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Abstract. Formal Languages and Automata (FLA) is a fundamental
course of the undergraduate computer science degree. A challenge of this
curriculum is conveying theoretical intuitions to students more inter-
ested in practical aspects of programming. Our approach is to reframe
FLA material in terms of a programming language that is familiar to
students. To this end, we propose RegularIMP, an imperative program-
ming language that expresses regular languages. We present the syntax
and an operational semantics. We also show how to transform a Regu-
larIMP statement into a nondeterministic finite automaton, and a regular
expression into a RegularIMP statement.

1 Introduction

Formal Languages and Automata (FLA) is a core subject of the undergraduate
degree curriculum in Computer Science [6]. There are multiple techniques aimed
at improving the instruction of this material. Interactive FLA editors, such as [9,
14, 19], allow instructors and students to design an automaton by dragging and
dropping states and transitions and then test the automaton against a set of
inputs. Theory courses benefit from relating the material being taught to other
parts of the curriculum. John MacCormick explores the idea of emphasizing
search problems written in a real programming language rather than decision
problems [13]. Similarly, Blanco Arbe et al. propose an approach of creating web
forms using regular expressions in JavaScript [2].

This paper takes a novel approach to present regular languages using prac-
tical use cases. We argue that finite automata are too abstract to convincingly
relate have students perceive an automaton or as a program. Similarly, although
matching regular expressions are used commonly in software development, this
technique is too specialized to make the point that regular languages represent
classes of programs. This paper presents an imperative language, such as C or
Python, that can describe a regular language.

Education. We introduce RegularIMP, a core language with a single pro-
gram variable, a primitive to read a character from the standard input akin
to function getchar from the C standard library, assertions, a source of non-
determinism akin to function rand from the C standard library, and the usual



control-flow primitives of imperative languages (such as loops and conditionals).
Programs in our language behave like imperative programs that students already
know, unlike finite automata and regular expressions. We want students to ex-
ercise forward reasoning (show that a program consumes a certain input) and
backward reasoning (given that a program consumed a certain input show that
the input). The goal of RegularIMP is to have students reason about the behavior
of programs, not to serve as an alternative theory to regular expressions, or to
declare string matching algorithms.

Theory. In this paper, we present a translation from RegularIMP to nondeter-
ministic automata and from regular expressions to RegularIMP. Our translation
is the first step towards showing that a regular language can indeed be expressed
with RegularIMP.

Functional programming. We present a tool called RegularC1 that im-
plements our translation function. By converting a RegularIMP program into a
nondeterministic finite automaton, students can visualize the behavior of pro-
grams, which can uncover surprising misunderstandings.

In summary, our paper makes the following contributions.

– We formalize the syntax of RegularIMP (§4) and give a big-step operational
semantics (§5).

– We present a translation from RegularIMP into nondeterministic-finite au-
tomata (NFA) (§6).

– We present a translation from a regular expression into RegularIMP (§7).
– We introduce RegularC, a compiler-based framework to study computability,

written in OCaml, and discuss some implementation details (§8).

The remainder of our paper is as follows. Section 2 details the state of the
art, Section 3 overviews our approach, and Section 9 concludes our paper.

2 Related Work

Graphical FLA workbenches One effective way to teach students about FLA is
with interactive editors. JFLAP [9, 19], OpenFLAP [14], ComVis [10], and
JCT [18] allow declaring, visualizing, and exercising the inputs of automata.
RegeXex [3] is an interactive system to help students write regular expressions,
by providing examples about which strings are not being matched and which
strings should be matched. GUItar [1] provides a GUI to interactively draw
state diagrams and export the automaton to multiple well known file formats.

Application Programming Interface (API) Another approach to teaching FLA is
to offer a programming interface. Students can program design an automaton or
a regular expression using a programming language and then apply common op-
erations and transformations. There are many works for symbolic manipulation
of FLA with an API [4, 15, 16, 17, 21, 22, 23].

1 https://gitlab.com/umb-svl/regular-c

https://gitlab.com/umb-svl/regular-c


Language-based approaches While our approach is to offer a programming model
that can express regular languages, other works directly offer a domain-specific
language to declare an automaton. Knuth and Bigelow introduce a program-
ming language to program a stack automaton [11]. Chakraborty et al. develop a
toolkit that takes an automaton specification language called Finite Automaton
Description Language (FADL) and offers simulation and conversion to different
kinds of automata. Cogumbreiro and Blike present a domain-specific language
to style and visualize automata [5].

3 Programs to discuss FLA

In this section we motivate the use of programs and program behavior to discuss
FLA, with an emphasis on using imperative programs to describe regular lan-
guages. We also motivate the design principles behind our calculus, RegularIMP,
by means of examples.

Figure 1 lists a C program that reads a string from the standard input and
returns true if, and only if, the last character of the input is ’0’. Note how Fig-
ure 1 relies only on features taught at the introductory-level of any programming
course. An FLA instructor can use the program in Figure 1 to:

– ask the student to reason about the set of all possible outputs given an input;
– ask the student to reason about the set of all possible inputs given an output;
– visually illustrate the behavior of programs, as depicted by the state diagram

in Figure 1;
– motivate the use of regular expressions and finite automata as a concise

description of program behavior (and consequently of formal languages);
– show that the techniques we use to debug programs are same techniques we

use to prove the correctness of programs (i.e., reasoning about the set of
possible inputs and outputs);

Figure 2 lists a program that only executes successfully, that is, without
aborting, when the last character of the input is ’0’. Importantly, the program
may abort even when the last character of the input is ’0’, unlike the program
in Figure 1. An instructor can compare both programs and reflect on a key
difference between a deterministic finite automaton and a nondeterministic finite
automaton: in the former there is a single path (derivation) per input; in the
latter there may exist multiple paths (derivation) per input.

The program in Figure 1 is more realistic than Figure 2. It is more common
to use the return keyword to communicate the success of a computation instead
of assert. Moreover, Figure 2 may fail even with a “good” input. However, if we
only consider the set of “successful” computations, then both programs accept
the same inputs. Since this paper focuses on introducing a small calculus, called
RegularIMP, that can express a regular language, and since formalizing assert

leads to fewer rules than formalizing return, our paper focuses on the style of
programs given in Figure 2.



1 #include <stdbool.h>

2 #include <stdio.h>

3 int main() {

4 int i;

5 i = getchar ();

6 while(i != EOF) {

7 if (i == ’0’) {

8 i = getchar ();

9 if (i == EOF) {

10 return true;

11 }

12 } else {

13 i = getchar ();

14 }

15 }

16 return false;

17 }

q0 q1
0

0, 1

Fig. 1. On the left-hand side, we list a C program that returns true only when the
last character of the standard input is ’0’. Function getchar reads a character from
the standard input. Constant EOF denotes that the there are no more characters avail-
able in the standard input. On the right-hand side, we depict a state diagram of a
nondeterministic diagram that recognizes the set of strings that end with character 0.

4 Syntax

Figure 3 introduces the syntax of expressions and statements. Let Σ be a set
of atoms.2 Let c range over the set Σ ∪ {⊥} such that ⊥ /∈ Σ, where ⊥ de-
notes the end of the input. The syntax of expressions e ∈ E consists of: a
boolean b ∈ {tt, ff}, the conjunction operator, the disjunction operator; i = c
tests whether a global variable i equals some character c; rnd yields a ran-
dom boolean. The syntax for a statement s is as follows. Statement i ← read

consumes one character from the input and assigns global variable i to the con-
sumed character. An assert(e) aborts when expression e evaluates to false. The
remaining statements are standard in imperative programming languages.

Example 1 (Statement that consumes strings that terminate with 0).

while(rnd){i← read}; assert(i = 0); i← read; assert(i = ⊥)

In Example 1, we rewrite the code in Figure 2 using our syntax. State-
ment while(rnd){i← read} consumes an arbitrary number of characters from
the input, as rnd returns a random boolean each time it is evaluated. At each
iteration the assignment overwrites variable i and consumes another character

2 Note that the abstract syntax of RegularIMP differs considerably from the concrete
syntax of C listed in Section 3.



1 #include <stdio.h>

2 #include <assert.h>

3 int main() {

4 int i;

5 while(rand() % 2) {

6 i = getchar ();

7 }

8 assert(i == ’0’);

9 i = getchar ();

10 assert(i == EOF);

11 }

Fig. 2. A C program executes successfully only when character ’0’ appears in the
last position of the input. Expression rand() % 2 returns a random boolean. Func-
tion assert aborts the program execution when the given expression returns false.

e ::= b | i = c | rnd | not(e) | and(e, e) | or(e, e)
s ::= i← read | assert(e) | s; s | if(e){s}el{s} | while(e){s}

Fig. 3. Syntax of expressions and statements.

from the input. After the loop terminates, we ensure that the last read is 0.
Finally, we read another character and ensure that the input is empty.

5 Semantics

In this section we give a semantics for expressions and another for statements.
The semantics for statements captures consuming the input.

Expressions In Figure 4, we give a big-step operational semantics of expressions
with judgement (e, c) ⇓ b where given an expression e and a character c (the state
of variable i), we obtain a boolean b. The rules are straightforward. A boolean b
evaluates to itself. Rules char-eq states that when the state of i is c and we
are testing i against c, then the test yields true. Otherwise (Rule char-neq),
the expression yields false. Expression rnd returns an arbitrary boolean b, which
makes the semantics of expressions nondeterministic. The negation, conjunction,
and disjunction are straightforward.

Statements Figure 5 introduces the semantics of statements. Let I ::= [] | c :: I
denote a sequence of characters where [] denotes an empty sequence and c :: I
denotes adding a character c to sequence I. We say that statement s takes (c, I)
and outputs (c′, I ′), notation (s, c, I) ⇓ (c′, I ′), where character c represents the
state of i, sequence of characters I represents the input available, character c′



bool

(b, c) ⇓ b

char-eq

(i = c, c) ⇓ tt

char-neq
c1 ̸= c2

(i = c2, c1) ⇓ ff

flip
b ∈ {tt, ff}
(rnd, c) ⇓ b

not
(e, c) ⇓ b

(not(e), c) ⇓ ¬b

and
(e1, c) ⇓ b1 (e2, c) ⇓ b2

(and(e1, e2), c) ⇓ b1 ∧ b2

or
(e1, c) ⇓ b1 (e2, c) ⇓ b2

(or(e1, e2), c) ⇓ b1 ∨ b2

Fig. 4. Semantics of expressions (e, c) ⇓ b .

read-1

(i← read, c1, c2 :: I) ⇓ (c2, I)

read-2

(i← read, c, []) ⇓ (⊥, [])

assert
(e, c) ⇓ tt

(assert(e), c, I) ⇓ (c, I)

seq
(s1, c1, I1) ⇓ (c2, I2) (s2, c2, I2) ⇓ (c3, I3)

(s1; s2, c1, I1) ⇓ (c3, I3)

if-t
(e, c1) ⇓ tt (s1, c1, I1) ⇓ (c2, I2)

(if(e){s1}el{s2}, c1, I1) ⇓ (c2, I2)

if-f
(e, c1) ⇓ ff (s2, c1, I1) ⇓ (c2, I2)

(if(e){s1}el{s2}, c1, I1) ⇓ (c2, I2)

while-t
(e, c1) ⇓ tt (s; while(e){s}, c1, I1) ⇓ (c2, I2)

(while(e){s}, c1, I1) ⇓ (c2, I2)

while-f
(e, c) ⇓ ff

(while(e){s}, c, I) ⇓ (c, I)

Fig. 5. Semantics for statements (s, c, I) ⇓ (c, I) .

represents the next state of i, and, finally, sequence I ′ represents the remaining
input. Rule read-1 states that when the input is c2 :: I where first character
of the input is character c2, we assign i to c2 setting the remaining input as I.
Rule read-2 governs that when the input is empty [], then we assign i to ⊥,
leaving the input unchanged. The semantics allows for multiple reads after the
input is empty. Rule assert only executes assert(e) when expression e evaluates
to tt. Rule seq proceeds as usual, sequencing s1 amounts to executing s1 and
obtaining a character c2 and an input I2 that is then used to execute s2. Rule if-
t executes the body of the conditional s1 when condition e evaluates to true;
otherwise, executes s2 (Rule if-f). Similarly, Rule while-t unfolds the loop
body s when the condition of a loop e evaluates to tt; otherwise, when e evaluates
to ff the value of i and the input is left unchanged.



For instance, we have that while(rnd){i← read} takes (⊥, [1, 0]) and out-
puts (0, []).

(i← read,⊥, [1, 0]) ⇓ (1, [0])

· · ·
(while(rnd){i← read}, 1, [0]) ⇓ (0, [])

(i← read; while(rnd){i← read},⊥, [1, 0]) ⇓ (0, [])

(while(rnd){i← read},⊥, [1, 0]) ⇓ (0, [])
(1)

Additionally, we have that

(i = 0, 0) ⇓ tt
(i← read, 0, []) ⇓ (⊥, [])

(i = ⊥,⊥) ⇓ tt
(assert(i = ⊥),⊥, []) ⇓ (⊥, [])

(i← read; assert(i = ⊥), 0, []) ⇓ (⊥, [])
(assert(i = 0); i← read; assert(i = ⊥), 0, []) ⇓ (⊥, [])

(2)
Thus, we can show that our running example consumes (⊥, [1, 0]) and out-
puts (⊥, []).

(while(rnd){i← read},⊥, [1, 0]) ⇓ (0, [])
(assert(i = 0); i← read; assert(i = ⊥), 0, []) ⇓ (⊥, [])

(while(rnd){i← read}; assert(i = 0); i← read; assert(i = ⊥),⊥, [1, 0]) ⇓ (⊥, [])
(3)

We are now ready to define the notion of accepting an input. A statement s
accepts an input I, which starts with i assigned to ⊥, and outputs some char-
acter c and some input I ′.

Definition 1 (Accepting input). We say that statement s accepts input I if
(s,⊥, I) ⇓ (c, I ′) holds for some I ′ and c.

From Equation (3), we have that our running example accepts input [1, 0].
Importantly, accepting an input does not require the consumption of that input,
i.e., it is easy to show that statement assert(tt) accepts any input without
consuming any characters.

6 From RegularIMP to NFA

To translate a RegularIMP program into an NFA, we start from a graph-representation
of RegularIMP known as a control-flow graph (CFG). Deriving a CFG directly
from the semantics in Figure 5 is beyond the scope of this paper; we refer the
reader to some recent developments of this approach in [12].

6.1 Control-flow Graphs

A CFG is a labelled and directed graph G = (V,Σ,A, v0, B, F ) that consists of
a nonempty finite set of vertices V , a finite set of the alphabet Σ, a finite set
of arcs A, an initial vertex v0, a set of branch vertices B (where B ⊆ V ), and a



vs vw va1

vr1

vr2 va2 ve
ϵ not(rnd)

rndtt

i = 0 tt i = ⊥

Fig. 6. A CFG of our running example.

set of return vertices F (where F ⊆ V ). Let v range over the set of vertices V,
where V ⊆ V. An arc a = (v, l, v′) is directed from the head v to the tail v′

and labelled by l We have that meta-variable l ranges over set E ∪{ϵ} (either an
expression or ϵ). A branch-vertex v ∈ B is either: an if, a while, or an assert.

Figure 6 illustrates a CFG of our running example. A vertex with an incoming
arrow denotes the initial node (vs). Vertices with a diamond shape are branch
vertices. Vertex vw represents the while loop. Vertex vr1 represents the loop
body i ← read. Vertex va1 represents assert(i = 0). Vertices with a double-
circle are final, for instance, ve. The labels define the conditions that allow the
execution to go from one state to another. An ϵ allows linking the initial vertex
to multiple vertices — much like what we have with finite automata. In Figure 6,
the initial vertex vs only links to vw, which signifies that the execution effectively
starts at vw. Every other edge is labelled with an expression e. We use tt to
signify an unconditional transition. For instance, the loop body vr1 continues
unconditionally to the beginning of the loop vw, so we have a label tt.

We now detail the transformation from a CFG into a normalized CFG which
removes all branch vertices. Let A|v select every arc that mentions vertex v,
defined as

A|v = {(v1, l, v2) | (v1, l, v2) ∈ A ∧ (v1 = v ∨ v2 = v)}

Let skip(A, v) return the set of all arcs that skip v. The intuition is if v1 arrives
at v with label l1, and v2 departs from v with label l2, then we generate an arc
that connects v1 to v2 with a conjunction of both labels l1 and l2.

skip(A, v) = {(v1, and⋆(l1, l2), v2) | (v1, l1, v) ∈ A ∧ (v, l2, v2) ∈ A}
and⋆(e1, e2) = and(e1, e2)

and⋆(ϵ, l) = and⋆(l, ϵ) = l

Finally, we introduce a recursive definition of the normalization of CFGs that
iteratively removes each branch vertex until there are none left.

norm((V,Σ,A, v0, ∅, F )) = (V,Σ,A, v0, ∅, F )

norm((V,Σ,A, v0, B, F )) = norm(V \ {v}, Σ,A′, v0, B \ {v}, F ) if v ∈ B

where A′ = A \A|v ∪ skip(A, v)

For instance, given the CFG in Figure 6 we obtain the normalized CFG
illustrated in Figure 7. Note that vertex ve is an unreachable state in the resulting
NFA. Unreachable states are not depicted in state diagrams.



vs

vr1

vr2 ve
and(not(rnd), i = 0)

rnd and(and(tt, not(rnd)), i = 0)

and(tt, rnd)

and(tt, i = ⊥)

Fig. 7. A normalized CFG of our running example.

vs

vr1

vr2
0

0, 1 0

0, 1

Fig. 8. An NFA of our running example where Σ = {0, 1}.

6.2 Generating a Nondeterministic Finite Automaton

We are now ready to define a function that translates a normalized CFG into
a Nondeterministic Finite Automaton (NFA). We follow the usual notion of an
NFA [20]. An NFA is defined as N = (V,Σ, δ, v0, F ) where V is a finite set
of states, Σ is the finite alphabet of the NFA, δ : V × (Σ ∪ {ϵ}) 7→ P(V ) is a
transition function, v0 ∈ V is the initial state, and F ⊆ V is the set of final
states, where P(·) is the power set function.

Function [[G]] takes as input a normalized CFG G and outputs an NFA N ,
defined as follows. Any arc (v1, e, v2) where the labelled expression e evaluates
to true when i = c is a transition in N . There is a self transition in N for any
return vertex v1 ∈ F in the CFG. Any arc in the CFG labelled with an ϵ becomes
an ϵ-transition in N . Any final vertex in the CFG is a final state in the NFA.
Additionally, any read vertex v1 that reaches a final vertex v2 ∈ F is also a final
state in N when its expression e evaluates to true when i = ⊥.

[[(V,A, v0, ∅, F )]] = (V,Σ, δ, v0, F
′)

where δ(v1, c) = {v2 | (v1, e, v2) ∈ A ∧ c ∈ Σ ∧ (e, c) ⇓ tt} ∪ ({v1} ∩ F )

δ(v1, ϵ) = {v2 | (v1, ϵ, v2) ∈ A}
F ′ = F ∪ {v1 | v2 ∈ F ∧ (v1, e, v2) ∈ A ∧ (e,⊥) ⇓ tt}

Figure 8 is known as a state diagram and depicts the NFA that results from
translating the normalized CFG in Figure 7.



7 From Regular Expressions to RegularIMP

We introduce a translation from regular expressions into statements of Regu-
larIMP. Let the following define the syntax of regular expressions.

R ::= ϵ | c | ∅ | R+R | R ·R | R⋆

We have ϵ denote the empty string, c denote the string with a single charac-
ter c, ∅ rejects all strings, R1 + R2 (set union) accepts any string from R1 and
from R2, R1 · R2 concatenates any string accepted by R1 with the strings ac-
cepted by R2, finally, R

⋆ denotes the Kleene star operator. We now define a
translation function [[·]] from regular expression R into statements s.

[[ϵ]] = assert(tt)

[[c]] = i← read; assert(i = c)

[[∅]] = assert(ff)

[[R1 +R2]] = if(rnd){[[R1]]}el{[[R2]]}
[[R1 ·R2]] = [[R1]]; [[R2]]

[[R⋆
1]] = while(rnd){[[R]]}

We have that ϵ yields the program that leaves its input intact. When translating c
the program reads one character and ensures that c is read. We translate ∅ by
aborting the computation. Union becomes a conditional on an arbitrary boolean.
Concatenation of regular expressions becomes the sequencing. Finally, the Kleene
star operator becomes a loop runs an arbitrary number of iterations.

Given that the semantics of RegularIMP accepts any input even without con-
suming it, we must ensure that after translating a regular expression with [[·]]
we reach the end of the input. Thus, we introduce function rex(·) that takes a
regular expression and produces a statement that recognizes the same inputs.

rex(R) = [[R]]; i← read; assert(i = ⊥)

We conclude by showing the translation of a regular expression that also
accepts inputs that end with 0, i.e., our running example.

rex((0 + 1)⋆ · 0)
=[[(0 + 1)⋆ · 0]]; expect(⊥)
=[[(0 + 1)⋆]]; [[0]]; expect(⊥)
=while(rnd){[[(0 + 1)]]}; expect(0); expect(⊥)
=while(rnd){if(rnd){[[0]]}el{[[1]]}}; expect(0); expect(⊥)
=while(rnd){if(rnd){expect(0)}el{expect(1)}}; expect(0); expect(⊥)
where expect(c) = i← read; assert(i = c)



8 RegularC: a framework to study computability

In this section, we discuss our tool RegularC that takes as an input a RegularIMP
statement and allows students to visualize its behavior. Our tool implements the
translation presented in Section 6 as a compiler, a pipeline of transformations
takes a RegularIMP statement as input and outputs a nondeterministic finite
automaton. RegularC implements the following pipeline:

1. transform a statement into a control-flow graph
2. normalize a control-flow graph
3. for each arc remove rnd
4. for each arc replace i = ⊥ by ff; add accepting nodes that result from i = ⊥
5. converts each expression without rnd and i = ⊥ into a set of characters

(which represents the characters of a state transition)

Students can visualize any step of the pipeline, Steps (1–4) are variations of a
control-flow graph, Step (5) outputs a state diagram of the automaton. Step (2)
implements function norm(G). Steps (3–5) implement [[G]], each step gradually
transforms the CFG until we obtain the finite automaton.

The main challenge of implementing [[G]] stems from the generation of non-ϵ
transitions, that we recall below:

δ(v1, c) = {v2 | (v1, e, v2) ∈ A ∧ c ∈ Σ ∧ (e, c) ⇓ tt} ∪ ({v1} ∩ F )

Proposition (e, c) ⇓ tt evaluates nondeterministically, due to rnd, so an imple-
mentation must decide if there is at least one derivation that returns tt. Step (3)
replaces each expression e in the CFG by a simpler expression e′ that can be
evaluated deterministically, where (e, c) ⇓ tt ⇐⇒ (e′, c) ⇓ tt for any c.

Step (3) implements the simplification of expressions with remove_rnd. Func-
tion iter generates a sequence of expressions, one per valuation of rnd, which
are combined with a disjunction by function remove_rnd.

1 let remove_rnd e =

2 let rec iter =

3 function

4 | b -> List.to_seq [b]
5 | i = c -> List.to_seq [i = c]
6 | rnd -> List.to_seq [tt; ff]

7 | not(e) -> iter e |> Seq.map (fun e′ -> not(e′))
8 | and(e1, e2) -> Seq.product (iter e1) (iter e2)
9 |> Seq.map (fun (e′1, e

′
2) -> and(e′1, e

′
2))

10 | or(e1, e2) -> Seq.product (iter e1) (iter e2)

11 |> Seq.map (fun (e′1, e
′
2) -> or(e′1, e

′
2))

12 in

13 iter e |> Seq.fold_left (fun (e′1 e′2) -> or(e′1, e
′
2))) ff

For instance, remove_rnd and(i = c, rnd) outpus or(and(i = c, tt), and(i = c, ff)).
It is important to note that after Step (3), since rnd is absent, the imple-

mentation of (e, c) ⇓ tt becomes straightforward:



1 let rec eval_true c =

2 function

3 | b -> b
4 | i = c′ -> c = c′

5 | not(e) -> not (eval_true e)
6 | and(e1, e2) -> eval_true e1 && eval_true e2
7 | or(e1, e2) -> eval_true e1 || eval_true e2

9 Conclusion and Future Work

We present RegularIMP, a core imperative calculus that expresses regular lan-
guages. We introduce the syntax and operational semantics of RegularIMP. To
establish that RegularIMP is indeed able to describe regular languages, we give
a translation function to convert a statement of RegularIMP into an equivalent
nondeterministic finite automaton, and from a regular expression to a Regu-
larIMP statement. We present RegularC, an implementation of the translation
written in OCaml that allows students to visualize the behavior of RegularIMP.

Future work includes developing well known verification techniques to Regu-
larIMP, with the goal of introducing software verification to undergraduate stu-
dents. For instance, we are using RegularIMP to teach symbolic execution: we
are showing how to implement a symbolic execution engine that can execute
a RegularIMP statement. Additionally, we want to introduce model checking of
RegularIMP statements by following [7, 8].
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