
Scaling data-race freedom analysis

with array projections

SERPL 2023

Paul Maynard Tiago Cogumbreiro

Data-races are a major source of concurrency errors in GPU programming.
Data-Race-Freedom (DRF) analysis is a static analysis technique that aims to
guarantee that for all possible executions of a program, every location in memory
being written by one thread cannot be concurrently accessed by another thread.
In GPU programming, the vast majority of data-races are caused by accesses
to arrays. The state of the art of DRF analysis relies on Satisfiability Modulo
Theories (SMT) solvers to test when indices accessing arrays are equal, which
is one of the conditions to trigger a data-race [2, 3, 4].

DRF analysis relying on SMT solvers is unable to handle all problem pa-
rameters (e.g., the number of threads). The root of this limitation is due to
nonlinear arithmetic expressions appearing in array indices, which cannot be
tested for equality by current solvers [1].

The following example shows a nonlinear expression being used to access the
array paths. Note how the indexing expression i + S * t includes a multipli-
cation of program variables S and t. Variables i and t evaluate differently for
different threads, because variable threadIdx.x evaluates to a unique numeric
identifier per thread. This means that an SMT-based DRF analysis is not able
to fully analyze this kernel for data-races.

__global__ void kernel(float* paths, int S, int T) {

unsigned int step = gridDim.x * blockDim.x;

for (unsigned int i = threadIdx.x; i < S ; i += step) {

for (unsigned int t = 0; t < T ; t++) {

paths[i + S * t] = f(t);

}

}

}

A possible workaround is to replace a variable in the expression by a constant,
say replace variable S by 1,024, and prove that the program is DRF for this
particular instance of S. A further step involves performing the analysis for
a fixed range of values. However, such an approach is unsatisfactory as the
problem quickly grows when multiple program variables need to be instantiated.

1



Our approach. Many nonlinear array accesses in CUDA are actually pro-
jections of multidimensional indexing into a single dimensional array. This is
necessary due to limitations of the C/C++ languages, as multidimensional ar-
rays in C/C++ must have their dimensions known at compile time. However,
an SMT solver can handle a multidimensional array access when the indices in
each of the dimensions of the acess are linear. Our approach is to automati-
cally rewrite multidimensional projections as multidimensional accesses in our
internal representation. For example, we can rewrite function kernel to use a
multidimensional indexing, rather than a projection.

// Idealized C-like syntax

__global__ void kernel (float* paths[][], int S, int T) {

// Determine thread ID

unsigned int step = gridDim.x * blockDim.x;

for (unsigned int i = threadIdx.x; i < S ; i += step) {

for (unsigned int t = 0; t < T ; t++) {

paths[i][t] = f(t);

}

}

}

Our ongoing work involves automating the translation from a multidimen-
sional projection into a multidimensional access, by

� identifying when a nonlinear expression is an array projection,

� determining the dimensions and the indices of the multidimensional access,
and

� transforming the code.

Additionally, we are interested in recording how often such patterns occur in
practice, by applying our analysis to a dataset of 6,500 CUDA kernels down-
loaded from open source software.

References

[1] Paul Beame and Vincent Liew. Toward verifying nonlinear integer arith-
metic. Journal of the ACM, 66(3), 2019.

[2] Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz
Qadeer, Paul Thomson, and John Wickerson. The design and implementa-
tion of a verification technique for GPU kernels. Transactions on Program-
ming Languages and Systems, 37(3):1–49, 2015.

[3] Tiago Cogumbreiro, Julien Lange, Dennis Liew Zhen Rong, and Hannah
Zicarelli. Memory access protocols: Certified data-race freedom for GPU
kernels. Formal Methods in System Design, 2023.

2



[4] Guodong Li and Ganesh Gopalakrishnan. Scalable SMT-based verification
of GPU kernel functions. In Proceedings of FSE, pages 187–196, New York,
NY, USA, 2010. ACM.

3


