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Today we will learn…
What are proofs?

Logical connectives

Inductive propositions
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3 / 34



What is a type? What is a value?
nat is a type

CS420: Lecture 6  ❧  Tiago Cogumbreiro 4 / 34



What is a type? What is a value?
nat is a type

5 is a value of type nat

CS420: Lecture 6  ❧  Tiago Cogumbreiro 4 / 34



What is a type? What is a value?
nat is a type

5 is a value of type nat
Notations 5 : nat means 5 has type nat
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What is a type? What is a value?
nat is a type

5 is a value of type nat
Notations 5 : nat means 5 has type nat
Types can be thought of as sets

5 : nat a programming notation 5 ∈ N
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Exercise
Consider the following Coq excerpt:

Definition x := 5.

What is x?
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Exercise
Consider the following Coq excerpt:

Definition x := 5.

What is x?
A variable.

What is the value of x? 5
What is the type of x? nat
How do I query the type of x in Coq?
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Exercise
Consider the following Coq excerpt:

Definition x := 5.

What is x?
A variable.

What is the value of x? 5
What is the type of x? nat
How do I query the type of x in Coq?
Using Check.

How do I query the value of x in Coq?
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Exercise
Consider the following Coq excerpt:

Definition x := 5.

What is x?
A variable.

What is the value of x? 5
What is the type of x? nat
How do I query the type of x in Coq?
Using Check.

How do I query the value of x in Coq?
Using Print.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 5 / 34



What is a proof? What is a proposition?
A proof (or a proof object): a completed proof of some goal

usually written using tactics

a proof object is a value of a proposition

CS420: Lecture 6  ❧  Tiago Cogumbreiro 6 / 34



What is a proof? What is a proposition?
A proof (or a proof object): a completed proof of some goal

usually written using tactics

a proof object is a value of a proposition

A proposition: is a formula written in some logic

Propositions are of type Prop
You can confirm that something is a proposition using Check

CS420: Lecture 6  ❧  Tiago Cogumbreiro 6 / 34



What is a proof? What is a proposition?
A proof (or a proof object): a completed proof of some goal

usually written using tactics

a proof object is a value of a proposition

A proposition: is a formula written in some logic

Propositions are of type Prop
You can confirm that something is a proposition using Check

A truthful proposition: a proposition that contains a proof

Proof : Proposition
We also say that the proposition holds (if there is some proof of it)

CS420: Lecture 6  ❧  Tiago Cogumbreiro 6 / 34



What is a proof? What is a proposition?
A proof (or a proof object): a completed proof of some goal

usually written using tactics

a proof object is a value of a proposition

A proposition: is a formula written in some logic

Propositions are of type Prop
You can confirm that something is a proposition using Check

A truthful proposition: a proposition that contains a proof

Proof : Proposition
We also say that the proposition holds (if there is some proof of it)

Assumption: a synonym of a proof

CS420: Lecture 6  ❧  Tiago Cogumbreiro 6 / 34



What is a proof? What is a proposition?
A proof (or a proof object): a completed proof of some goal

usually written using tactics

a proof object is a value of a proposition

A proposition: is a formula written in some logic

Propositions are of type Prop
You can confirm that something is a proposition using Check

A truthful proposition: a proposition that contains a proof

Proof : Proposition
We also say that the proposition holds (if there is some proof of it)

Assumption: a synonym of a proof

Proof state: zero or more assumptions and 1 or more goals we need to prove

Each assumption is an implication to the current goal

Each sub-goal is a conjunctions
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Exercise
Is 10 a proposition?
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Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?
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Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?
Yes.

Is Nat.eqb 2 2 a proposition?
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Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?
Yes.

Is Nat.eqb 2 2 a proposition?
No, Nat.eqb 2 2 is an expression of type bool.

Is the code below a proposition?

Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.

No, the code above is a proof of formula 2 = 2.

What is example?
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Inductive propositions
We have seen how to define types inductively; propositions can also be defined
inductively.

instead of Type we use Prop
the parameters are not just values, but propositions

the idea is to build your logical argument as structured data

We will now encode various logical connectives using inductive definitions.
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Conjunction

P ∧ Q
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What is ?

1. What is the type of ?

P ∧ Q

P
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What is ?

1. What is the type of ?
Prop
2. What is the type of ?
Prop
3. What is the type of ?
Prop -> Prop -> Prop

P ∧ Q

P

Q

∧
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What is ?

Let and represent :

and: Prop -> Prop -> Prop

Recall how we defined a pair:

Inductive pair (X:Type) (Y:Type) : Type := ...

How would we define and?

P ∧ Q
∧
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Conjunction

Inductive and (P Q : Prop) : Prop :=
| conj : P -> Q -> and P Q.

apply conj to solve a goal, inversion in a hypothesis

The /\ operator represents a logical conjunction (usually typeset with )

The split tactics is used to prove a goal of type ?X /\ ?Y, where ?X and ?Y are
propositions

Notice that P /\ Q is a type (a proposition) and that conj is the only constructor of that
type.

∧
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Conjunction example

Example and_example : 3 + 4 = 7 /\ 2 * 2 = 4.
Proof.
  apply conj.

(Done in class.)
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Conjunction example 1
More generally, we can show that if we have propositions  and , we can conclude that

we have .

Goal forall A B : Prop, A -> B -> A /\ B.

A B

A ∧ B
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Conjunction in the hypothesis

Example and_in_conj :
  forall x y,
  3 + x = y /\ 2 * 2 = x ->
  x = 4 /\ y = 7.
Proof.
  intros x y Hconj.
  destruct Hconj as [Hleft Hright].

(Done in class.)
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Conjunction example 2

Lemma correct_2 : forall A B : Prop, A /\ B -> A.
Proof.

Lemma correct_3 : forall A B : Prop, A /\ B -> B.
Proof.

(Done in class.)
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Disjunction

P ∨ Q
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What is ?

1. What is the type of ?
Prop
2. What is the type of ?
Prop
3. What is the type of ?
Prop -> Prop -> Prop

How can we define an disjunction using an inductive proposition?

P ∨ Q

P

Q

∨
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Disjunction

Inductive or (A B : Prop) : Prop :=
  | or_introl : A -> or A B
  | or_intror : B -> or A B

apply or_introl or apply or_intror to goal; inversion to hypothesis

The \/ operator represents a logical disjunction (usually typeset with )

The left (right) tactics are used to prove a goal of type ?X \/ ?Y, replacing it with a new
goal ?X ( ?Y respectively)

∨
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Disjunction example

Theorem or_1: forall A B : Prop,
  A -> A \/ B.

Theorem or_2: forall A B : Prop,
  B -> A \/ B.

(Done in class.)

CS420: Lecture 6  ❧  Tiago Cogumbreiro 20 / 34



Disjunction in the hypothesis
Tactics destruct can break a disjunction into its two cases.
Tactics inversion also breaks a disjunction, but leaves the original hypothesis in place.

Lemma or_example :
  forall n m : nat, n = 0 \/ m = 0 -> n * m = 0.
Proof.
  intros n m Hor.
  destruct Hor as [Heq | Heq].
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Recall a proof state

1 subgoal
T : Type
x : T
P : Prop
H1 : 1 = x
H2 : P
______________________________________(1/1)
1 = 2 /\ P

All hypothesis are variables of a specific type, Type, or proposition

Goals are (usually) propositions

Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod?
Can a proposition mention conj,
the constructor of and?
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Recall a proof state

1 subgoal
T : Type
x : T
P : Prop
H1 : 1 = x
H2 : P
______________________________________(1/1)
1 = 2 /\ P

All hypothesis are variables of a specific type, Type, or proposition

Goals are (usually) propositions

Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod?
Can a proposition mention conj,
the constructor of and?
Yes and no, respectively.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 22 / 34



Where do constructors of propositions appear?

Theorem and_conj: forall P Q:Prop,
  P -> Q -> P /\ Q.
Proof.
  intros P Q H1 H2.
   apply conj.
  - apply H1.
  - apply H2.
Qed.
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Theorems are expressions too

Theorem and_conj: forall P Q:Prop,
  P -> Q -> P /\ Q.
Proof.
  intros P Q H1 H2.
  apply (conj H1 H2).
Qed.

Proposition-constructors and theorems are functions whose
parameters are evidences.
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Truth

⊤

CS420: Lecture 6  ❧  Tiago Cogumbreiro 25 / 34



Truth
Truth can be encoded in Coq as a proposition that always holds,
which can be described as
a proposition type with a single constructor with 0-arity.

Inductive True : Prop := I : True.

You will note that proposition True is not a very useful one.
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Truth example

Goal True.

(Done in class.)
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Falsehood

⊥
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So far we only seen results that are provable (eg, plus is commutative, equals is
transitive)

How to encode falsehood in Coq?
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Falsehood
Falsehood in Coq is represented by an empty type.

Inductive False : Prop :=.

The only way to reach it is by using the exploding principle

No constructors available. Thus, no way to build an inhabitant of False.
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Example:

Goal 1 = 2 -> False.

Goal False -> 1 = 2.

Goal False.

(Done in class.)
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Negation

¬P
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Negation

The negation of a proposition  is defined as

(* As defined in Coq's stdlib *)
Definition not (H:Prop) := H -> False.

Goal not (1 = 2).

Outputs:

1 subgoal
______________________________________(1/1)
1 <> 2
(Done in class.)

¬P
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Negation-related notations
not P is the same as ~ P, typeset as 

not (x = y) is the same as x <> y, typeset as 

Can we rewrite not with an inductive proposition?

¬P
x ​= y
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