Structure of Higher Level Languages

|Lecture 12: Function calls with environments

Tiago Cogumbreiro

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Lexical Scope

 Binding: association between a variable (define (f)

and a value. (define x 10)

 Scope of a binding: the text where (define y 20)
occurrences of this name refer to the (+ x y))
binding

e Lexical (or static) scope: the innermost (define x 1)
lexically-enclosing construct declaring
that variable (define y (+ x 1))

Did you know? In Computer Science, (check-equal? (f) 30)
static analysis corresponds to analyzing

the source code, without running the

program.

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Dynamic Scope

e Lexical scoping is the default in all popular programming languages

» With lexical scoping, we can analyze the source code to identify the scope of every
variable

o With lexical scoping, the programmer can reason about each function independently
What is a dynamic scope?

e Variable scope depends on the calling
context (define (f) x)

» Renders all variables global (define (g x) (f))

appeared in McCarthy’s Lisp 1.0 as a bug and became (check-equal? (g 18) 10)
afeature in all later implementations, such as)
MacLisp, Gnu Emacs Lisp. (deflne X 2@)
(check-equal? (f) 20)
Moreau, L. Higher-Order and Symbolic Computation
(1998)11:233.D0I:10.1023/A:1010087314987

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

https://doi.org/10.1023/A:1010087314987

| What is the result of evaluating (g)?

(define x 1)

(define (fy) (+ vy x))

(define (g)
(define x 2)
(define y 3)
(f (+ x y)))

(check-equal? (g) ??7)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

| What is the result of evaluating (g)?

(define x 1)
(define (f f:y) (+ f:y x))

(define (g)
(define g:x 2)
(define g:y 3)
(f (+ g:x g:y)))

(check-equal? (g) 6)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

e Lexical scoping isimportant for using functions-as-values
e To implement our Mini-Racket we will need to implement lexical scoping

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

| What is the result of evaluating (g)?

(define (g) x)
(define x 10)

(check-equal? (g) ??)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

I What is the result of evaluating (g)?

(define (g) x)

(define x 10)
(check-equal? (g) 10)

We can define a function g that refers to an undefined variable x; variable x must be
defined before calling g.

In Racket, variable definition produces a side-effect, as the definition of x impacted a
previously defined function g. In Module 5, we implement the semantics of define.

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

The body of a function can refer to variables defined outside of that function.
| It can access variables is defined outside of the function, but where exactly?

The function's body can access any variable that is accessible/visible when the function is
defined, which is known as the lexical scope.

In the following example, the function returns 3 and not 10, even though variable x is now 180.

(define (getter x) (lambda () x))
(define get3 (getter 3))

(define x 10)

(check-equal? 3 (get3))

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Function closures

12/43

Function closure

e A function closureis the return value of function declaration (i.e., the function value)

o Definition: A function closure is a pair that stores a function declaration and its lexical
environment (i.e., the state of each variable captured by the function declaration)

e The technique of creating a function closure is used by compilers/interpreters to
represent function values

Recall that function declarion == function definition:

o Function declaration: (lambda (variable*) term+)
 Function definition: (define (variable+) term+)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

1. How to compute the variables in a closure
2. When to set the values of each variable in a closure

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

| Itis crucial for us to know how variables are captured in Racket.

Given an expression the set of free variables can be defined inductively:
e When the expression is a variable x, the set of free variablesis { x }.

o When the expressionis a (1lambda (x) e), the set of free variables is that of expression e
minus variable x.

e When the expression is a function application (e1 e2), the set of free variables is the
union of the set of free variables of e1 and the set of free variables of e2.

Captured variables: Given an expression (lambda (x) e) a function closure captures the
set of free variables of expression (lambda (x) e).

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Let us compute fv (lambda (x) (+ x y)):

1. The free-variables of a \ are the free variables of the body of the function minus
parameter x.

fv (lambda (x) (+ x y)) =fv (+ x y) \{x}

2. We are now in a case of function application, which is the union of the free variables of
each of its sub expressions.

fv (+ x y) \{z} = (fv(+) Utv(z) Utv(y)) \ {=}

4. Finally, we reach the case where each argument of free-vars is a variables.

(fv(+) Utv(z) Utv(y)) \ {=} = ({+} U{z} U{y}) \ {z} = {+ 2,9} \ {z}={+ 10}

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Definition: At any execution point there is an environment, which maps each variable to a
value.
What creates environments:

e Each branch inside a cond creates an environment

e The body of a function creates an environment

What updates an environment:
e The arguments of a lambda are added to the function's body environment

« A (define x e) updates the current environment by adding/updating variable x and
setting it to the value that results from evaluating e

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

The lambda is capturing x as the parameter of getter at creation time, so when we call
(getter3) we get (1lambda () 3).

(define (getter x)
(1ambda () x))

(define get3 (getter 3))
(check-equal? 3 (get3))

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

cond

Function getter captured x at the outermost scope (the x captured at function declaration
time). Inside the branches of cond we have a hew scope, which means that getter is
unaffected by the redefinition of x.

(define (getter) x)
(define x 10)

(cond [#t (define x 20) (check-equal? 10 (getter))])
(check-equal? 10 (getter))

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Function getter returns variable x from the environment of function f. When calling f 20
the last value of variable x in the scope of fis 10, due to (define x 1@), which overwrites
the function's parameter x=20.

(define (f x)
(define (getter) x)
(define x 10)
getter)

(define g (f 20))
(check-equal? 10 (g))

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

The A-calculusis slow

21/43

Syntax

ex=uv| x| (e e) vi=n| Az.e
Semantics
v v (E-val)
Complexity?
—T
er | Az.ep eq I Vg ey [T — va] | v (E-app)
(e €a) I vp

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Let us focus consider our implementation of Micro-Racket, and draw our attention to
function substitution.

Given a function call (e e,)

1. We evaluate e down to a function (A(z) e)
2. We evaluate e, down to a value v,

3. We evaluate ep |z +— v,] down to a value vp

I What is the complexity of the substitution operation [:13 > fua]?

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Let us focus consider our implementation of Micro-Racket, and draw our attention to
function substitution.

Given a function call (e e,)

1. We evaluate e down to a function (A(z) e)
2. We evaluate e, down to a value v,

3. We evaluate ey |z — v,] down to a value vp
I What is the complexity of the substitution operation [:13 > fua]?

The run-time grows linearly on the size of the expression, as we must replace x by v, in
every sub-expression of ep.

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Can we do better?

Can we do better?

Yes, we can sacrifice some space

to iImprove the run-time speed.

24/43

|[dea 1: Use a lookup-table to bookkeep the variable bindings

ldea 2: Introduce closures/environments

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

We introduce the evaluation of expressions down to values, parameterized by
environments:

ellgv

The evaluation takes two arguments: an expression e, and an environment E. The
evaluation returns a value v.

Attention!

Homework Assignment 4:

e Evaluatione |lg visimplemented as function (e:eval env exp) thatreturns avalue e:value, an environment
env is ahash,and expression exp isane:expression.

e functions and structs prefixed with s: correspond to the g language (Section 1).

e functions and structs prefixed with e: correspond to the A g language (Section 2)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Syntax

ex=uv|x| (e e2)]| Az.e viu=n|(FE, \z.e)
Semantics
vi{gv (E-val)
z g E(x) (E-var)
Az.e g (E, A\x.€) (E-clos)
es g (Ep, A\z.ep) eq VB Vg ep VEy [x—sva] Ub

(ef €a) Iz vp e

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Notable differences Fnvironments

1. Declaring a function is an expression I An environment E maps variable bindings to values.
that yields a function value (a closure),
which packs the environment at Constructors
Creatlon._tlme S0 S el e o Notation () represents the empty environment (with
declaration. zero variable bindings)

2. Calling a function unpacks the o Notation E[x — v] extends an environment with
environment £} from the closure and an new binding (overwriting any previous binding of

extends environment Ej with a binding variable z).

of parameter x and the value v, being Accessors

passed . . .
e Notation E(x) = v looks up value v of variable x in

environment E/

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Church's encoding

e Alonzo Church created the A-calculus

e Church's Encoding is a treasure trove of
A-calculus expressions: it shows how
natural numbers can be encoded

e Let us go through Church's encoding of
booleans

e Examples taken from Colin Kemp's PhD
thesis (page 17)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Church_encoding
https://ia600202.us.archive.org/11/items/TheoreticalFoundationsForPracticaltotallyFunctionalProgramming/33429551_PHD_totalthesis.pdf

| Why? Because you will be needing test-cases.

(require rackunit)
(define ns (make-base-namespace))
(define (run-bool b) (((eval b ns) fit) #f))

(define TRUE '(lambda (a) (lambda (b) a)))
(define FALSE '(lambda (a) (lambda (b) b)))
(define (OR a b) (list (list a TRUE) b))

(define (AND a b) (list (list a b) FALSE))
(define (NOT a) (1list (list a FALSE) TRUE))
(define (EQ a b) (list (list a b) (NOT b)))

(check-equal?
(run-bool (EQ TRUE (OR (AND FALSE TRUE) TRUE)))
(equal? #t (or (and #f #t) fit)))

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Implementing the new AST

Values
vi=n|(FE,Azx.e)
Racket implementation

(define (e:value? v) (or (e:number? v) (e:closure? v)))
(struct e:number (value) #:transparent)
(struct e:closure (env decl) #t:transparent)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Expressions
ex=v|z|(e;e) | Az.e

Racket implementation

(define (e:expression? e) (or (e:value? e) (e:variable? e) (e:apply? e) (e:lambda? e)))
(struct e:lambda (params body) #:transparent)
(struct e:variable (name) #:transparent)

(struct e:apply (func args) tt:transparent)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Vironments In

HOw can we represent

Racket”

35/43

TL;DR: A data-structure that stores pairs of key-value entries. There is a lookup operation
that given a key retrieves the value associated with that key. Keys are unique in a hash-table,
so inserting an entry with the same key, replaces the old value by the new value.

e Hash-tables represent a (partial) injective function.

e Hash-tables were covered in CS310.

e Hash-tables are also known as maps, and dictionaries. We use the term hash-table,
because that is how they are known in Racket.

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

http://mathworld.wolfram.com/Injection.html
https://www.cs.umb.edu/academics/courses/CS310/

Constructors

1. Function (hash k1 v1 ... kn vn) a hash-table with the given key-value entries. Passing
zero arguments, (hash), creates an empty hash-table.

2. Function (hash-set h k v) copies hash-table h and adds/replaces the entry k v in the
new hash-table.

Accessors

e Function (hash? h) returns it if h is a hash-table, otherwise it returns itf
 Function (hash-count h) returns the number of entries stored in hash-table h

o Function (hash-has-key? h k) returns it if the key is in the hash-table, otherwise it
returns #§f

« Function (hash-ref h k) returns the value associated with key k, otherwise aborts

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

(define h (hash))
(check-equal? @ (hash-count h))
(check-true (hash? h))

(define h1 (hash-set h "foo" 20))
(check-equal? (hash "foo" 208) h1)

(define h2 (hash-set h1 "foo" 30))
(check-equal? (hash "foo" 308) h2)
(check-equal? 30 (hash-ref h2 "foo"))
(check-equal? (hash "foo" 208) h1)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

e How can we encode an empty environment {):

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

« How can we encode an empty environment (): (hash)

e How can we encode a lookup E(z):

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

« How can we encode an empty environment (): (hash)

 How can we encode a lookup E(x): (hash-ref E x)

 How can we encode environment extension E|z — v|:

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

« How can we encode an empty environment (): (hash)

 How can we encode a lookup E(x): (hash-ref E x)

e How can we encode environment extension E |z > v]: (hash-set E x v)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

lest-cases

40/

43

Function (check-e:eval? env exp val) is given in the template to help you test effectively
your code.

l The use of check-e:eval is optional. You are encouraged to play around with e:eval directly.

1. The first parameter is an S-expression that represents an environment. The S-
expression must be a list of pairs representing each variable binding. The keys must be
symbols, the values must be serialized Ag values

[]
[(x . 1)]
[(x. 1) (y.2)]

2. The second parameter is an S-expression that represents the a valid A expression

3. The third parameter is an S-expression that represents a valid Ag value

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

Each line represents a quoted expression as a parameter of function e:parse-ast. For

instance, (e:parse-ast '(x y)) should return (e:apply (e:variable 'x) (list
(e:variable 'y))).

1

?closure [(y . 20)] (lambda (x) x))

(1ambda (x) x)
(x y)

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

(check-e:eval? '[(x . 1)] 'x 1)

(check-e:eval? '[(x . 2)] 20 20)

(check-e:eval? '[] '(lambda (x) x) '(closure [] (lambda (x) x)))
(check-e:eval? '[(y . 3)] '(lambda (x) x) '(closure [(y . 3)] (lambda (x) x)))
(check-e:eval? '{(y . 3)} '(lambda (x) x) '(closure [(y . 3)] (lambda (x) x)))
(check-e:eval? '{} '((lambda (x) x) 3) 3)

(check-e:eval? '{} '((lambda (x) (lambda (y) x)) 3) '(closure {[x . 3]} (lambda (y) x)))

CS450) Functioncalls with environments) Lecturel2) Tiago Cogumbreiro

