
Hidden assumptions in static verification of
data-race free GPU programs

Tiago Cogumbreiro1[0000−0002−3209−9258] and Julien Lange2[0000−0001−9697−1378]

1 University of Massachusetts Boston, USA
tiago.cogumbreiro@umb.edu

2 Royal Holloway, University of London, UK
julien.lange@rhul.ac.uk

Abstract. GPUs are massively parallel devices that promise a great re-
turn of investment at a cost: GPUs are notably difficult to get right. We
discuss a static analysis tool for GPU programs, called Faial, that can
detect data-races and data-race freedom. We studied a dataset of 191
data-race free programs and found that 98% needs specific thread con-
figuration to be analyzable, and that 27% needs user-provided assertions
to be analyzable. We also report that Faial was able to find data-races
in at least 92% of the kernels with missing assumptions.

1 Introduction

For the last 20 years, Vivek Sarkar has been studying the problem of analyz-
ing a data-races in parallel programs both statically [6, 29–32] and dynami-
cally [8, 12, 17, 27, 28, 33]. A data-race is a bug characterized by two unsynchro-
nized memory accesses targeting the same location by different threads, where
at least one access is a store. This paper focuses on data-races that arise in the
context of GPU programs (also called kernels). GPUs have been widely success-
ful in propelling the scientific advancement of a series of research fields, such as
Artificial Intelligence, Machine Learning, molecular modeling, systems biology,
and medical imaging.

Data-race detection is a program verification technique that proves the exis-
tence of a data-race in a possible run of a program. The most common approach
to detect data-races is with dynamic analysis, by monitoring the execution of
the program to find data-races. Many dynamic analysis techniques have been
proposed [13, 16, 18, 23, 25, 35, 36]. However, since the runtime overhead of dy-
namic analysis is of 10× up to 1,000× and require the program’s input, dynamic
analysis is more applicable to testing. Symbolic execution and model checking
can be used to detect data-races without needing the program’s input, however
the overheads can be even higher due to the state explosion problem [21, 22, 26].

Data-races can also be detected statically, thus sidestepping the runtime
overheads. Data-race freedom (DRF) detectors for GPU programs [4, 5, 9, 10,
19, 20] can guarantee that a program is free from data-races, in the analysis
of GPU programs. When a DRF detector is unable to prove that a program is

2 Tiago Cogumbreiro and Julien Lange

__global__ void saxpy(int n, float a, float *x, float *y) {
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

Fig. 1: A simple GPU program.

DRF, it generates an alarm that represents a potential data-race, i.e., alarms
may be spurious. Such techniques can be used to find data-races, by manually
validating the alarms. Yet, since these tools are unable to guarantee that the
alarms are true, we do not consider this family of tools to be data-race detectors.
To the best of our knowledge, and excluding symbolic execution and model
checking approaches, Yuki et al. were among the first to introduce a static race
detector [34], for X10 programs. Chatarasi et al. proposed the first static race
detector for OpenMP and openACC [7], Gorogiannis et al. introduce the first
static race detector for multithreaded programs [14], and Liew et al. introduce
the first static race detector for GPU programs [24].

In this paper we evaluate Faial [24], a data-race and DRF detector for GPU
programs. We investigate how different features of the analysis affect DRF de-
tection in a dataset that only contains data-race free kernels. We also investigate
whether the tool can report data-races when it lacks information to prove DRF.

The outline of this paper is as follows. Section 2 gives some background by
introducing GPU programming as well as discussing implicit assumptions that
are needed to prove DRF. Section 3 introduces and tests our research questions.
Finally, Section 4 summarizes our findings.

2 Background

In this section, we give a quick background on GPU programming. We then show
that even trivial GPU programs include multiple implicit assumptions.

2.1 GPU programming

SAXPY (Single-Precision A ·X Plus Y) is a classic example that showcases the
kind of numeric applications that run on GPU devices. Given two vectors of
floating points X and Y and a scalar A the program updates vector Y such
that Y [i] stores the result of A · X[i] + Y [i] for each element i. A SAXPY op-
eration can be implemented as a GPU program in Figure 1. In this paper we
use the CUDA Application Programming Interface (API); the same concepts
apply to other GPU programming models. A GPU executes function saxpy for
a certain number of threads arranged in groups. Each group of threads is called a
block. The threads of a block are logically arranged in a 3-D space, each thread is
uniquely identified by a 3D point accessible with variable threadIdx. The set of

Hidden assumptions in static verification of data-race free GPU programs 3

all blocks is also logically arranged in a 3-D space, each block is uniquely identi-
fied with a 3-D point accessible with variable blockIdx. The number of threads
per block, i.e., the block layout, is accessible in variable blockDim. The number
of blocks in the system are given by variable gridDim. A GPU program runs a
copy of function saxpy per thread in parallel, instantiating variables threadIdx
and blockIdx for each thread. Variable i represents a unique thread across all
groups, since it projects the x-component of variables blockIdx with threadIdx
onto a linear space. A thread configuration is defined as the number of blocks
and the number of threads per block.

When a kernel is data-race free only under certain assumptions we call that
kernel partially data-race free. For instance, the example in Figure 1, taken from
a tutorial on CUDA programming [15], is partially data-race free. Next, we show
two assumptions that render Figure 1 partially data-race free: thread configura-
tions, and grid-level synchronization.

Ranging over all thread configurations. The statement that variable i is
unique thread across all groups only holds when there is only one dimension
in the y and z axis. Hence, a data-race exists between thread threadIdx =
{x = 0, y = 1, z = 1} and threadIdx = {x = 0, y = 0, z = 0} both from
block blockIdx = {x = 0, y = 0, z = 0} for a block blockDim = {x = 1, y =
2, z = 2}, i.e., 2 × 2 threads in the y-z axis. The data-race occurs because the
projection in variable i assumes that all threads are arranged in dimension x,
yet a data-race can occur if there are threads in dimensions y and z. We can add
an assertion to make this fact explicit:
__assume(blockDim.y == 1 && blockDim.z == 1);

Grid-level synchronization. The distinction between block-level and grid-
level analysis is important to the analysis, because different kinds of mem-
ory can be shared at different levels, and also synchronization mechanisms are
available at different levels. If we consider data-races across different blocks,
then another data-race is possible. For instance, between thread threadIdx =
{x = 0, y = 0, z = 0} of block blockIdx = {x = 0, y = 0, z = 0} and
thread threadIdx = {x = 0, y = 0, z = 0} of block blockIdx = {x = 0, y =
1, z = 1}. We can add an assertion to make the data-race freedom assumption
explicit: __assume(gridDim.y == 1 && gridDim.z == 1);

We list the kernel with both user-provided assertions that are needed to prove
data-race freedom in Figure 2.

3 Evaluation

Faial is the only tool capable of data-race and data-race-freedom detection. Given
a data-set of kernels identified as data-race free, we pose two research questions:

RQ1: Which analysis features affect partial data-race freedom? We select dif-
ferent features and measure how many kernels cannot be analyzed to under-
stand the impact each feature has in this dataset.

4 Tiago Cogumbreiro and Julien Lange

__global__ void saxpy(int n, float a, float *x, float *y) {
__assume(blockDim.y == 1 && blockDim.z == 1);
__assume(gridDim.y == 1 && gridDim.z == 1);
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

Fig. 2: A simple example with user-provided assumptions.

RQ2: Can static data-race detection help with missing assumptions? In the
context of this experiment, racy kernel indicate missing assumptions. Since
Faial is not guaranteed to find every possible data-race, we want to test if
we can use Faial to detect data-races in kernels with missing assumptions.

Both research questions consider 5 experiments. Each experiment runs Faial on
the same 191 kernels with different analysis settings. The tool can report that
the kernel is data-race free, racy, or timeout.

Data selection. The dataset we use is taken from a benchmark suite of GPU
kernels [2]. The dataset is well studied as it has been used in multiple published
papers on static analysis of data-races in GPU kernels [2, 9, 10, 24]. The dataset
consists of CUDA kernels from 4 benchmark suites: NVIDIA GPU Computing
SDK v2.0 (8 kernels), NVIDIA GPU Computing SDK v5.0 (165 kernels), Mi-
crosoft C++ AMP Sample Projects (20 kernels), gpgpu-sim benchmarks [1] (33
kernels). Every kernel is annotated with verification-specific conditions: a thread
configuration and optionally user-provided assumptions.

We pick 191 kernels that are deemed data-race free by Faial. Some ker-
nels include user-provided assertions created by the authors of the dataset [2].
Most commonly, the user-provided assertions are stating that a certain variable
has fixed value, for instance that the height of a matrix is of some arbitrary
size, say 512. Importantly, the user-provided assertions are not constraining the
thread configurations, e.g., like we did in Figure 2.

3.1 RQ1: Which analysis features affect partial data-race freedom?

Table 1 lists the 5 experiments that were performed according to the output of
the analysis, data-race free, racy, or timeout.

Discussion. Experiment 1 is our baseline, since all kernels can be checked as
data-race free, yet note that grid-level analysis is not performed. In experiment 2,
we enable grid-level analysis and note that Faial is unable to analyze 5 kernels.
Faial delegates a step of data-race freedom analysis (index equality) to the Z3 [11]
Satisfiability Modulo Theories (SMT) solver. We are able to verify all kernels
by setting the SMT solver’s theory to AUFLIA, which assumes closed formulas

Hidden assumptions in static verification of data-race free GPU programs 5

Table 1: Column Id holds an identifier of the experiment. Column Block states
whether block-level synchronization is checked. Column Grid states whether grid-
level synchronization is checked. Column Assert states whether user-provided as-
sertions are used. Column FixThr states whether a fixed thread configuration is
used. Column DRF counts the kernels identified as data-race free. Column Racy
counts the kernels identified as racy. Column Unk counts the kernels where the
analysis is unable to detect data-race freedom nor data-races. Column T/O
counts the kernels where the analysis timed out. We include the percentage
of kernels over the total number of kernels under analysis.

Id Block Grid Assert FixThr DRF (%) Racy (%) Unk (%) T/O (%)

1 Y N Y Y 191 100% 0 0% 0 0% 0 0%
2 Y Y Y Y 186 97% 0 0% 0 0% 5 3%
3 Y N N Y 139 73% 49 26% 3 2% 0 0%
4 Y N Y N 3 2% 173 91% 15 8% 0 0%
5 Y Y N N 2 1% 173 91% 13 7% 3 2%

of linear integer arithmetic extended with free sort and function symbols. In ex-
periment 3, we disable user-provided assertions. Only 26% of the kernels require
user-provided annotations to prove data-race freedom.

In experiment 4, we range over all possible thread configurations, rather than
using a specific thread configuration. Almost every kernel under analysis (98%)
expects a specific thread configuration. Faial would be able to analyze many more
kernels fully automatically if it could extract the thread configuration present
in the kernel launching codes. Bardsley et al. have explored a dynamic analysis
technique that extracts the runtime parameters of kernel launches [3].

In experiment 5, we enable grid-level analysis, disable user-provided asser-
tions, and range over all possible thread configurations. We find that there are
only 2 kernels that are fully data-race free, regardless of the thread configura-
tion and without requiring any user assertions. In one kernel, the only memory
accesses are atomics that do not introduce data-races. Atomics are supported by
Faial. In the other kernel, the only write access is a benign data-race ignored by
Faial. Benign data-races occur when both threads write the same value. Benign
data-races are not considered errors. Faial can flag benign data-races as errors if
the user chooses.

3.2 RQ2: Can data-race detection help with missing assumptions?

In this research question we examine kernels that are not considered data-race
free by Faial, so either racy, unknown, or have a timeout. We assess whether
our tool can detect data-races when there are missing assumptions, e.g., absent
thread configuration.

Discussion. The results in Table 2 show that the vast majority of kernels (91%)
with missing assumptions can be detected by Faial. In our experience, having

6 Tiago Cogumbreiro and Julien Lange

Table 2: Column Id holds an identifier of the experiment. Column Block states
whether block-level synchronization is checked. Column Grid states whether grid-
level synchronization is checked. Column Assert states whether user-provided
assertions are used. Column FixThr states whether a fixed thread configuration
is used. Column Racy/Non-DRF gives the proportion of number of kernels with
data-races detected versus the total number of kernels that are not data-race
free. Column % gives the percentage of Racy/Non-DRF.

Id Block Grid Assert FixThr Racy/Non-DRF %

3 Y N N Y 49/52 94%
4 Y N Y N 173/188 92%
5 Y Y N N 173/189 92%

a static data-race detector has been quite effective to figuring out the correct
analysis settings. In contrast, when relying on the alarms of a data-race-freedom
detector, there is always uncertainty whether there is an actual data-race or a
spurious one.

3.3 Bugs found

In the course of writing this paper, we discovered bugs in the dataset and in Faial.
We added assumptions and changed the thread configurations of 4 kernels, since
these triggered data-races when grid-level analysis was enabled. In 3 kernels we
had to reduce the level of parallelism, by decreasing the number of thread blocks.
In 1 kernels, we added a user-provided assumption, a constraint of a template
parameter that was mentioned as a source comment, yet absent. We excluded
6 kernels from our evaluation that were being considered fully data-race free
by Faial, although they are not. Two C++ features are currently unsupported
by Faial: array addresses being incremented in a loop3 (affected 3 kernels), and
references as function parameters4 (affected 3 kernels). Since it is quite rare for
a kernel to be fully data-race free, experiment 5 proved as an effective sanity
check to exercise the correctness of Faial.

4 Conclusion

In this paper we measured the effect of multiple analysis features when detecting
data-race freedom statically, in a dataset of 191 data-race free kernels. We found
that 98% of the kernels needed a specific thread configuration to be analyzable
and that only 27% of the kernels needed user-provided assertions. These results
suggest that to enable a fully automatic static analysis, these tools need to be
able to infer valid thread configurations. We also showed that the static race de-
tection of Faial was able to find data-races in at least 92% of the kernels studied.
3 https://gitlab.com/umb-svl/faial/-/issues/117
4 https://gitlab.com/umb-svl/faial/-/issues/113

https://gitlab.com/umb-svl/faial/-/issues/117
https://gitlab.com/umb-svl/faial/-/issues/113

Hidden assumptions in static verification of data-race free GPU programs 7

The static race detector also helped us identify incorrect thread configurations
and missing user-provided assumptions in 4 kernels. Finally, we identified two ar-
eas of improvement for Faial: 6 kernels were excluded from the evaluation due to
limitations of the tool (arrays being updated in loops and references as function
parameters), and setting Faial’s default SMT theory to AUFLIA fixed 5 timeouts.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. 2204986. We thank Francis Alcos, Gregory Blike,
Ayden Diel, Samyak Gangwal, Austin Guiney, Ramsey Harrison, Paul Maynard, Udaya
Sathiyamoorth, and Hannah Zicarelli for their contributions to Faial.

Bibliography

[1] Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: An-
alyzing CUDA workloads using a detailed GPU simulator. In: Proceed-
ings of ISPASS. pp. 163–174. IEEE, Piscataway, NJ, USA (2009). https:
//doi.org/10.1109/ISPASS.2009.4919648

[2] Bardsley, E., Betts, A., Chong, N., Collingbourne, P., Deligiannis, P., Don-
aldson, A.F., Ketema, J., Liew, D., Qadeer, S.: Engineering a static ver-
ification tool for GPU kernels. In: Proceedings of CAV. vol. 8559, pp.
226–242. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/
978-3-319-08867-9_15

[3] Bardsley, E., Donaldson, A.F., Wickerson, J.: KernelInterceptor: Automat-
ing GPU kernel verification by intercepting kernels and their parameters.
In: Proceedings of IWOCL. pp. 1–5. ACM, New York, NY, USA (5 2014).
https://doi.org/10.1145/2664666.2664673

[4] Betts, A., Chong, N., Donaldson, A.F., Ketema, J., Qadeer, S., Thomson, P.,
Wickerson, J.: The design and implementation of a verification technique
for GPU kernels. Transactions on Programming Languages and Systems
37(3), 1–49 (2015). https://doi.org/10.1145/2743017

[5] Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVer-
ify: a verifier for GPU kernels. In: Proceedings of OOPSLA. pp. 113–132.
ACM, New York, NY, USA (2012). https://doi.org/10.1145/2384616.
2384625

[6] Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral
model for SPMD programs and its use in static data race detection. In:
Proceedings of LCPC. LNCS, vol. 10136, pp. 106–120. Springer (2016).
https://doi.org/10.1007/978-3-319-52709-3_10

[7] Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral
model for SPMD programs and its use in static data race detection. In:
Proceedings of LCPC’16. pp. 106–120. Springer, Berlin, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-52709-3_10

[8] Choi, J., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.:
Efficient and precise datarace detection for multithreaded object-oriented
programs. In: Proceedings of PLDI. pp. 258–269. ACM (2002). https://
doi.org/10.1145/512529.512560

[9] Cogumbreiro, T., Lange, J., Liew Zhen Rong, D., Zicarelli, H.: Memory ac-
cess protocols: Certified data-race freedom for GPU kernels. FMSD (2023).
https://doi.org/10.1007/s10703-023-00415-0

[10] Cogumbreiro, T., Lange, J., Rong, D.L.Z., Zicarelli, H.: Checking data-
race freedom of GPU kernels, compositionally. In: Proceedings of CAV.
LNCS, vol. 12759, pp. 403–426. ACM, New York, NY, USA (2021). https:
//doi.org/10.1007/978-3-030-81685-8_19

[11] De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of
TACAS. pp. 337–340. Springer, Berlin, Heidelberg (2008)

https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1145/512529.512560
https://doi.org/10.1145/512529.512560
https://doi.org/10.1145/512529.512560
https://doi.org/10.1145/512529.512560
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19

Hidden assumptions in static verification of data-race free GPU programs 9

[12] Dimitrov, D.K., Vechev, M.T., Sarkar, V.: Race detection in two dimensions.
ACM Transactions on Parallel Computing 4(4), 1–22 (2018). https://doi.
org/10.1145/3264618

[13] Eizenberg, A., Peng, Y., Pigli, T., Mansky, W., Devietti, J.: BARRACUDA:
Binary-level Analysis of Runtime RAces in CUDA programs. In: Proceed-
ings of PLDI. pp. 126–140. ACM, New York, NY, USA (2017). https:
//doi.org/10.1145/3062341.3062342

[14] Gorogiannis, N., O’Hearn, P.W., Sergey, I.: A true positives theorem for a
static race detector. Proceedings of the ACM on Programming Languages
3(POPL), 1–29 (2019). https://doi.org/10.1145/3290370

[15] Harris, M.: An easy introduction to CUDA C and C++. https:
//developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
(2012), accessed: July 9, 2024.

[16] Holey, A., Mekkat, V., Zhai, A.: HAccRG: Hardware-accelerated data race
detection in GPUs. In: Proceedings of ICPP. pp. 60–69. IEEE, Piscataway,
NJ, USA (2013). https://doi.org/10.1109/ICPP.2013.15

[17] Jin, F., Yu, L., Cogumbreiro, T., Shirako, J., Sarkar, V.: Dynamic Deter-
minacy Race Detection for Task-Parallel Programs with Promises. In: Pro-
ceedings of ECOOP. LIPIcs, vol. 263, pp. 1–30. Schloss Dagstuhl, Dagstuhl,
Germany (2023). https://doi.org/10.4230/LIPIcs.ECOOP.2023.13

[18] Kamath, A.K., George, A.A., Basu, A.: ScoRD: A scoped race detector for
GPUs. In: Proceedings of ISCA. pp. 1036–1049. IEEE, Piscataway, NJ, USA
(2020). https://doi.org/10.1109/ISCA45697.2020.00088

[19] Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel
functions. In: Proceedings of FSE. pp. 187–196. ACM, New York, NY, USA
(2010). https://doi.org/10.1145/1882291.1882320

[20] Li, G., Gopalakrishnan, G.: Parameterized verification of GPU kernel pro-
grams. In: Proceedings of IPDPSW. pp. 2450–2459. IEEE, Piscataway, NJ,
USA (2012). https://doi.org/10.1109/IPDPSW.2012.302

[21] Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.:
GKLEE: Concolic verification and test generation for GPUs. In: Proceed-
ings of PPoPP. vol. 47, pp. 215–224. ACM, New York, NY, USA (2012).
https://doi.org/10.1145/2370036.2145844

[22] Li, P., Li, G., Gopalakrishnan, G.: Practical symbolic race checking of GPU
programs. In: Proceedings of SC. pp. 179–190. IEEE, Piscataway, NJ, USA
(2014). https://doi.org/10.1109/SC.2014.20

[23] Li, P., Hu, X., Chen, D., Brock, J., Luo, H., Zhang, E.Z., Ding, C.: LD:
Low-overhead GPU race detection without access monitoring. Transactions
on Architecture and Code Optimization 14(1), 1–25 (2017). https://doi.
org/10.1145/3046678

[24] Liew, D., Cogumbreiro, T., Lange, J.: Sound and partially-complete static
analysis of data-races in gpu programs. Proceedings of the ACM on Pro-
gramming Languages 8(OOPSLA2) (2024). https://doi.org/10.1145/
3689797

[25] Peng, Y., Grover, V., Devietti, J.: CURD: A dynamic CUDA race detector.
In: Proceedings of PLDI. pp. 390–403. ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3192366.3192368

https://doi.org/10.1145/3264618
https://doi.org/10.1145/3264618
https://doi.org/10.1145/3264618
https://doi.org/10.1145/3264618
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3290370
https://doi.org/10.1145/3290370
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://web.archive.org/web/20240321191441/https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1145/3046678
https://doi.org/10.1145/3046678
https://doi.org/10.1145/3046678
https://doi.org/10.1145/3046678
https://doi.org/10.1145/3689797
https://doi.org/10.1145/3689797
https://doi.org/10.1145/3689797
https://doi.org/10.1145/3689797
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/3192366.3192368

10 Tiago Cogumbreiro and Julien Lange

[26] Pereira, P., Albuquerque, H., Marques, H., Silva, I., Carvalho, C., Cordeiro,
L., Santos, V., Ferreira, R.: Verifying CUDA programs using SMT-based
context-bounded model checking. In: Proceedings of SAC. pp. 1648–1653.
ACM, New York, NY, USA (2016). https://doi.org/10.1145/2851613.
2851830

[27] Raman, R., Zhao, J., Sarkar, V., Vechev, M.T., Yahav, E.: Efficient data race
detection for async-finish parallelism. Formal Methods in System Design
41(3), 321–347 (2012). https://doi.org/10.1007/S10703-012-0143-7

[28] Raman, R., Zhao, J., Sarkar, V., Vechev, M.T., Yahav, E.: Scalable and pre-
cise dynamic datarace detection for structured parallelism. In: Proceedings
of PLDI. pp. 531–542. ACM (2012). https://doi.org/10.1145/2254064.
2254127

[29] Surendran, R., Raman, R., Chaudhuri, S., Mellor-Crummey, J.M., Sarkar,
V.: Test-driven repair of data races in structured parallel programs. In:
Proceedings of PLDI. pp. 15–25. ACM (2014). https://doi.org/10.1145/
2594291.2594335

[30] Westbrook, E.M., Zhao, J., Budimlic, Z., Sarkar, V.: Practical per-
missions for race-free parallelism. In: Proceedings of ECOOP. LNCS,
vol. 7313, pp. 614–639. Springer (2012). https://doi.org/10.1007/
978-3-642-31057-7_27

[31] Ye, F., Schordan, M., Liao, C., Lin, P., Karlin, I., Sarkar, V.: Using polyhe-
dral analysis to verify OpenMP applications are data race free. In: Laguna,
I., Rubio-González, C. (eds.) Proceedings of CORRECTNESS@SC. pp. 42–
50. IEEE (2018). https://doi.org/10.1109/CORRECTNESS.2018.00010,
https://doi.org/10.1109/Correctness.2018.00010

[32] Yu, L., Jin, F., Protze, J., Sarkar, V.: Leveraging the dynamic program
structure tree to detect data races in OpenMP programs. In: Proceedings
of Correctness@SC. pp. 54–62. IEEE (2022). https://doi.org/10.1109/
CORRECTNESS56720.2022.00012

[33] Yu, L., Sarkar, V.: GT-Race: Graph traversal based data race detection
for asynchronous many-task parallelism. In: Aldinucci, M., Padovani, L.,
Torquati, M. (eds.) Proceedings of Euro-Par. LNCS, vol. 11014, pp. 59–73.
Springer (2018). https://doi.org/10.1007/978-3-319-96983-1_5

[34] Yuki, T., Feautrier, P., Rajopadhye, S., Saraswat, V.: Array dataflow anal-
ysis for polyhedral X10 programs. In: Proceedings of PPoPP. pp. 23–34.
ACM, New York, NY, USA (2013). https://doi.org/10.1145/2442516.
2442520

[35] Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GRace: A low-overhead mecha-
nism for detecting data races in GPU programs. In: Proceedings of PPoPP.
pp. 135–146. ACM, New York, NY, USA (2011). https://doi.org/10.
1145/1941553.1941574

[36] Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GMRace: Detecting data races
in GPU programs via a low-overhead scheme. Transactions on Parallel and
Distributed Systems 25(1), 104–115 (2014). https://doi.org/10.1109/
TPDS.2013.44

https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1109/CORRECTNESS.2018.00010
https://doi.org/10.1109/CORRECTNESS.2018.00010
https://doi.org/10.1109/Correctness.2018.00010
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44

	Hidden assumptions in static verification of data-race free GPU programs

