CS420

Introduction to the Theory of Computation
Lecture 19: Undecidability

Tiago Cogumbreiro

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Today we will learn... ?//l

e Inductive predicates

e Turing Machine theory in Coq
o Undecidability

e Unrecognizability

| Section 4.2

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Inductive Predicates

3/28

Inductive predicate < m

I How to define the < operator over natural numbers?

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

A,

Inductive predicate < it
I How to define the < operator over natural numbers?
Solution
n<m
le—n le-S
n<<n n<Sm
Example

I Show that2 < 4

2 <2 (with le-n)
2 < 3 (with le-8S)
2 <4 (with le-S)

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Inductive predicate < m

I Predicates in Coq are Prop for propositions, also known as logic formula.

Inductive le: nat = nat — Prop :=
| le_n : forall n, n < n
| 1le_S : forall n m : nat,
n<=mn-
n <3Smn.

Example

Lemma le_n_0:
forall n, @ < n.

Proof.

Qed.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

daVve WeE seel

inductive

predicates

Detore?

6/28

ave We Seel

inductive

predicates

Yes!

netore?

6/28

Formalizing acceptance of an NFA (Lesson 3) 2

Let M = (Q, %, 9, qo, F'), let the steps through relation, notation ¢ ~j; w, be defined as:

Rule 1. State g steps through [] if g is a final

q < F state.

g~]

Rule 2. If we can go from ¢ to ¢’ with y and

/ /
q < 5(% y) q rvM W q' steps through w, then g steps through
qrvsmy - w Y w.

Rule 3. If we can go from ¢ to ¢’ with € and
q' steps through w, then g also steps
through w.

q €6(g,e) ¢ Iyw
q ~yy W

Acceptance. We say that M accepts w if,and only if, gg ~ps w.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Turing Machine theory in Coq

Turing Machine theory in Cog 7

e What? | am implementing the Sipser book in Coq.

e Why?
o So that we can dive into any proof at any level of detail.
o So that you can inspect any proof and step through it on your own.
o So that you can ask why and immediately have the answer.

Do you want to help out?

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Why is proving important to CS? e

A,

Generality is important.
Whenever we implement a program, we are implicitly proving some notion of
correctness in our minds (the program is the proof).

Rigour is important.
The importance of having precise definitions. Fight ambiguity!

Assume nothing and question everything.
In formal proofs, we are pushed to ask why? And we have a framework to understand
why.

Models are important.
The basis of formal work is abstraction (or models), e.g., Turing machines as models of
computers; REGEX vs DFAs vs NFAs.

What follows is a description of our Cog implementation

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Turing Machine Theory in CoqQ 7

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine
unspecified.

Variable input: Type.
Variable machine: Type.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Turing Machine Theory in Coq 7

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine
unspecified.

Variable input: Type.
Variable machine: Type.

Running a TM

We can run any Turing Machine given an input and know whether or not it accepts, rejects,
or loops on a given input. We leave running a Turing Machine unspecified.

Inductive result := Accept | Reject | Loop.

Variable run: machine —> input — result.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

What is a language? M

A language is a predicate: a formula parameterized on the input.

Definition lang := input — Prop.
Defining a set/language
Set builder notation Functional encoding

L={z|P(z)} L(z) £ P(x)

Defining membership
Set membership Functional encoding

xr e L L(x)

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

FExample m

Set builder example Functional encoding

L= {a"" | n >0} L(z) = 3n,z = V"

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Thelanguage ofa M M

Set builder notation

The language of a TM can be defined as:

L(M) = {w | M accepts w}

Functional encoding

Ly (w) = M accepts w

In Coq

Definition Lang (m:machine) : lang := fun w = run m w = Accept.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Recognizes ?//l

We give a formal definition of recognizing a language. We say that M recognizes L if, and
only if, M accepts w wheneverw € L.

Definition Recognizes (m:machine) (L:lang) := forall w, run m w = Accept <= L w.

Examples

e Saying M recognizes L = {a"’bn] n > O} is showing that there exist a proof that
shows that all inputs in language L are accepted by M and vice-versa.

e Trivially, M recognizes L(M).

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

We will prove 4 theorems m

o Theorem 4.11 A1) is undecidable

e Theorem 4.22 L is decidable if, and only if, L is recognizable and co-recognizable

e Corollary 4.23 ZTM IS unrecoghnizable
e Corollary 4.18 Some languages are unrecognizable

Why?

 We will learn that we cannot write a program that decides if a TM accepts a string
 We can define decidability in terms of recognizability+complement
e There are languages that cannot be recognized by some program

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Theorem 4.11

Arsis undecidable

Theorem 4.11 2
Functional view of Ay

def A_TM(M, w):
return M accepts w

Theorem 4.11: A1/ is undecidable

Show that A_TM loops for some input.

Proof idea: Given a Turing machine

def negator(w):
M = decode_machine w
b = A_TM(M, w)
return not b

Given tht A_TM does not terminate, what is the result of negator(negator)?

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Theorem 4.11 .
A7 is undecidable

Aty = {{(M,w) | M is a TM that accepts w}

Lemma no_decides_a_tm: ~ exists m, Decides m A_tm.

1. Proof follows by contradiction.
2. Let D be the decider of A7y,

3. Consider the negator machine:

def negator(w):
M = decode_machine w
b = call D <M, w> def negator(f):
return not b return not f(f)

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Theorem 4.11: A7/ is undecidable 4.

1. def negator(w):

2. M = decode_machine w
3. b =-call D<M, w>

4 return not b

Atm = {(M,w) | M is a TM that accepts w}

4. Let negator be N. Case analysis on the result of running N with (V') reach contradiction.
5. Case N accepts (N), or negator(negator).

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Theorem 4.11: A7/ is undecidable 4.

1. def negator(w):

2. M = decode_machine w
3. b =-call D<M, w>

4 return not b

Atm = {(M,w) | M is a TM that accepts w}

4. Let negator be N. Case analysis on the result of running N with (V') reach contradiction.

5. Case N accepts (N), or negator(negator).
1. If N accepts (IN), then D rejects (N, (IN))

2. By the definition of D (via Arpz), then N rejects (V). Contradiction!

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Theorem 4.11: A7/ is undecidable 4.

1. def negator(w):

2. M = decode_machine w
3. b =-call D<M, w>

4 return not b

Atm = {(M,w) | M is a TM that accepts w}

4. Let negator be N. Case analysis on the result of running N with (V') reach contradiction.
5. Case N accepts (IN), or negator(negator).

1. If N accepts (IV), then D rejects (N, (IN))

2. By the definition of D (via Arpz), then N rejects (V). Contradiction!
6. Case N rejects (V).

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Theorem 4.11: A7/ is undecidable 4.

1. def negator(w):

2. M = decode_machine w
3. b =-call D<M, w>

4 return not b

Atm = {(M,w) | M is a TM that accepts w}

4. Let negator be N. Case analysis on the result of running N with (V') reach contradiction.
5. Case N accepts (IN), or negator(negator).

1. If N accepts (IV), then D rejects (N, (IN))

2. By the definition of D (via Arpz), then N rejects (V). Contradiction!
6. Case N rejects (V).

1. If N rejects (), then D accepts (N, (IN))

2. Thus, by definition of D (via Arar), then IN accepts (N). Contradiction!

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Theorem 4.11: A7/ is undecidable 4.

1. def negator(w):

2. M = decode_machine w
3. b =-call D<M, w>

4 return not b

Atm = {(M,w) | M is a TM that accepts w}

7. Case N loops (N).

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Theorem 4.11: A7/ is undecidable 4.

1. def negator(w):

2. M = decode_machine w
3. b =-call D<M, w>

4 return not b

Atm = {(M,w) | M is a TM that accepts w}

7. Case N loops (N).
1. If N loops (N), then D accepts (N, (N))

2. Thus, by definition of D (via Arjr), then IN accepts (N). Contradiction!

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Understanding the Coqg formalism M

Pseudo-code as a mini-language

1.Call M w
Use the Universal Turing machine to call a machine M with input w,

Returns whatever M returns by processing w

2.mlet x < P1 in P2
Runs pseudo-program P1; if P1 halts, passes a boolean with the result of acceptance to

P2.1f P1 loops, then the whole pseudo-program loops.
3.Ret r

A Turing Machine that returns whateverisinr.
Abbreviations: Ret Accept = ACCEPT,Ret Reject = REJECT,andRet Loop = LOOP.

| This language is enough to prove the results in Section 4.2.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

A,

[henegator e
In Python In Coq
def negator(w): Definition negator D w :=
M = decode_machine w let M := decode_machine w in
b = call D <M, w> mlet b < Call D < M, w> 1in
return not b halt_with (negb b).

D is a parameter of a Turing machine, given (M, w) decides if M accepts w

W is a serialized Turing machine (M)

<M, w> isthe serialized pair Mand w
b takes the result of calling D with <M, w>>
halt the machine with negation of b

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Theorem 4.2/

L decidable iff L is recognizable + co-recognizable

24/28

Theorem 4.2 m

L decidable iff L recognizable and L co-recognizable

I Recall that L co-recognizable is L.

Complement

L={w|wdL)
onrL=Y"—1L

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Theorem 4.2 m

L decidable iff L recognizable and L co-recognizable
Proof. We can divide the above theorem in the following three results.

1. If L decidable, then L is recognizable.
2. If L decidable, then L is co-recognizable.

3. If L recognizable and L co-recognizable, then L decidable.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Part 1. If L decidable, then L is recognizable. m

BOSTON

Proof.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

Part 1. If L decidable, then L is recognizable. m

Proof.
Unpacking the definition that L is decidable, we get that L is recognizable by some Turing

machine M and M is a decider. Thus, we apply the assumption that L is recognizable.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

A,

Part 2: If L decidable, then L is co-recognizable.

BOSTON

Proof.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

A,

Part 2: If L decidable, then L is co-recognizable.

BOSTON

Proof.

1. We must show that if L is decidable, then L is decidable. |

2.Since L is decidable, then Lis recognizable.

T Why? We prove in the next lesson.

CS420 Y Undecidability) Lecturel9) Tiago Cogumbreiro

