
CS420

Logical Foundations of Computer Science

Lecture 6: Logical connectives

Tiago Cogumbreiro

CS420: Lecture 6  ❧  Tiago Cogumbreiro 1 / 34



Today we will learn…
What are proofs?

Logical connectives

Inductive propositions

CS420: Lecture 6  ❧  Tiago Cogumbreiro 2 / 34



What are proofs?

3 / 34



What is a type? What is a value?
nat is a type

CS420: Lecture 6  ❧  Tiago Cogumbreiro 4 / 34



What is a type? What is a value?
nat is a type

5 is a value of type nat

CS420: Lecture 6  ❧  Tiago Cogumbreiro 4 / 34



What is a type? What is a value?
nat is a type

5 is a value of type nat
Notations 5 : nat means 5 has type nat

CS420: Lecture 6  ❧  Tiago Cogumbreiro 4 / 34



What is a type? What is a value?
nat is a type

5 is a value of type nat
Notations 5 : nat means 5 has type nat
Types can be thought of as sets

5 : nat a programming notation 5 ∈ N

CS420: Lecture 6  ❧  Tiago Cogumbreiro 4 / 34



Exercise
Consider the following Coq excerpt:

Definition x := 5.

What is x?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 5 / 34



Exercise
Consider the following Coq excerpt:

Definition x := 5.

What is x?
A variable.

What is the value of x?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 5 / 34



Exercise
Consider the following Coq excerpt:

Definition x := 5.

What is x?
A variable.

What is the value of x? 5
What is the type of x?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 5 / 34



Exercise
Consider the following Coq excerpt:

Definition x := 5.

What is x?
A variable.

What is the value of x? 5
What is the type of x? nat
How do I query the type of x in Coq?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 5 / 34



Exercise
Consider the following Coq excerpt:

Definition x := 5.

What is x?
A variable.

What is the value of x? 5
What is the type of x? nat
How do I query the type of x in Coq?
Using Check.

How do I query the value of x in Coq?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 5 / 34



Exercise
Consider the following Coq excerpt:

Definition x := 5.

What is x?
A variable.

What is the value of x? 5
What is the type of x? nat
How do I query the type of x in Coq?
Using Check.

How do I query the value of x in Coq?
Using Print.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 5 / 34



What is a proof? What is a proposition?
A proof (or a proof object): a completed proof of some goal

usually written using tactics

a proof object is a value of a proposition

CS420: Lecture 6  ❧  Tiago Cogumbreiro 6 / 34



What is a proof? What is a proposition?
A proof (or a proof object): a completed proof of some goal

usually written using tactics

a proof object is a value of a proposition

A proposition: is a formula written in some logic

Propositions are of type Prop
You can confirm that something is a proposition using Check

CS420: Lecture 6  ❧  Tiago Cogumbreiro 6 / 34



What is a proof? What is a proposition?
A proof (or a proof object): a completed proof of some goal

usually written using tactics

a proof object is a value of a proposition

A proposition: is a formula written in some logic

Propositions are of type Prop
You can confirm that something is a proposition using Check

A truthful proposition: a proposition that contains a proof

Proof : Proposition
We also say that the proposition holds (if there is some proof of it)

CS420: Lecture 6  ❧  Tiago Cogumbreiro 6 / 34



What is a proof? What is a proposition?
A proof (or a proof object): a completed proof of some goal

usually written using tactics

a proof object is a value of a proposition

A proposition: is a formula written in some logic

Propositions are of type Prop
You can confirm that something is a proposition using Check

A truthful proposition: a proposition that contains a proof

Proof : Proposition
We also say that the proposition holds (if there is some proof of it)

Assumption: a synonym of a proof

CS420: Lecture 6  ❧  Tiago Cogumbreiro 6 / 34



What is a proof? What is a proposition?
A proof (or a proof object): a completed proof of some goal

usually written using tactics

a proof object is a value of a proposition

A proposition: is a formula written in some logic

Propositions are of type Prop
You can confirm that something is a proposition using Check

A truthful proposition: a proposition that contains a proof

Proof : Proposition
We also say that the proposition holds (if there is some proof of it)

Assumption: a synonym of a proof

Proof state: zero or more assumptions and 1 or more goals we need to prove

Each assumption is an implication to the current goal

Each sub-goal is a conjunctions

CS420: Lecture 6  ❧  Tiago Cogumbreiro 6 / 34



Exercise
Is 10 a proposition?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 7 / 34



Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 7 / 34



Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?
Yes.

Is Nat.eqb 2 2 a proposition?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 7 / 34



Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?
Yes.

Is Nat.eqb 2 2 a proposition?
No, Nat.eqb 2 2 is an expression of type bool.

Is the code below a proposition?

Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.

No, the code above is a proof of formula 2 = 2.

What is example?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 7 / 34



Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?
Yes.

Is Nat.eqb 2 2 a proposition?
No, Nat.eqb 2 2 is an expression of type bool.

Is the code below a proposition?

Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.

No, the code above is a proof of formula 2 = 2.

What is example?
A proof of 2 = 2.

What is the value of example?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 7 / 34



Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?
Yes.

Is Nat.eqb 2 2 a proposition?
No, Nat.eqb 2 2 is an expression of type bool.

Is the code below a proposition?

Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.

No, the code above is a proof of formula 2 = 2.

What is example?
A proof of 2 = 2.

What is the value of example? reflexivity. (actually eq_refl)

What is the type of example?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 7 / 34



Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?
Yes.

Is Nat.eqb 2 2 a proposition?
No, Nat.eqb 2 2 is an expression of type bool.

Is the code below a proposition?

Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.

No, the code above is a proof of formula 2 = 2.

What is example?
A proof of 2 = 2.

What is the value of example? reflexivity. (actually eq_refl)

What is the type of example? 2 = 2.

What is the type of 2 = 2?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 7 / 34



Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?
Yes.

Is Nat.eqb 2 2 a proposition?
No, Nat.eqb 2 2 is an expression of type bool.

Is the code below a proposition?

Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.

No, the code above is a proof of formula 2 = 2.

What is example?
A proof of 2 = 2.

What is the value of example? reflexivity. (actually eq_refl)

What is the type of example? 2 = 2.

What is the type of 2 = 2? Prop.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 7 / 34



Exercise
Is 10 a proposition?
No. 10 is a natural number.

Is 2 = 2 a proposition?
Yes.

Is Nat.eqb 2 2 a proposition?
No, Nat.eqb 2 2 is an expression of type bool.

Is the code below a proposition?

Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.

No, the code above is a proof of formula 2 = 2.

What is example?
A proof of 2 = 2.

What is the value of example? reflexivity. (actually eq_refl)

What is the type of example? 2 = 2.

What is the type of 2 = 2? Prop.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 7 / 34



Inductive propositions
We have seen how to define types inductively; propositions can also be defined
inductively.

instead of Type we use Prop
the parameters are not just values, but propositions

the idea is to build your logical argument as structured data

We will now encode various logical connectives using inductive definitions.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 8 / 34



Conjunction

P ∧ Q

CS420: Lecture 6  ❧  Tiago Cogumbreiro 9 / 34



What is ?

1. What is the type of ?

P ∧ Q

P

CS420: Lecture 6  ❧  Tiago Cogumbreiro 10 / 34



What is ?

1. What is the type of ?
Prop
2. What is the type of ?

P ∧ Q

P

Q

CS420: Lecture 6  ❧  Tiago Cogumbreiro 10 / 34



What is ?

1. What is the type of ?
Prop
2. What is the type of ?
Prop
3. What is the type of ?

P ∧ Q

P

Q

∧

CS420: Lecture 6  ❧  Tiago Cogumbreiro 10 / 34



What is ?

1. What is the type of ?
Prop
2. What is the type of ?
Prop
3. What is the type of ?
Prop -> Prop -> Prop

P ∧ Q

P

Q

∧

CS420: Lecture 6  ❧  Tiago Cogumbreiro 10 / 34



What is ?

Let and represent :

and: Prop -> Prop -> Prop

Recall how we defined a pair:

Inductive pair (X:Type) (Y:Type) : Type := ...

How would we define and?

P ∧ Q
∧

CS420: Lecture 6  ❧  Tiago Cogumbreiro 11 / 34



Conjunction

Inductive and (P Q : Prop) : Prop :=
| conj : P -> Q -> and P Q.

apply conj to solve a goal, inversion in a hypothesis

The /\ operator represents a logical conjunction (usually typeset with )

The split tactics is used to prove a goal of type ?X /\ ?Y, where ?X and ?Y are
propositions

Notice that P /\ Q is a type (a proposition) and that conj is the only constructor of that
type.

∧

CS420: Lecture 6  ❧  Tiago Cogumbreiro 12 / 34



Conjunction example

Example and_example : 3 + 4 = 7 /\ 2 * 2 = 4.
Proof.
  apply conj.

(Done in class.)

CS420: Lecture 6  ❧  Tiago Cogumbreiro 13 / 34



Conjunction example 1
More generally, we can show that if we have propositions  and , we can conclude that

we have .

Goal forall A B : Prop, A -> B -> A /\ B.

A B

A ∧ B

CS420: Lecture 6  ❧  Tiago Cogumbreiro 14 / 34



Conjunction in the hypothesis

Example and_in_conj :
  forall x y,
  3 + x = y /\ 2 * 2 = x ->
  x = 4 /\ y = 7.
Proof.
  intros x y Hconj.
  destruct Hconj as [Hleft Hright].

(Done in class.)

CS420: Lecture 6  ❧  Tiago Cogumbreiro 15 / 34



Conjunction example 2

Lemma correct_2 : forall A B : Prop, A /\ B -> A.
Proof.

Lemma correct_3 : forall A B : Prop, A /\ B -> B.
Proof.

(Done in class.)

CS420: Lecture 6  ❧  Tiago Cogumbreiro 16 / 34



Disjunction

P ∨ Q

CS420: Lecture 6  ❧  Tiago Cogumbreiro 17 / 34



What is ?

1. What is the type of ?

P ∨ Q

P

CS420: Lecture 6  ❧  Tiago Cogumbreiro 18 / 34



What is ?

1. What is the type of ?
Prop
2. What is the type of ?

P ∨ Q

P

Q

CS420: Lecture 6  ❧  Tiago Cogumbreiro 18 / 34



What is ?

1. What is the type of ?
Prop
2. What is the type of ?
Prop
3. What is the type of ?

P ∨ Q

P

Q

∨

CS420: Lecture 6  ❧  Tiago Cogumbreiro 18 / 34



What is ?

1. What is the type of ?
Prop
2. What is the type of ?
Prop
3. What is the type of ?
Prop -> Prop -> Prop

How can we define an disjunction using an inductive proposition?

P ∨ Q

P

Q

∨

CS420: Lecture 6  ❧  Tiago Cogumbreiro 18 / 34



Disjunction

Inductive or (A B : Prop) : Prop :=
  | or_introl : A -> or A B
  | or_intror : B -> or A B

apply or_introl or apply or_intror to goal; inversion to hypothesis

The \/ operator represents a logical disjunction (usually typeset with )

The left (right) tactics are used to prove a goal of type ?X \/ ?Y, replacing it with a new
goal ?X ( ?Y respectively)

∨

CS420: Lecture 6  ❧  Tiago Cogumbreiro 19 / 34



Disjunction example

Theorem or_1: forall A B : Prop,
  A -> A \/ B.

Theorem or_2: forall A B : Prop,
  B -> A \/ B.

(Done in class.)

CS420: Lecture 6  ❧  Tiago Cogumbreiro 20 / 34



Disjunction in the hypothesis
Tactics destruct can break a disjunction into its two cases.
Tactics inversion also breaks a disjunction, but leaves the original hypothesis in place.

Lemma or_example :
  forall n m : nat, n = 0 \/ m = 0 -> n * m = 0.
Proof.
  intros n m Hor.
  destruct Hor as [Heq | Heq].

CS420: Lecture 6  ❧  Tiago Cogumbreiro 21 / 34



Recall a proof state

1 subgoal
T : Type
x : T
P : Prop
H1 : 1 = x
H2 : P
______________________________________(1/1)
1 = 2 /\ P

All hypothesis are variables of a specific type, Type, or proposition

Goals are (usually) propositions

Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod?
Can a proposition mention conj,
the constructor of and?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 22 / 34



Recall a proof state

1 subgoal
T : Type
x : T
P : Prop
H1 : 1 = x
H2 : P
______________________________________(1/1)
1 = 2 /\ P

All hypothesis are variables of a specific type, Type, or proposition

Goals are (usually) propositions

Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod?
Can a proposition mention conj,
the constructor of and?
Yes and no, respectively.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 22 / 34



Where do constructors of propositions appear?

Theorem and_conj: forall P Q:Prop,
  P -> Q -> P /\ Q.
Proof.
  intros P Q H1 H2.
   apply conj.
  - apply H1.
  - apply H2.
Qed.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 23 / 34



Theorems are expressions too

Theorem and_conj: forall P Q:Prop,
  P -> Q -> P /\ Q.
Proof.
  intros P Q H1 H2.
  apply (conj H1 H2).
Qed.

Proposition-constructors and theorems are functions whose
parameters are evidences.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 24 / 34



Truth

⊤

CS420: Lecture 6  ❧  Tiago Cogumbreiro 25 / 34



Truth
Truth can be encoded in Coq as a proposition that always holds,
which can be described as
a proposition type with a single constructor with 0-arity.

Inductive True : Prop := I : True.

You will note that proposition True is not a very useful one.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 26 / 34



Truth example

Goal True.

(Done in class.)

CS420: Lecture 6  ❧  Tiago Cogumbreiro 27 / 34



Falsehood

⊥

CS420: Lecture 6  ❧  Tiago Cogumbreiro 28 / 34



So far we only seen results that are provable (eg, plus is commutative, equals is
transitive)

How to encode falsehood in Coq?

CS420: Lecture 6  ❧  Tiago Cogumbreiro 29 / 34



Falsehood
Falsehood in Coq is represented by an empty type.

Inductive False : Prop :=.

The only way to reach it is by using the exploding principle

No constructors available. Thus, no way to build an inhabitant of False.

CS420: Lecture 6  ❧  Tiago Cogumbreiro 30 / 34



Example:

Goal 1 = 2 -> False.

Goal False -> 1 = 2.

Goal False.

(Done in class.)

CS420: Lecture 6  ❧  Tiago Cogumbreiro 31 / 34



Negation

¬P

CS420: Lecture 6  ❧  Tiago Cogumbreiro 32 / 34



Negation

The negation of a proposition  is defined as

(* As defined in Coq's stdlib *)
Definition not (H:Prop) := H -> False.

Goal not (1 = 2).

Outputs:

1 subgoal
______________________________________(1/1)
1 <> 2
(Done in class.)

¬P

CS420: Lecture 6  ❧  Tiago Cogumbreiro 33 / 34



Negation-related notations
not P is the same as ~ P, typeset as 

not (x = y) is the same as x <> y, typeset as 

Can we rewrite not with an inductive proposition?

¬P
x ​= y

CS420: Lecture 6  ❧  Tiago Cogumbreiro 34 / 34


