CS420

Introduction to the Theory of Computation

Lecture 19: Undecidability

Tiago Cogumbreiro

Today we will learn...

- Inductive predicates
- Turing Machine theory in Coq
- Undecidability
- Unrecognizability

Section 4.2

Inductive Predicates

Inductive predicate ≤

How to define the \leq operator over natural numbers?

Inductive predicate ≤

How to define the \leq operator over natural numbers?

Solution

$$rac{n \leq n}{n \leq n}$$
le-n $rac{n \leq m}{n \leq \mathtt{S} \ m}$ le-S

Example

Show that $2 \leq 4$

$$2 \le 2$$
 (with le-n) $2 \le 3$ (with le-S) $2 \le 4$ (with le-S)

Inductive predicate ≤

Predicates in Coq are Prop for propositions, also known as logic formula.

```
Inductive le: nat → nat → Prop :=
    | le_n : forall n, n ≤ n
    | le_S : forall n m : nat,
        n ≤ m →
        n ≤ S m.
```

Example

```
Lemma le_n_0: forall n, 0 \le n. Proof. Qed.
```

Have we seen inductive predicates before?

Have we seen inductive predicates before?

Yes!

Formalizing acceptance of an NFA (Lesson 3)

Let $M=(Q,\Sigma,\delta,q_0,F)$, let the **steps through** relation, notation $q\curvearrowright_M w$, be defined as:

$$rac{q \in F}{q \curvearrowright_M []}$$

$$rac{q' \in \delta(q,y) \qquad q' \curvearrowright_M w}{q \curvearrowright_M y :: w}$$

$$rac{q' \in \delta(q,\epsilon) \qquad q' \curvearrowright_M w}{q \curvearrowright_M w}$$

Rule 1. State q steps through [] if q is a final state.

Rule 2. If we can go from q to q' with y and q' steps through w, then q steps through y :: w.

Rule 3. If we can go from q to q' with ϵ and q' steps through w, then q also steps through w.

Acceptance. We say that M accepts w if, and only if, $q_0 \curvearrowright_M w$.

Turing Machine theory in Coq

Turing Machine theory in Coq

- What? I am implementing the Sipser book in Cog.
- Why?
 - So that we can dive into any proof at any level of detail.
 - So that you can inspect any proof and step through it on your own.
 - So that you can ask why and immediately have the answer.

Do you want to help out?

Why is proving important to CS?

Generality is important.

Whenever we implement a program, we are implicitly proving some notion of correctness in our minds (the program is the proof).

Rigour is important.

The importance of having precise definitions. Fight ambiguity!

Assume nothing and question everything.

In formal proofs, we are pushed to ask why? And we have a framework to understand why.

Models are important.

The basis of formal work is abstraction (or models), e.g., Turing machines as models of computers; REGEX vs DFAs vs NFAs.

What follows is a description of our Coq implementation

Turing Machine Theory in Coq

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine unspecified.

```
Variable input: Type.
Variable machine: Type.
```

Turing Machine Theory in Coq

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine unspecified.

```
Variable input: Type.
Variable machine: Type.
```

Running a TM

We can run any Turing Machine given an input and know whether or not it accepts, rejects, or loops on a given input. We leave running a Turing Machine unspecified.

```
Inductive result := Accept | Reject | Loop.
Variable run: machine → input → result.
```

What is a language?

A language is a predicate: a formula parameterized on the input.

Definition lang := input \rightarrow **Prop**.

Defining a set/language

Set builder notation

$$L = \{x \mid P(x)\}$$

Functional encoding

$$L(x) \stackrel{\text{def}}{=} P(x)$$

Defining membership

Set membership

$$x \in L$$

Functional encoding

Example

Set builder example

$$L = \{a^n b^n \mid n \ge 0\}$$

Functional encoding

$$L(x) \stackrel{ ext{def}}{=} \exists n, x = a^n b^n$$

The language of a TM

Set builder notation

The language of a TM can be defined as:

$$L(M) = \{w \mid M \text{ accepts } w\}$$

Functional encoding

$$L_M(w) \stackrel{ ext{def}}{=} M ext{ accepts } w$$

In Coq

Definition Lang (m:machine) : lang := $fun w \Rightarrow run m w = Accept$.

Recognizes

We give a formal definition of recognizing a language. We say that M recognizes L if, and only if, M accepts w whenever $w \in L$.

```
Definition Recognizes (m:machine) (L:lang) := forall w, run m w = Accept ←→ L w.
```

Examples

- Saying M recognizes $L=\{a^nb^n\mid n\geq 0\}$ is showing that there exist a proof that shows that all inputs in language L are accepted by M and vice-versa.
- Trivially, M recognizes L(M).

We will prove 4 theorems

- Theorem 4.11 A_{TM} is undecidable
- Theorem 4.22 L is decidable if, and only if, L is recognizable **and** co-recognizable
- Corollary 4.23 \overline{A}_{TM} is unrecognizable
- Corollary 4.18 Some languages are unrecognizable

Why?

- We will learn that we cannot write a program that decides if a TM accepts a string
- We can define decidability in terms of recognizability+complement
- There are languages that cannot be recognized by some program

Theorem 4.11 $A_{TM} \text{ is undecidable}$

Functional view of A_{TM}

```
def A_TM(M, w):
    return M accepts w
```

Theorem 4.11: A_{TM} is undecidable

Show that A_TM loops for **some** input.

Proof idea: Given a Turing machine

```
def negator(w): # w = <M>
    M = decode_machine w
    b = A_TM(M, w) # Decider D checks if M accepts <M>
    return not b # Return the opposite
```

Given tht A_TM does not terminate, what is the result of negator (negator)?

A_{TM} is undecidable

```
A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}
```

```
Lemma no_decides_a_tm: ~ exists m, Decides m A_tm.
```

- 1. Proof follows by contradiction.
- 2. Let D be the decider of A_{TM}
- 3. Consider the negator machine:

```
def negator(w): # w = <M>
    M = decode_machine w
    b = call D <M, w> # Decider D checks if M accepts <M>
    return not b # Return the opposite
```

```
# If we expand D and
# ignore decoding we get:
def negator(f):
   return not f(f)
```



```
1. def negator(w):

2. M = decode_machine w

3. b = call D <M, w> # M accepts <M>?

4. return not b # Return the opposite A_{\mathsf{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}
```

- 4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
- 5. Case N accepts $\langle N \rangle$, or negator (negator).


```
1. def negator(w):

2. M = decode_machine w

3. b = call D <M, w> # M accepts <M>?

4. return not b # Return the opposite A_{\mathsf{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}
```

- 4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
- 5. Case N accepts $\langle N \rangle$, or negator (negator).
 - 1. If N accepts $\langle N \rangle$, then D rejects $\langle N, \langle N \rangle \rangle$
 - 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. Contradiction!


```
1. def negator(w):

2. M = decode_machine w

3. b = call D <M, w> # M accepts <M>?

4. return not b # Return the opposite A_{\mathsf{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}
```

- 4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
- 5. Case N accepts $\langle N \rangle$, or negator (negator).
 - 1. If N accepts $\langle N \rangle$, then D rejects $\langle N, \langle N \rangle \rangle$
 - 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. Contradiction!
- 6. Case N rejects $\langle N \rangle$.


```
1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # M accepts <M>?
4. return not b # Return the opposite
A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}
```

- 4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
- 5. Case N accepts $\langle N \rangle$, or negator (negator).
 - 1. If N accepts $\langle N \rangle$, then D rejects $\langle N, \langle N \rangle \rangle$
 - 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. Contradiction!
- 6. Case N rejects $\langle N \rangle$.
 - 1. If N rejects $\langle N \rangle$, then D accepts $\langle N, \langle N \rangle
 angle$
 - 2. Thus, by definition of D (via A_{TM}), then N accepts $\langle N \rangle$. Contradiction!


```
1. def negator(w):
2.  M = decode_machine w
3.  b = call D <M, w> # M accepts <M>?
4.  return not b # Return the opposite
```

 $A_{\mathsf{TM}} = \{ \langle M, w
angle \mid M ext{ is a TM that accepts } w \}$

7. Case N loops $\langle N \rangle$.


```
1. def negator(w):

2. M = decode_machine w

3. b = call D <M, w> # M accepts <M>?

4. return not b # Return the opposite A_{\mathsf{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}
```

- 7. Case N loops $\langle N \rangle$.
 - 1. If N loops $\langle N \rangle$, then D accepts $\langle N, \langle N \rangle \rangle$
 - 2. Thus, by definition of D (via A_{TM}), then N accepts $\langle N \rangle$. Contradiction!

Understanding the Coq formalism

Pseudo-code as a mini-language

- 1. Call M $_{ t W}$ Use the Universal Turing machine to call a machine M with input w,
 - Returns whatever M returns by processing w
- 2. mlet $x \leftarrow P1$ in P2 Runs pseudo-program P1; if P1 halts, passes a boolean with the result of acceptance to P2. If P1 loops, then the whole pseudo-program loops.
- 3. Ret r
 A Turing Machine that returns whatever is in r.

 Abbreviations: Ret Accept = ACCEPT, Ret Reject = REJECT, and Ret Loop = LOOP.
- This language is enough to prove the results in Section 4.2.

The negator

In Python

```
def negator(w):
    M = decode_machine w
    b = call D <M, w> # M accepts <M>?
    return not b # Return the opposite
```

In Coq

```
Definition negator D w :=
  let M := decode_machine w in
  mlet b ← Call D ≪ M, w≫ in
  halt_with (negb b).
```

- ullet D is a parameter of a Turing machine, given $\langle M,w
 angle$ decides if M accepts w
- ullet w is a serialized Turing machine $\langle M
 angle$
- «M, w» is the serialized pair M and w
- b takes the result of calling D with << M, w>>
- halt the machine with negation of b

L decidable iff L is recognizable + co-recognizable

 $oldsymbol{L}$ decidable iff $oldsymbol{L}$ recognizable and $oldsymbol{L}$ co-recognizable

Recall that L co-recognizable is \overline{L} .

Complement

$$\overline{L} = \{ w \mid w
otin L \}$$
 Or, $\overline{L} = \Sigma^\star - L$

L decidable iff L recognizable and L co-recognizable

Proof. We can divide the above theorem in the following three results.

- 1. If L decidable, then L is recognizable.
- 2. If L decidable, then L is co-recognizable.
- 3. If L recognizable and L co-recognizable, then L decidable.

Part 1. If $m{L}$ decidable, then $m{L}$ is recognizable.

Proof.

Part 1. If $m{L}$ decidable, then $m{L}$ is recognizable.

Proof.

Unpacking the definition that L is decidable, we get that L is recognizable by some Turing machine M and M is a decider. Thus, we apply the assumption that L is recognizable.

Part 2: If $m{L}$ decidable, then $m{L}$ is co-recognizable.

Proof.

Part 2: If $m{L}$ decidable, then $m{L}$ is co-recognizable.

Proof.

- 1. We must show that if L is decidable, then \overline{L} is decidable. †
- 2. Since \overline{L} is decidable, then \overline{L} is recognizable.

^{†:} Why? We prove in the next lesson.