CS420

Introduction to the Theory of Computation
Lecture 1/: Acceptance, emptiness and equality tests

Tiago Cogumbreiro

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Today we will learn... ?//l

e Practical uses of Regular/Context-Free languages
e Acceptance tests

e Emptiness tests

e Equality tests

| Section4.1

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Why do we need

Regular Languages?

Context Free Languages?

Use Case 1: DFA/NFA

Using a DFA/NFA to structure hardware usage

4/32

Use Case 1: DFA/NFA M
Using a DFA/NFA to structure hardware usage

e Arduino is an open-source hardware to design microcontrollers
Programming can be difficult, because it is highly concurrent
Finite-state-machines structures the logical states of the hardware
Input: a string of hardware events

String acceptance is not interesting in this domain

Example

| The FSM represents the logical view of a micro-controller with a light switch

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Use Casel ?//l

Declare states

State state_light_on(on_light_on_enter, NULL, 8on_light_on_exit);
State state_light_off(on_light_off_enter, NULL, &n_light_off_exit);

Fsm fsm(&state_light_off);
Source: platformio.org/1ib/show/664/arduino-fsm

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

https://platformio.org/lib/show/664/arduino-fsm

Use Casel M

Declare transitions

void setup() {
Serial.begin(9600);

fsm.add_transition(&state_light_on, &state_light_off,
FLIP_LIGHT_SWITCH,
gon_trans_light_on_light_off);

fsm.add_transition(&state_light_off, &state_light_on,
FLIP_LIGHT_SWITCH,
gon_trans_light_off_light_on);

}
Source: platformio.org/1ib/show/664/arduino-fsm

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

https://platformio.org/lib/show/664/arduino-fsm

Use Case] 7

BOSTON

Code that runs on before/after states

void on_light_on_enter() {
Serial.println("Entering LIGHT_ON");

}

void on_light_on_exit() {
Serial.println("Exiting LIGHT_ON");

}

void on_light_off_enter() {
Serial.println("Entering LIGHT_OFF");

}

Source: platformio.org/1lib/show/664/arduino-fsm

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

https://platformio.org/lib/show/664/arduino-fsm

Use Case

Regular Expressions: Input validation

9/32

Use Case / M

Regular Expressions: Input validation

| HTML includes regular expressions to perform client-side form validation.

<input id="uname" name="uname" type="text"
pattern="_([a-z]|[A-Z]|[0-9])+" minlength="4" maxlength="10">

=

o _[a-zA-70-9]+

e [a-zA-708-9] means any character beween a and z, or between A and Z, or between 8 and 9
e R+ means repeat R one or more times

e |n this case, the username must start with an underscore _, and have one or more
letters/numbers

e minlength and maxlength further restrict the string's length

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Use Case 3

Regular Expressions: Text manipulation

11/32

A,

UMASS

Use Case 3

Regular Expressions: Text manipulation

Programming languages include regular expressions for fast and powerful text
manipulation.

Example (JS)

let txt1 = "Hello World!";
let txt2 = txtl.replace(/[a-zA-Z]+/, "Bye");
console.log(txt2);

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Use Case 4
Parsing JSON

13/32

Grammar for JSON 7

BOSTON

| ANTLR s a parser generator.

o Input: a grammar; Output: a parser, and data-structures that represent the parse tree
(known as a Concrete Syntax Tree)

e The HTML DOM is an example of an Abstract Syntax Tree

json: value;

obj: '{' pair ('," pair)* '}" | '"{' '}';
pair: STRING ':' value;

array: '[' value (',' value)* '] | '[" ']';

value: STRING | NUMBER | obj | array | 'true' | 'false' | 'null’;

Source: raw.githubusercontent.com/antlr/grammars-v4/master/json/JSON.g4

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

https://raw.githubusercontent.com/antlr/grammars-v4/master/json/JSON.g4

A grammar for JSON integers ?//l

NUMBER: '-'? INT ('.' [0-9] +)? EXP?;
fragment INT: '@' | [1-9] [0-9]*;

fragment EXP : [Ee] [+\-]? INT;
Source: raw.githubusercontent.com/antlr/grammars-v4/master/json/JSON.g4

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

https://raw.githubusercontent.com/antlr/grammars-v4/master/json/JSON.g4

A grammar for JSON M

> 1s *.java

JSONBaselListener.java JSONParser.java JSONVisitor.java
JSONBaseVisitor. java JSONLexer.java JSONListener. java
> cat JSONBaselistener.java

import org.antlr.v4.runtime.tree.ParseTreelListener;

* This interface defines a complete listener for a parse tree produced by
* {@link JSONParser}.

*/

public interface JSONListener extends ParseTreeListener {

* Enter a parse tree produced by {@link JSONParseritjson}.
* Qparam ctx the parse tree
*/

void enterJson(JSONParser.JsonContext ctx);

* Exit a parse tree produced by {@link JSONParserttjson}.
* fQparam ctx the parse tree
*/

void exitJson(JSONParser.JsonContext ctx);

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Context-free languages ?//l

e Programming languages are context-free
o Context-free grammars are crucial for compilers/interpreters

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Why do we need

Turing Machines?

Why do we need Turing Machines? ?//l

e Turing Machines are Computers!
e Turing Machines are Programs!
o We will study mathematically the limits of what is possible

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

luring Recognizable

20/32

Decision problems m

Disclaimer: Henceforth, when we say a program, we are restricting ourselves to decision
problems.

 Example: DFA accepting/rejecting a string

Example: PDA accepting/rejecting a string

Example: functions that return a boolean

Example: programs run until they print yes/no

Example: computers that run until they turn on a red/green light

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Turing Recognizable m

Recognized language of TM

Notation L(M) is the set of strings that M accepts, its recognized language.
Definition 3.5: Turing-Recognizable [anguage

A language is Turing-recognizable if some TM recognizes it.

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

What is a decidable Turing Machine?

What is a decidable Turing Machine?
For all inputs: REJECT \/ ACCEPT

(No loops!)

Turing Decidable m

A TM that for all inputs either accepts or rejects, and does not loop forever.

Definition 3.6: Decidable language

A language is decidable if some Turing-decidable machine recognizes it.

How do | know if a Turing Machine is decidable?

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Turing Decidable m

A TM that for all inputs either accepts or rejects, and does not loop forever.
Definition 3.6: Decidable language

A language is decidable if some Turing-decidable machine recognizes it.

How do | know if a Turing Machine is decidable?

We prove itl

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Recap ﬁg

e A decidable TM REJECT/ACCEPT any input
A decidable language is one that is recognized by a decidable TM

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Decidable algorithms m

e Algorithms are equivalent to TMs
e Analgorithm that returns REJECT/ACCEPT (eg, a boolean) for all inputs

e A decidable algorithm is always total

o A total function is defined (ie, returns a value) for all inputs. Looping implies that no
value is being returned.

o |n some programming languages (eg, Coq, Agda, Idris) you can write total functions
(mechanically proven by the language).

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Decidable algorithms m

e Algorithms are equivalent to TMs
e Analgorithm that returns REJECT/ACCEPT (eg, a boolean) for all inputs

e A decidable algorithm is always total

o A total function is defined (ie, returns a value) for all inputs. Looping implies that no
value is being returned.

o |n some programming languages (eg, Coq, Agda, Idris) you can write total functions
(mechanically proven by the language).
Proving decidability
requires a proot that the function terminates!

(along with correctness)

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Decidable algorithms ?//l

Example
Our algorithm that implements DFA acceptance

def dfa_accepts(dfa, inputs):
st = dfa.start
for i in inputs:
st = dfa.state_transition(st, i)
return st in dfa.accepted_states

Termination proof. The function loops over len(inputs)-steps (which is a natural number)
and then returns a boolean.

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Ay Acceptance tests

Decidable algorithms on acceptance
(Will X accept this input?)

28 /32

Apea: DFA Acceptance 7

I The language of all DFAs that accept a given string w
Apra = {(B,w) | B is a DFA that accepts input string w}

Theorem 4.1. Apg, is a decidable language.
Proof.

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Apea: DFA Acceptance 7

I The language of all DFAs that accept a given string w
Apra = {(B,w) | B is a DFA that accepts input string w}

Theorem 4.1. Apg, is a decidable language.

Proof.

We already showed that function dfa_accepts is correct and that it terminates, thus there
exists a TM that encodes it and that TM is decidable.

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Anea: NFA Acceptance 7

I The language of all NFAs that accept a given string w
Anra = {{IV,w) | N is an NFA that accepts input string w}

Theorem 4.2. Anga is a decidable language.
Proof.

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Anea: NFA Acceptance 7

I The language of all NFAs that accept a given string w
Anra = {{IV,w) | N is an NFA that accepts input string w}

Theorem 4.2. Anga is a decidable language.

Proof.

If we assume that the function that converts a DFA into an NFA is total, then the following
algorithm is total and correct:

def nfa_accepts(nfa, input):
return dfa_accepts(nfa_to_dfa(nfa), input)

And therefore, the TM that implements it is decidable, and so is AnEa.

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Arex: Regular Expression Acceptance 7

I The language of all regex that accept a given string w
Agex = {(R,w) | R is an regular expression that accepts input string w}

Theorem 4.3. Agrex is a decidable language.
Proof.

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Arex: Regular Expression Acceptance 7

I The language of all regex that accept a given string w
Agex = {(R,w) | R is an regular expression that accepts input string w}

Theorem 4.3. Agrex is a decidable language.

Proof.

Similarly, if we assume that the function that converts a regular expression into an NFA is
total, then the following algorithm is total and correct:

def rex_accepts(rex, input):
return nfa_accepts(rex_to_nfa(nfa), input)

And therefore, the TM that implements it is decidable, and so is Argx.

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Acgg: Context-Free-Grammar Acceptance m

I The language of all context-free grammars that accept a given string w
Acre = {(G,w) | G is a context-free grammar that accepts input string w}

Theorem 4.7. Acg¢ is a decidable language.
Proof.

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

Acgg: Context-Free-Grammar Acceptance m

I The language of all context-free grammars that accept a given string w
Acre = {(G,w) | G is a context-free grammar that accepts input string w}

Theorem 4.7. Acgc is a decidable language.

Proof.
We studied the CYK algorithm that is decidable and given a CFG can test the acceptance of

a CFG. Additionally, we also studied a decidable acceptance algorithm for PDAs, so we could
convert the CFG to a PDA (which is a total function).

CS420) Acceptance, emptiness and equality tests) Lecturel7) Tiago Cogumbreiro

