
TOWARDS CONCURRENCY
REPAIR IN GPU KERNELS WITH

RESOURCE COST ANALYSIS
GREGORY BLIKE*

TIAGO COGUMBREIRO

UMASS BOSTON

OCTOBER 14, SERPL23

1 / 49

OVERVIEW

2 / 49

GPU Programming is uncontestedly performant,
however, that performance comes with the challenge

of avoiding many classes of programming errors, in
particular today, data races.

3 / 49

Data races are readily repaired with the introduction of
synchronization barriers, but the placement of the

barriers must be done with care or they may not fix the
data race or do so with a notable performance penalty.

4 / 49

We show that, in many GPU programs, synchronization
barriers can be algorithmicly and optimally placed
programs using constraint solvers and automatic

amoritized resource analysis.

5 / 49

GPU PROGRAMMING
Highly parallel
Used in compute intensive tasks like neural
networks, cryptography, signal processing, and
scientific computing
Error Prone due to many easy to construct problems

6 / 49

DATA RACES
multiple threads access the same place with at least
one of them being a write
introduces undefined behavior

7 / 49

A Data Race

A data race exists:

Thread#1 reads from index 2

Thread#2 writes to index 2.

 int temp = A[threadId.x];

 A[threadId.x + 1] = temp + 1;

__global__ void race (int* A) {1

2

3

}4

8 / 49

Synchronization barriers fix these races.

9 / 49

No longer a race

All threads must pause at _syncthreads() until all
threads have reached the same point. We can then

consistently reason on the reads and writes.

 __syncthreads();

__global__ void race (int* A) {1

 int n = A[threadId.x];2

3

 A[threadId.x + 1] = n + 1;4

}5

10 / 49

REPAIRING DATA RACES

11 / 49

__global__ void race (int * A, int t) {

 int temp = A [threadIdx.x + 1];

 for (int i = 0; i < t; t++) {

 A[threadIdx.x] = temp;

 }

}

1

2

3

4

5

6

12 / 49

When considering how to fix a data race, we want to
ensure that a synchronization barrier is place between

access operations to settle threads into consistency.

TODO reword this

13 / 49

The Shotgun Approach We can place a barrier at any of
these places.

 __syncthreads();

 __syncthreads();

 __syncthreads();

 __syncthreads();

 __syncthreads();

__global__ void race (int * A, int t) {1

2

 int temp = A [threadIdx.x + 1];3

4

 for (int i = 0; i < t; t++) {5

6

 A[threadIdx.x] = temp;7

8

 }9

10

}11

14 / 49

Several are completely redundent.

 __syncthreads();

 __syncthreads();

__global__ void race (int * A, int t) {1

2

 int temp = A [threadIdx.x + 1];3

 __syncthreads();4

 for (int i = 0; i < t; t++) {5

 __syncthreads();6

 A[threadIdx.x] = temp;7

 __syncthreads();8

 }9

10

}11

15 / 49

How can we selectively and algorithmicly find
placements?

16 / 49

Existing tools, like GPURepair, use so�ware synthesis
as an approach.

Each possible placement is associated with a boolean
variable which is used as part of a MaxSAT search.

Other tools like AuCS use a graph reduction strategy
which is similar.???

17 / 49

An advantage of incorporating a constraint solver to
handle MaxSAT is that other classes of errors such as
barrier divergence are not accidentally added to the

solution.

18 / 49

Example of a barrier divergence

These are not the same barrier and so threads will
have multiple points for all point to arrive at, resulting

in a deadlock.

 __syncthreads();

 __syncthreads();

__global__ void divergence (int * A) {1

 if(threadId.x == 0) {2

3

 } else {4

5

 }6

} 7

19 / 49

This approach of guess-and-check with an oracle We
have noticed that the MaxSAT is overkill.

20 / 49

Use an oracle such as GPUVerify to prove that a
program is data race free or contains data races.

If it contains a data race, introduce a barrier. Each
position is represented in a boolean formula (as well

as the rest of the program). To track and compute
viable locations, several tools use SMT solvers to avoid

introducing bugs like barrier divergence.

TODO create a diagram for this process

We don't need all of these barriers. Some of them are
redundent. Some are conceptually more expensive to

use
21 / 49

Conceptually we would expect this particular
placement is quite expensive because of the loop.

 __syncthreads();

__global__ void race (int * A, int t) {1

 int temp = A [threadIdx.x + 1];2

 for (int i = 0; i < t; t++) {3

4

 A[threadIdx.x] = temp;5

 }6

}7

22 / 49

Each tool comes up with its own cost function for
determinining placement costs

23 / 49

Eg GPURepair uses

gw is the penalty for a grid-level barrier
gb is 0 for block-level barriers __syncthreads()
and 1 for grid-level barriers g.sync()
lw is the penalty for a barrier that is inside a loop
ld is the loop-nesting depth of the barrier

TODO DIAGRAM

(gw ∗ gb) + lwld

24 / 49

As noted before, most barriers are redundent.

 __syncthreads(); // 2

 __syncthreads(); // 2

 __syncthreads(); // 4

 __syncthreads(); // 4

 __syncthreads(); // 2

__global__ void race (int * A, int t) {1

2

 int temp = A [threadIdx.x + 1];3

4

 for (int i = 0; i < t; t++) {5

6

 A[threadIdx.x] = temp;7

8

 }9

10

}11

(gw ∗∑ gb) + lw =ld 14

25 / 49

 __syncthreads(); // 2

 __syncthreads(); // 4

__global__ void race (int * A, int t) {1

 int temp = A [threadIdx.x + 1];2

3

 for (int i = 0; i < t; t++) {4

5

 A[threadIdx.x] = temp;6

 }7

}8

(gw ∗∑ gb) + lw =ld 6

26 / 49

 __syncthreads(); // 4

__global__ void race (int * A, int t) {1

 int temp = A [threadIdx.x + 1];2

 for (int i = 0; i < t; t++) {3

4

 A[threadIdx.x] = temp;5

 }6

}7

(gw ∗∑ gb) + lw =ld 4

27 / 49

 __syncthreads(); // 2

__global__ void race (int * A, int t) {1

 int temp = A [threadIdx.x + 1];2

3

 for (int i = 0; i < t; t++) {4

 A[threadIdx.x] = temp;5

 }6

}7

(gw ∗∑ gb) + lw =ld 2

28 / 49

Our contributions are to take this and improve upon
the soundness of the cost model by application of

automatic amoritized resource analysis which
provides a formal calculus to assigning cost to

placements.

29 / 49

our model can analyze the for-loops and determine
that a higher bound has a higher cost. and can resolve
for (1 .. 10) vs for(1..20) for which would be a superior

placement. in addition this gives us formal grounds to
prove that certain constructions are universally

superior

conjecture placement between these for loops will
always be best.

30 / 49

Existing cost model

__global__ void race (int * A) {

 for (int i = 0; i < 10; t++) {

 int temp = A [threadIdx.x + 1];

 __syncthreads(); // 4

 }

 for (int i = 0; i < 100; t++) {

 __syncthreads(); // 4

 A[threadIdx.x] = temp;

 }

}

1

2

3

4

5

6

7

8

9

10

(gw ∗∑ gb) + lw =ld 8

31 / 49

With automatic amoritized esource analysis

__global__ void race (int * A) {

 for (int i = 0; i < 10; t++) {

 int temp = A [threadIdx.x + 1];

 __syncthreads(); // 1

 }

 for (int i = 0; i < 100; t++) {

 __syncthreads(); // 1

 A[threadIdx.x] = temp;

 }

}

1

2

3

4

5

6

7

8

9

10

 1 +
i=0

∑
9

 1 =
i=0

∑
99

108

32 / 49

As a MaxSAT Problem we want a placement that
minimizes

__global__ void race (int * A) {

 for (int i = 0; i < 10; t++) {

 int temp = A [threadIdx.x + 1];

 __syncthreads(); // 1

 }

 for (int i = 0; i < 100; t++) {

 __syncthreads(); // 1

 A[threadIdx.x] = temp;

 }

}

1

2

3

4

5

6

7

8

9

10

min{ 1, 1}
i=0

∑
9

i=0

∑
99

33 / 49

Compared to the old cost model this allows us to pick
between the loops which barrier is optimal.

vs

min{10, 100}

min{4, 4}

34 / 49

This is also a valid placement for an even lower cost (Ie
1). The formalism of resource analysis allows us prove

optimality.

__global__ void race (int * A) {

 for (int i = 0; i < 10; t++) {

 int temp = A [threadIdx.x + 1];

 }

 __syncthreads();

 for (int i = 0; i < 100; t++) {

 A[threadIdx.x] = temp;

 }

}

1

2

3

4

5

6

7

8

9

35 / 49

Resource Analysis

36 / 49

Resource analysis is similar to runtime algorithm
analysis. Fixed costs and variable costs are expressed

in formulas and then solved.

37 / 49

In this example,

There is a cost associated with this placement, the cost
of a barrier.

 __syncthreads();

 for (int i = 0; i < t; t++) {

__global__ void race (int * A, int t) {1

 int temp = A [threadIdx.x + 1];2

3

4

 A[threadIdx.x] = temp;5

 }6

}7

cost barrier

38 / 49

In this example,

The number of times that __syncthreads() is
dependent on the value of t. So we can write this as

summation expression.

 for (int i = 0; i < t; t++) {

 __syncthreads();

__global__ void race (int * A, int t) {1

 int temp = A [threadIdx.x + 1];2

3

4

 A[threadIdx.x] = temp;5

 }6

}7

 cost

i=0

∑
t

barrier
39 / 49

We would like to continue this analysis to give us a
tigher bound on the cost of placing synchronization

barriers. We can then prove the optimality of
placement.

40 / 49

Automatic Amoritized Resource Analysis (Hoffmann
and Jost) gives us a calculus for composing these

analysis.

Hoffmann and Jost created a small programming
language to reason about types annoations for

arbitrary resources in programs. And the semantics to

41 / 49

The type system allows us to compose elemental costs
to complex costs. This is the automatic in automatic

amoritized analysis

42 / 49

basic resource is a tick Show how embed our cost
model into Hoffmann's calculus our tick is the

__syncthreads()

43 / 49

We still need to prove that these costs are sound for
this model. Show an unsound example of the other

authors' cost model compares to this one.

44 / 49

Assuming we have the AARA. We can use a computer
algebra system (maxima) to provide inequalities to

relate cheaper or more expensive placements. We may
even have constant values.

Using the boolean variables, like with GPURepair, we
can use MaxSAT to find a placement that satisfies the
oracle as well as uses the least cost according to our
precise placement cost model. We use an SMT solver

with the features (Z3).

45 / 49

Further work would include investigaing other modes
of repair such as rearranging statements to repair

multiple data races simultaniously.

46 / 49

Loop interaction and bounding resource usage

Still has data race for

!

 int temp = A [threadIdx.x + 1];

 A[threadIdx.x] = temp;

__global__ void race (int * A, int t) {1

 for (int i = 0; i < t; t++) {2

3

 __syncthreads();4

5

 }6

}7

t > 1

47 / 49

Conclusion

48 / 49

Static analysis allows us to form solutions to
repairing data races in GPU programs.
Solutions are not necessarily unique.
We have adopted Automatic Amoritized Resource
Analysis's calculus to GPU Synchronization
Using the resource analysis we are able to reason
about that allows us to pick an optimal placement
of a barrier.

49 / 49

