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This talk is about using an intermediate representation of CUDA kernels 
(called MAPs) to test a static analysis tool (Faial) written in OCaml

• Motivation

• Memory Access Protocols

• Contributions

• Evaluation

• Future Work (Including Preliminary Results)

• Conclusion

Overview
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Motivation



Background

[CAV’21]: Tiago Cogumbreiro, Julien Lange, Dennis Liew & Hannah Zicarelli: Checking Data-Race Freedom of 
GPU Kernels, Compositionally.

• CUDA is an API to program GPUs (extension of C/C++)

• CUDA programs (kernels) generally use structured loops, terminate, and have limited aliasing

• CUDA kernels are parallel programs that use shared memory to communicate

• Faial is a static analysis tool for CUDA programs

• Faial is written in OCaml and interfaces with libclang to parse CUDA

• Faial verifies data-races and bank-conflicts

• Data-race: a concurrency error caused by two concurrent

and unsynchronized memory accesses (one is a write)

• Bank-conflicts: performance degradation caused by memory access patterns

4



Architecture of Faial, a Data-Race Freedom Checker for CUDA

Source: [CAV’21]

[CAV’21]: Tiago Cogumbreiro, Julien Lange, Dennis Liew & Hannah Zicarelli: Checking Data-Race Freedom of GPU Kernels, Compositionally.

• (1) generates an intermediate representation (IR)

• (2), (3), and (4) perform the analysis of the IR to prove data-race freedom (DRF) via an SMT solver (Z3)

• (2), (3), and (4) have been formalized and the correctness of the analysis has been established in Coq

• How can we test (1)?
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Inference of the IR (MAPs)
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• Inference is the process of abstracting the C code into our IR, which includes:

• Abstracting away data being written to/from arrays

• Code slicing any code unrelated to index expressions/concurrency

• Inferring loop bounds/strides (additive/multiplicative)

• Inlining any kind of local aliasing

• *a = a + threadIdx.x

• Inlining local assignments

• int i = blockIdx.x * blockDim.x + threadIdx.x;



• Fuzzing

• Property testing

• Formalization (ongoing) [PLACES‘22]

• What if we use the IR itself to test Faial?

Assessing The Correctness of Faial’s Inference

[PLACES’22]: Dennis Liew, Tiago Cogumbreiro, & Julien Lange: Provable GPU Data-Races in Static Race Detection.
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Memory Access Protocols



Memory Access Protocols (MAPs)

• The IR used to analyze CUDA kernels

• Available as an OCaml data type

• Consist of four types of instructions:
• Array accesses

• Barrier synchronizations

• Conditionals

• Structured loops (foreach) with potentially unknown bounds
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CUDA Analysis Codebase

• Wide range of options to summarize kernel data

• Variables (shared, global, etc.)

• Max loop depth (sync vs. unsync)

• Array usage
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Inference of MAPs

• Issue: not all protocols are inferred correctly

• Some protocols may be misinterpreted

• Some instructions may go missing

• Can we leverage Faial’s abstraction to ensure the inference is correct?

CUDA MAPs

Inference
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Contributions



Contributions

• Implemented a “reversal” of the inference: going from MAPs to CUDA

• Introduced a technique to test the inference of MAPs

• Detected and fixed several bugs in Faial
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Testing Methodology

• How do we represent the IR concretely?
• Code generation: extend Faial to generate a CUDA representation of the MAPs

• AKA, Proto-to-Cuda

• How do we verify Faial’s inference?
• Fixed point analysis: test whether MAPs are consistent across Proto-to-Cuda iterations

• Cannot compare MAPs directly, so compare the CUDA versions of each set of MAPs

• Classify the differences between kernel iterations

• Use differences to find bugs in the inference

• Goal: fix bugs identified in stress tests to facilitate further testing
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Stress Testing Pipeline
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Proto-to-Cuda

• Translates each instruction from MAPs into CUDA code

• Control-flows are simple syntax transformations

• Use a convention to simulate array accesses:

• Local dummy variable to read from arrays

• External function prototype to write to arrays
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Fixed Point Analysis

Proto-to-Cuda

CUDA Kernel
1st Iteration 

CUDA Kernel
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Fixed Point Analysis (Success)

Proto-to-Cuda

1st Iteration 
CUDA Kernel

2nd Iteration 
CUDA Kernel

Reaches Fixed Point
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Fixed Point Analysis (Failure)

Proto-to-Cuda

Incorrectly
Inferred

1st Iteration 
CUDA Kernel

2nd Iteration 
CUDA KernelDoes Not Reach 

Fixed Point

19



Difference Report

1st Iteration Only

2nd Iteration Only

Both 
Iterations
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Evaluation



Stress Testing Faial

• Used GPUVerify’s [CAV’14] dataset, a collection of 227 real-world kernels, to stress test Faial

• Categorized kernels into three categories:

• Fixed: no differences between iterations

• Non-fixed: difference between iterations

• Error: first iteration could not be parsed

• First part of experiment: classified the
differences between non-fixed kernels

• Distinguish between syntactic differences
and semantic differences

• Syntactic – same meaning, different style

• Semantic – different meaning
Initial Results

[CAV’14]:  Ethel Bardsley, Adam Betts, Nathan Chong, Peter Collingbourne, Pantazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema, 
Daniel Liew & Shaz Qadeer: Engineering a Static Verification Tool for GPU Kernels.
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Classifying Differences Between Kernels

Syntactic Differences Semantic Differences

Difference
Unary (-) 
to Binary

Conditional 
Expansion

Missing 
Read

Missing 
Write

Missing 
Conditional

Missing 
Loop

Array 
Indices 
Flipped

Type 
Conversion

Type 
Truncated

Introduce 
Unknowns

# Kernels 10 5 13 11 4 2 11 17 14 2
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Classifying Differences Between Kernels

Syntactic Differences Semantic Differences

Difference
Unary (-) 
to Binary

Conditional 
Expansion

Missing 
Read

Missing 
Write

Missing 
Conditional

Missing 
Loop

Array 
Indices 
Flipped

Type 
Conversion

Type 
Truncated

Introduce 
Unknowns

# Kernels 10 5 13 11 4 2 11 17 14 2

• Discovered three types of differences:
• Expression conversions

• Missing instructions

• Structural changes to variables
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Expression Conversions

Syntactic Differences Semantic Differences

Difference
Unary (-) 
to Binary

Conditional 
Expansion

Missing 
Read

Missing 
Write

Missing 
Conditional

Missing 
Loop

Array 
Indices 
Flipped

Type 
Conversion

Type 
Truncated

Introduce 
Unknowns

# Kernels 10 5 13 11 4 2 11 17 14 2

• Does not change the meaning of the program

• Can be safely ignored

Difference
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Missing Instructions

Syntactic Differences Semantic Differences

Difference
Unary (-) 
to Binary

Conditional 
Expansion

Missing 
Read

Missing 
Write

Missing 
Conditional

Missing 
Loop

Array 
Indices 
Flipped

Type 
Conversion

Type 
Truncated

Introduce 
Unknowns

# Kernels 10 5 13 11 4 2 11 17 14 2

• Does change the meaning of the program (bug)

Difference
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Missing Instructions

Syntactic Differences Semantic Differences

Difference
Unary (-) 
to Binary

Conditional 
Expansion

Missing 
Read

Missing 
Write

Missing 
Conditional

Missing 
Loop

Array 
Indices 
Flipped

Type 
Conversion

Type 
Truncated

Introduce 
Unknowns

# Kernels 10 5 13 11 4 2 11 17 14 2

Original Program

• Does change the meaning of the program (bug)

• Can occur due to unsupported language features, e.g., loops with multiple variables

b goes missing
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Structural Changes to Variables

Syntactic Differences Semantic Differences

Difference
Unary (-) 
to Binary

Conditional 
Expansion

Missing 
Read

Missing 
Write

Missing 
Conditional

Missing 
Loop

Array 
Indices 
Flipped

Type 
Conversion

Type 
Truncated

Introduce 
Unknowns

# Kernels 10 5 13 11 4 2 11 17 14 2

• Discovered a bug in serialization code: array indices were reversed

• Traced indices to original program and MAPs to confirm

Difference
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Outcome of Experiment

• Many kernels could not be tested due to errors re-parsing the 1st iteration kernel

• Second part of experiment: improve code generation to target more kernels
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Results (Before Cleanup) Results (After Cleanup)
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Future Work



• Many static analysis tools are brittle, hindering tests with real-world kernels

• Can we leverage MAPs to simplify the dataset to enable broader 
comparative studies?

Static Analysis of CUDA Programs is Challenging

Tool Faial RaCUDA PUG GPUVerify

Dataset 
Supported

100% 10% 38% 100%

Unsupported 
Language 
Features

-

Some data types (i.e., 
shorts), several operators, 
multi-dimensional arrays, 

C++ templates, etc.

C++ templates, 
classes, while 

loops
-
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• RaCUDA supports 10% of dataset (22/227 kernels)

• Static performance analyzer

• Lacks support for some data types/multi-dimensional arrays

• PUG supports 38% of dataset (86/227 kernels)

• Static data-race freedom analyzer

• Lacks support for C++ templates

Static Analysis of CUDA Programs is Challenging
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Using MAPs to Scale RaCUDA
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• Ran Proto-to-Cuda on the CAV14 dataset to generate RaCUDA-compatible kernels

• Tested RaCUDA on the generated dataset

• Preliminary Results:

• 209 kernels could be analyzed

• 18 kernels encountered errors

• Note: still need to test the semantics of RaCUDA’s analysis
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Conclusion



1. Developed a testing technique to exercise the correctness of the inference algorithm

2. Preliminary results of using code generation to simplify the syntax of kernels, while 
preserving the concurrency characteristics of kernels

3. Our testing framework identified 9 bugs in our tool

4. Our code generation allowed RaCUDA to analyze 187 new kernels (10% vs. 92%)

Conclusion
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