(Facebook), distributed systems (Google), compilers (Intel),
distributed
systems (Microsoft)

Erlang:
communication (WhatsApp), ads (AddRoll), web backend (Bet365), finance
(Goldman Sachs)

Elixir:
spam prevention (Pinterest), micro services (Lonely Planet)

F#: data analysis (Kaggle), trading
(Credit Suisse), gaming backend (GameSys)

Racket game scripting (Naughty Dog), image processing (YouPatch)

Scala middleware (Twitter), database (Netflix), microservices (Tumblr), web (The
Guardian)

Honorable mentions

ReasonML, Elm, PureScript, ClojureScript

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 32 / 58

http://www.ocaml.org/learn/companies.html
https://wiki.haskell.org/Haskell_in_industry
https://codesync.global/media/successful-companies-using-elixir-and-erlang/
https://codesync.global/media/successful-companies-using-elixir-and-erlang/
https://fsharp.org/testimonials/
https://www.reddit.com/r/Racket/comments/5g8xse/are_there_any_examples_of_racket_being_used_in/
https://alvinalexander.com/scala/whos-using-scala-akka-play-framework
https://reasonml.github.io/
https://elm-lang.org/
http://www.purescript.org/
https://clojurescript.org/

Course overview

33 / 58

This course is NOT…
on algorithms
For a nice free book read Algorithms by Jeff Erickson.

an introduction on programming and computing
For a nice free book read How to design programs by Matthias Felleisen, Robert Bruce
Findler, Matthew Flatt, Shriram Krishnamurthi

on programming with Racket
For a nice free book read The Racket Guide by Matthew Flatt, Robert Bruce Findler, and
PLT

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 34 / 58

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://htdp.org/2018-01-06/Book/
https://docs.racket-lang.org/guide/

This course is…
on designing programming language features
We will focus mainly on functional and object-oriented programming.

on semi-formal specification
We will drive our course with precise mathematical notations and tests.

on programming patterns
We will characterize patterns and study abstractions of these patterns.

on purely functional programming
We will approach programming without using assignment (mutation).

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 35 / 58

Today we will learn
a formalism to describe a programming language (Racket)

the semantics of a programming language

How we will learn it

We introduce one language feature at a time

1. Syntax: We formalize each language feature (What)

2. Example: We illustrate a feature with an example

3. Semantics: We introduce how each language feature works (How)

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 36 / 58

Semantics
Abstract Syntax: how we write something. Example, which characters/string we use
write a keyword, or a number.

Semantics: what that something does/means (evaluation here means as the program
runs)

In this class, we focus on the semantics of programming languages.
We define the
semantics of some programming language features.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 37 / 58

1. We shall not print to output!

Instead, we will use assertions.

2. We shall not mutate variables!

Instead, we will use persistent data structures.

3. We shall not use loops!

Instead, we will use recursion.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 38 / 58

Your first program

39 / 58

Program
In Racket, everything evaluates down to or is a value. A Racket program consists of a
preamble followed by zero or more expressions:

program = #lang racket expression*

1. Racket has no end-of-sentence delimiters (contrary to, say, C-like languages which use
semi-colons)

2. Racket evaluates each expression from top-to-bottom, left-to-right

For space-constraint reasons, code listings might omit the preamble.

Language specification

Grayed out text represents the concrete syntax

Italic text represents a meta-variable

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 40 / 58

Expressions

Expressions can be values, among other things

expression = value | ⋯

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 41 / 58

Values
Numbers

Void

Booleans

Lists

…

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 42 / 58

Numbers

43 / 58

Numbers
All numbers are complex numbers. Some of them are real numbers, and all
of the real
numbers that can be represented are also rational numbers,
except for +inf.0 (positive
infinity), +inf.f (single-precision variant),
-inf.0 (negative infinity), -inf.f (single-precision
variant), +nan.0 (not-a-number), and +nan.f (single-precision variant). Among the rational
numbers, some are integers, because round applied to the number produces the same
number.

Source: Racket Manual, Section 4.2

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 44 / 58

https://docs.racket-lang.org/reference/numbers.html

#lang racket
10 ; A positive number
+10 ; The plus sign is optional
-10 ; A negative number
0+1i ; A complex number
1/3 ; A rational number
0.33 ; A floating-point number

$ racket nums.rkt
10
10
-10
0+1i
1/3
0.33

Hello, Numbers!

Your first Racket program

Note: a semi-colon (;) initiates a comment section, which is ignored in Racket.
A semi-
colon is not a end-of-line marker, like in C-like languages.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 45 / 58

#lang racket
10
+10
-10
0+1i
1/3
0.33

#lang racket
10 +10 -10 0+1i 1/3 0.33

Expressions are separated by white-space
These two programs are equal:

Caveats: -1 is different than - 1 (notice the white space in between both characters). The
former is the negative one, the latter is the expression - and the value 1. Similarly, 1/3 is a
single rational number, whereas 1 / 3 are three expressions.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 46 / 58

Function calls

47 / 58

#lang racket
(expt 2 3)
(sin (expt 2 3))

$ racket nums-func.rkt
8
0.9893582466233818

Function call
Delimited by parenthesis and its constituents are separated by white-space
characters. The
first expression must evaluate to a function, the remaining
expressions are the arguments.
Each expression is evaluated to a value from
left-to-right before applying the function.

expression = value | variable | function-call |
function-call = (expression-func expression-arg*)

For instance, function call (expt 2 3), for exponentiation, returns 2 raised to the power of 3.
Function sin computes the sine function of its sole argument.

Note: Function calls can be compounded, as the parameters of a function
are arguments too.

⋯

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 48 / 58

No infix notation in Racket
There is NO INFIX NOTATION for arithmetic operations (unlike most languages).

The usual arithmetic operations are all just variables: addition +, subtraction -, multiplication
*, division /.

Example:

(* 3.14159 (* 10 10))
| | | | | | |-> Number
| | | | | |-> Number
| | | | |-> Variable
| | | |-> Function call
| | |-> Number
| |-> Variable
|-> Function call

Note: In Racket parenthesis represent function application. Contrasted with most
C-like
languages where parenthesis in expressions are optional and only there
to help the
reader.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 49 / 58

Evaluating a function call
Evaluation works from left-to-right from top-to-bottom

#racket lang
; Version 1:
(* 3.14159 (* 10 10))
; Version 2:
(* 3.14159 100)
; ^^^- Evaluated (* 10 10)
; Version 3:
314.159
;^^^^^^- Evaluated (* 3.14159 * 100)

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 50 / 58

Evaluating a function call

51 / 58

Evaluating a function call
Evaluation works from left-to-right from top-to-bottom

#racket lang
; Version 1:
(* 3.14159 (* 10 10))
; Version 2:
(* 3.14159 100)
; ^^^- Evaluated (* 10 10)
; Version 3:
314.159
;^^^^^^- Evaluated (* 3.14159 * 100)

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 52 / 58

Arithmetic expressions example

((11 ⋅ 15) + (14 + 4)) + (​ −
9
3

(14 ⋅ 3))

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 53 / 58

Arithmetic expressions example

(+
 (+
 (* 11 15)
 (+ 14 4))
 (-
 (/ 3 9)
 (* 14 3)))

((11 ⋅ 15) + (14 + 4)) + (​ −
9
3

(14 ⋅ 3))

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 54 / 58

(+
 (+
 (* 11 15)
 (+ 14 4))
 (-
 (/ 3 9)
 (* 14 3)))

(+
 (+
 165
 (+ 14 4))
 (-
 (/ 3 9)
 (* 14 3)))

(+
 (+
 165
 18)
 (-
 (/ 3 9)
 (* 14 3)))

(+
 183
 (-
 (/ 3 9)
 (* 14 3)))

A longer example

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 55 / 58

(+
 (+
 (* 11 15)
 (+ 14 4))
 (-
 (/ 3 9)
 (* 14 3)))

(+
 (+
 165
 (+ 14 4))
 (-
 (/ 3 9)
 (* 14 3)))

(+
 (+
 165
 18)
 (-
 (/ 3 9)
 (* 14 3)))

(+
 183
 (-
 (/ 3 9)
 (* 14 3)))

(+
 183
 (-
 1/3
 (* 14 3)))

(+
 183
 (-
 1/3
 42))

(+
 183
 -125/3)

424/3

A longer example

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 55 / 58

Interpreting an error in Racket
What would happen if we call a function using the infix notation?

(3 / 9)

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 56 / 58

Interpreting an error in Racket
What would happen if we call a function using the infix notation?

(3 / 9)

; application: not a procedure;
; expected a procedure that can be applied to arguments
; given: 3
; [,bt for context]

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 56 / 58

Line 1

The subject is application. Application is
short for function application,
aka calling a
function.

The symptom is not a procedure.
Something that should be a procedure is
not. Recall, procedure = function.

Interpreting an error in Racket
What would happen if we call a function using the infix notation?

(3 / 9)

; application: not a procedure;
; expected a procedure that can be applied to arguments
; given: 3
; [,bt for context]

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 56 / 58

Line 1

The subject is application. Application is
short for function application,
aka calling a
function.

The symptom is not a procedure.
Something that should be a procedure is
not. Recall, procedure = function.

Interpreting an error in Racket
What would happen if we call a function using the infix notation?

(3 / 9)

; application: not a procedure;
; expected a procedure that can be applied to arguments
; given: 3
; [,bt for context]

Line 2

Calling a function requires a function, but we
provided something else.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 56 / 58

Line 1

The subject is application. Application is
short for function application,
aka calling a
function.

The symptom is not a procedure.
Something that should be a procedure is
not. Recall, procedure = function.

Interpreting an error in Racket
What would happen if we call a function using the infix notation?

(3 / 9)

; application: not a procedure;
; expected a procedure that can be applied to arguments
; given: 3
; [,bt for context]

Line 2

Calling a function requires a function, but we
provided something else.

Line 3

We see what was given instead (number 3,
rather than a function).

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 56 / 58

Is this example a legal Racket program?

#lang racket
sin

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 57 / 58

Is this example a legal Racket program?

#lang racket
sin

Yes! sin is a variable, so a valid expression. Hence, Racket just prints what is in variable sin.

$ racket sin.rkt
#<procedure:sin>

Note: In Racket lingo the word procedure is a synonym for function.

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 57 / 58

Racket specification

program = #lang racket expression*
expression = value | variable | function-call |
value = number |
function-call = (expression+)

⋯
⋯

CS450 ☽ Course info, arithmetic in Racket, evaluation ☽ Lecture 1 ☽ Tiago Cogumbreiro 58 / 58

