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Graphics Processing Units (GPUs) are the accelerator of choice for performance-critical applications, yet

optimizing for performance requires mastery of the complex interactions between its memory architecture and

its execution model. Existing static analysis tools for GPU kernels either identify performance bugs without

quantifying costs or cannot handle thread-divergent control flow, leading to significant over-approximations.

We present the first static relational-cost analysis for GPU warp-level parallelism that can give exact bounds

even in the presence of thread divergence. Our analysis is general and flexible, as it is parametric on the

resource metric (uncoalesced accesses, bank conflicts) and on the cost relation (=, ≤, ≥). We establish a

soundness theorem for our technique, provide mechanized proofs in Rocq and implement our theory in a tool

called Pico. In a reproducibility experiment, Pico produced the tightest bounds in every input, outperforming

the state-of-the-art tool RaCUDA in 10 kernels (1.7× better), while RaCUDA produced 4 incorrect bounds

and crashed on 2 kernels. In an experiment to measure the accuracy of Pico, we studied the impact of thread-

divergence in control-flow in a dataset of 226 kernels. We found that at least 75.3% of conditionals and 85.4%

of loops can be captured exactly, without introducing approximation.

CCS Concepts: • Theory of computation→ Parallel computing models; • Software and its engineering
→ Formal software verification.

Additional Key Words and Phrases: cost analysis, relational verification, GPU programming

1 Introduction
Graphics Processing Units (GPUs) have become essential accelerators for performance-critical

applications including machine learning [48], scientific simulations [23, 55], and high-performance

computing [54]. Extracting optimal performance from GPUs requires navigating a complex land-

scape of interacting optimization requirements that span from a deep understanding of the memory

architecture to the execution model of GPU devices. To maximize performance threads must [22]: be

continuously busy to maximize parallelism, perform sequential and contiguous accesses (coalesced

data-movements) to minimize memory latency [7, 17, 59], avoid bank-conflicts [27, 32, 58, 60], and

minimize divergent behavior [10, 52, 53].

Symbolic, dynamic analysis [15, 30, 31, 39], and profiling tools, such as Nvidia’s nSight, can

identify performance bottlenecks for a specific input and run, but cannot provide guarantees about
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worst-case behavior or ensure the absence of performance bugs across all possible inputs. For safety-

critical applications such as autonomous vehicles and real-time machine learning systems, static

worst-case bounds on resource usage of GPU programs (known as kernels) [33] are essential to

ensure system reliability and predictable performance. There is a need for static analysis approaches

that can provide formal guarantees about GPU program performance.

Despite this clear need, most existing static analysis tools give limited feedback to users.

PUG [37, 38] and GPUDrano [1, 2] can only identify the presence of performance bugs without

quantifying their total cost. RaCUDA [45, 46] quantifies GPU kernel costs, but is unable to account

for thread-divergence patterns that give rise to many GPU performance bottlenecks [10, 52, 53]. Of

special interest to GPU programmers [18] are bank conflicts and uncoalesced accesses, that turn a

single memory operation (transaction) into multiple ones. Crucially, ignoring thread-divergence

can produce approximation errors that compound multiplicatively with the nesting of loops. To

understand why, we briefly explain thread-divergence. In GPUs, threads execute in groups called

warps, also known as wavefronts, where all threads in a warp must execute the same instruction

simultaneously (in lockstep). Threads can be suspended according to the test conditions of a branch,

so when different threads of the warp evaluate the test differently, then the warp executes both

branches, this is known as thread divergence. RaCUDA cannot analyze thread-divergent loops

(rejecting such programs entirely) and ignores the effect of thread-divergent conditionals, causing

it to overestimate costs.

We propose Pico, the first cost analysis for GPU kernels that derives exact costs with support

for thread divergence. Our analysis is modular by being parametric on a resource metric (e.g.,
uncoalesced accesses, bank conflicts) to target different GPU performance bottlenecks, and on a

cost relation (e.g., =, ≤, ≥) to enable exact costs, over-approximations, and under-approximations.

Symbolic costs can depend on kernel inputs, and resource metrics can depend on exactly which

threads are active, directly addressing thread-divergence challenges. Pico translates a GPU kernel

into a sequential program whose resource usage can be quantified symbolically without approxima-

tion. Our technique is a variation on relational cost analysis [16, 49–51], which establishes bounds

on cost relationships between programs, achieving greater precision than non-relational analysis

by exploiting shared program structures.

This paper presents the following contributions:

§3 A dynamic cost model of GPU warp execution, parametric on a cost metric. The model

provides the foundation for relational-cost analysis between GPU and sequential models.

§4 The first static relational-cost analysis supporting thread-divergent control flow. This
analysis is parametric on the cost relation, providing a powerful framework to reason about

exact costs, over-approximations, and under-approximations.

§5 A fullymechanizedmeta-theory for our parametric analysis. We prove the static analysis

sound relative to the dynamic model. We state our result for any cost relation and cost

metric, which then precisely captures how cost metrics and loops are analyzed, which can

be leveraged in the implementation.

§6 An implementation of our cost analysis, called Pico, for bank conflicts and uncoalesced

accesses, which we formally define in Section 6.4. Our tool leverages the relational analysis

to separate capturing the cost (as a sequential program) from reducing the cost to a symbolic

arithmetic expression. Our implementation features a modular design with alternative ways

to calculate the symbolic cost: our bespoke algorithm using Maxima [40], or translators to

Absynth [47], CoFloCo [25], and KoAT [26].

§7 A comprehensive evaluation of Pico, verifying the precision and applicability of our

model. A first experiment reproduces an evaluation of 25 kernels from [45] and shows a
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significant improvement over RaCUDA in 10 kernels. Using Pico, we identified two unsound
results given by RaCUDA. A second experiment demonstrates the precision of our approach

on 226 kernels from a well-known dataset [4]. We measured the effect of thread-divergence

on the accuracy of our analysis wrt. control-flow. Pico captures precisely at least 75.3% of

conditionals and at least 85.4% of loops.

In the following section, we give an overview our approach and contributions. Section 8 discusses

related work and positions our contributions within the broader landscape of GPU analysis tech-

niques. Section 9 summarizes our contributions and outlines directions for future work. The Rocq

mechanization of the theory and are included in the paper’s artifact [13]. Our tool is maintained in

the Faial project [56] and the Rocq mechanization is maintained in [57].

2 Overview
This section demonstrates our relational-cost analysis for GPU programs with thread-divergent con-

trol flow. We show how our approach achieves exact bounds where existing tools over-approximate,

and how exact metrics can be composed to derive tighter bounds for complex cost analyses.

Background: memory access protocols. In this paper, we use Memory Access Protocols [19, 20, 42,

43] as an abstraction over GPU kernels, that we formally define in the following section. Practically,

protocols serve as an intermediate representation for static analysis. Theoretically, protocols are

a form of behavioral type codifying how threads interact with memory. Henceforth, we refer to

kernels as protocols.

Background: thread-divergent behavior. To understand our running examples, we explain the

execution of protocol for x ∈ 0..tid {A[0]}. The upper bound of the loop is a special variable tid,
which corresponds to a numeric identifier that uniquely identifies each thread with an integer

(ranged over by meta-variable 𝑖 ∈ N), so for thread 𝑖 the loop range is 0..𝑖 . This example depicts

thread-divergence, i.e., when the execution of a warp proceeds with suspended (inactive) threads.

Since every thread in a warp executes as a unit in lockstep, when the warp executes this loop, an

increasing number of threads becomes inactive as the warp executes each iteration, until all threads

are inactive, which makes the warp terminate looping. We represent the activity state of all threads

as a vector of Booleans, where t is true and f is false. Let W be the thread count in a warp. For

instance, withW = 4 threads, at iteration 0 all threads are active (t, t, t, t), at iteration 1 thread 0

becomes inactive (f, t, t, t), and so on. This thread divergence creates complex cost patterns that

our analysis targets.

Example 2.1 (Thread-divergent loop bounds). To highlight the expressiveness of our formalism in

contrast to a worst-case cost analysis, we show that the cost of a protocol with a thread-divergent

loop equals that of a sequential program, (1) by reasoning about the number of iterations of both

loops, and (2) by reasoning about the metric locally. In this example, we will consider a cost metric

that counts how many threads are active when accessing an array A[0]. Let tid = (0, 1, 2, . . . ,W− 1)
represent a unique thread identifier per thread.

∅; t ⊢ (for x ∈ 0..tid {A[0]}) = (for x ∈ 0..W − 1 {tick(W − x)}) (1)

The judgment states that under the empty typing context ∅; t, the protocol (left side) has the same

cost (=) as the sequential program (right side). The sequential program executes a loop from 0 to

W − 1, where at each iteration x, instruction tick consumes exactlyW − x resources.

Let us verify the correspondence between the number of active threads (our metric) and the

scalar expressionW−x (the argument of tick). For instance, whenW = 4, then we would have the 4

iterations for both ranges. In iteration 0, all 4-threads are active (t, t, t, t), and we haveW−x = 4− 0.
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In iteration 1, thread 0 is inactive (3 active) and we have 4− 1 = 3. In iteration 2, threads 0 and 1 are

inactive and we have 4 − 2 = 2. In the last iteration, only thread 3 is active and we have 4 − 3 = 1.

Thus, we can conclude that there are always W − x threads active. A worst-case analysis like

RaCUDA provides only a constant bound W, whereas our relational cost analysis can capture the

precise relationship between iteration number and active thread count (W − x).
Pico implements our relational cost as follows. Given a protocol for x ∈ 0..tid {A[0]}, Pico uses

our type system to derive a program for x ∈ 0..W − 1 {tick(W − x)}, outputs a symbolic cost of∑
0≤x≤W−1W − x, and then simplifies such cost to (W2+W)/2 using Maxima (528 whenW = 32). A

worst case cost analysis would yield a symbolic cost ofW2
(1024 when W = 32).

Our ability to statically analyze thread-divergent loops addresses two fundamental limitations

in the state of the art [45, 46]. Existing static analysis tools cannot handle thread-divergent loops,

forcing them to reject such programs entirely. Additionally, existing theoretical frameworks require

loop invariants that tools cannot automatically provide, whereas our analysis does not.

Key takeaways: This example showcases two novel contributions of our formalism: support for
thread-divergent loop ranges, and a metric analysis that expresses precise (=) costs symbolically (W−x).
Example 2.2 (Kernel addS0). We show a practical application of our approach, by studying the

cost of a kernel [46, addS0] that alternately adds and subtracts from rows of a matrix. In this

example, we establish an upper bound program for the uncoalesced accesses metric. When threads

access non-adjacent memory locations, the GPU cannot combine the accesses into a single memory

transaction, and issues multiple transactions instead, which are bounded by the total number of

active threads. Test tid % 2 = 0 is thread-divergent, because half of the threads evaluate the test as

true (even thread identifiers), and the other half evaluates the test to false (odd thread identifiers).

∅; t ⊢ (for x ∈ 0..𝑖 {if (tid % 2 = 0) {A[tid × 𝑖 + x]}}) ≤ (for x ∈ 0..𝑖 {tick(⌊W/2⌋)}) (2)

We observe that the loop of the protocol (left-hand side) is thread-uniform, i.e., every thread

evaluates the loop bounds equally, and the same loop range is used in the program (right-hand side).

Thus, variable x admits the same values in either side of the relation. The judgment also establishes

that uncoalesced accesses never exceed ⌊W/2⌋ per iteration, since the number of uncoalesced

accesses are bounded by the number of active threads, and the conditional tid % 2 = 0 ensures

exactly half the threads are active. Our approach yields tighter bounds than the state of the art’s

worst-case analysis [45, 46], which assumes all W = 32 threads create uncoalesced accesses.

Key takeaways: This example showcases two novel contributions of our formalism: support for
thread-divergent conditionals (tid % 2 = 0); and our cost-analysis generalizes the cost relation (here ≤)
with support for exact (=), upper (≤), and lower (≥) relational bounds, among others.

3 Dynamic Cost Model
To establish the soundness of our static analysis, we need to introduce dynamic evaluation so

that we can relate the cost of a protocol with a sequential program. In this section we introduce

a dynamic analysis to establish cost relations between executing protocols and statements. We

define dynamic semantics for both domains, then formally relate their costs: first giving semantics

to vector-based expressions (Section 3.1), then providing dynamic semantics for warps in Memory

Access Protocols (Section 3.2) and sequential Resource Calculus statements (Section 3.3), and finally

introducing a dynamic relational-cost judgment that formally relates costs between protocols and

statements (Section 3.4).

3.1 Expressions of Vectors
Figure 1 gives the syntax and semantics of expressions that yield vectors. In warp semantics, since

each thread may have a different view over its own local data, we represent the warp’s data as
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Syntax

N>0 ∋ W (thread count per warp)
N ∋ 𝑖, 𝑗, 𝑘 ::= 0 | 1 | · · ·
B ∋ 𝑎, 𝑏 ::= t | f
NW ∋ 𝐼 , 𝐽 , 𝐾

BW ∋ 𝐶, 𝐵

𝜎 ∋ V → NW

EW ∋ 𝑛,𝑚, 𝑜 ::= 𝑖 | 𝑥 | tid | 𝑛★𝑛
CW ∋ 𝑐, 𝑑 ::= 𝑏 | 𝑛 ⋄𝑛 | 𝑐 ◦ 𝑐

𝑟 ::= 𝑛..𝑛

NW ∋ 𝐼N
def

= (0, 1, . . . ,W − 1)

Big-step semantics for numeric expressions 𝑛 ⟨𝑛, 𝜎⟩ ⇓ 𝐼

⟨𝑖, 𝜎⟩ ⇓ 𝑖W ⟨𝑥, 𝜎⟩ ⇓ 𝜎 (𝑥) ⟨tid, 𝜎⟩ ⇓ 𝐼N
⟨𝑛, 𝜎⟩ ⇓ 𝐼 ⟨𝑚,𝜎⟩ ⇓ 𝐽

⟨𝑛★𝑚,𝜎⟩ ⇓ 𝐼 ★ 𝐽

Big-step semantics for boolean expressions 𝑐 and ranges 𝑛..𝑛 ⟨𝑐, 𝜎⟩ ⇓ 𝐵 ⟨𝑟, 𝜎⟩ ⇓ (𝐼 , 𝐵)

⟨𝑏, 𝜎⟩ ⇓ 𝑏W
⟨𝑛, 𝜎⟩ ⇓ 𝐼 ⟨𝑚,𝜎⟩ ⇓ 𝐽

⟨𝑛 ⋄𝑚,𝜎⟩ ⇓ 𝐼 ⋄ 𝐽

⟨𝑐, 𝜎⟩ ⇓ 𝐶 ⟨𝑑, 𝜎⟩ ⇓ 𝐵
⟨𝑐 ◦ 𝑑, 𝜎⟩ ⇓ 𝐶 ◦ 𝐵

⟨𝑛, 𝜎⟩ ⇓ 𝐼 ⟨𝑛 ≤ 𝑚,𝜎⟩ ⇓ 𝐵
⟨𝑛..𝑚, 𝜎⟩ ⇓ (𝐼 , 𝐵)

Fig. 1. Syntax and semantics of expressions.

a vector and define the evaluation of the same expression for each thread in a warp. Expression

evaluation outputs a vector of values, where the vector’s components represent the value that each

respective thread evaluated.

Numbers, sets, and vectors. Let 𝑖, 𝑗, 𝑘 be meta-variables over non-negative integers picked from

the set N. Let ★ be a meta-variable over the usual arithmetic operators {+,×, mod }. We define a

vector 𝑋 of dimension 𝑘 as a sequence of 𝑘 components 𝛼𝑖 , written as (𝛼1, . . . , 𝛼𝑘 ). Let |X| (resp.
|𝑋 |) denote the cardinal of a set X (resp. vector 𝑋 ). We write 𝑋 (𝑖) = 𝛼𝑖 if 𝑋 = (𝛼1, . . . , 𝛼𝑘 ) and
0 ≤ 𝑖 < 𝑘 . We write 𝛼 ∈ 𝑋 if 𝑋 (𝑖) = 𝛼 for some 0 ≤ 𝑖 < |𝑋 |. We say that a vector 𝑋 is uniform,

notation unif (𝑋 ), when 𝑋 (𝑖) = 𝑋 ( 𝑗) for all 0 ≤ 𝑖 < 𝑘 and 0 ≤ 𝑗 < 𝑘 . For instance, vector (2, 2, 2, 2)
is uniform, and vector (0, 1, 2, 3) is non-uniform. We define a componentwise operation 𝑓 on vectors

as 𝑓 (𝑋,𝑋 ′) (𝑖) = 𝑓 (𝑋 (𝑖), 𝑋 ′ (𝑖)) for any vectors𝑋 and𝑋 ′
. For any 𝛼 , we write 𝛼𝑘 to denote vector𝑋

of length 𝑘 where 𝑋 (𝑖) = 𝛼 for any 0 ≤ 𝑖 < 𝑘 . For instance, 04 = (0, 0, 0, 0). Trivially, we have
that unif (𝛼𝑘 ) for any 𝑘 .

Numeric vectors. We say that a vector is numeric when its components are all in N. Let 𝐼 , 𝐽 , 𝐾
be meta-variables over numeric vectors of lengthW. Vector 𝐼N represents a vector of the firstW
numbers. We lift every operation in ★ componentwise. For instance, the following equality holds.

(2, 2, 2, 2) × (0, 1, 2, 3) = (2 × 0, 2 × 1, 2 × 2, 2 × 3) = (0, 2, 4, 6) (3)

Numeric expressions. A numeric expression 𝑛 evaluates down to a numeric vector 𝐼 , where the

components represent the value of each thread. A numeric expression𝑛 ∈ EW
has dimensionW ∈ N.

A numeric expression is either a numeric vector 𝐼 of length W, a number 𝑖 , a loop variable 𝑥 , a

unique thread identifier tid, or a binary operation 𝑛★𝑚. Figure 1 (middle) gives the operational

big-step semantics, denoted by ⟨𝑛, 𝜎⟩ ⇓ 𝐼 , where 𝑛 ∈ EW
is a numeric expression and 𝜎 is an
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environment that maps (loop) variables to numeric vectors, the result is a numeric vector 𝐼 of

lengthW.

A number 𝑖 evaluates down to a uniform vector 𝑖W. Since unif (𝑖W), then all threads have a

uniform view over the evaluation of 𝑖 . We evaluate tid to a vector that maps each thread identifier

to itself. Finally, we lift the binary operation ★ for numeric expressions.

For instance, let W = 4. We now show that expression 2 × tid evaluates to vector 2
W × 𝐼N =

(0, 2, 4, 6), as shown below. We often omit the multiplication sign in numeric expressions when it is

not ambiguous.

⟨2, ∅⟩ ⇓ 2
W ⟨tid, ∅⟩ ⇓ 𝐼N (3)

⟨2 × tid, ∅⟩ ⇓ 2
W × 𝐼N

(4)

Booleans and boolean vectors. Let 𝑎, 𝑏 be meta-variables over booleans B = {t, f}. We say that

a vector is boolean when its components are picked from B. Let count(𝐵,𝑏) return the number

of occurrences of 𝑏 in vector 𝐵. We may also omit the parenthesis and commas when denoting

vectors of booleans, for instance we write fttt for (f, t, t, t). For instance, count(fttt, t) = 3. Let ⋄ be
a meta-variable over the set of usual relational operators {<, >, ≤, ≥, =}. Let ◦ be a meta-variable

over the set of usual boolean operators {∧,∨}. We lift ⋄ and ◦ componentwise.(
(1, 1, 1, 1) ≤ (0, 1, 2, 3)

)
= (1 ≤ 0, 1 ≤ 1, 1 ≤ 2, 1 ≤ 3) = fttt

Boolean expressions. The set of boolean expressions CW
is parameterized by the number of

dimensionsW, similar to the set of numeric expressions. A boolean expression 𝑐 ∈ CW
is either a

boolean vector 𝐵, a boolean literal 𝑏, a relational operator ⋄ over numeric expressions, or a boolean

operator ◦ over boolean expressions. Figure 1 (bottom) gives a big-step operational semantics

for boolean expressions executing under warp semantics with judgment ⟨𝑐, 𝜎⟩ ⇓ 𝐵, where an

expression 𝑐 is executed byW threads down to a boolean vector 𝐵 of lengthW. A boolean vector 𝐵

evaluates down to itself, as it is a value. A boolean literal 𝑏 evaluates down to a uniform vector

with a copy of 𝑏 for each thread. The semantics of relational and boolean operators are standard.

Range expressions. A range 𝑟 ::=𝑛..𝑚, used in loops, declares the lower bound 𝑛 and the upper

bound𝑚 of an iteration space. Ranges are inclusive in the upper and lower bounds. Judgment ⟨𝑟, 𝜎⟩ ⇓
(𝐼 , 𝐵) defines an evaluation of range 𝑟 down to the value of the lower bound of the range 𝐼 and

whether the range is nonempty (𝑛 ≤ 𝑚, where 𝑟 = 𝑛..𝑚). Hence, range 0..0 evaluates to pair (0W, tW)
where vector 0

W
is the first value of the range and tW represents that the range is nonempty (i.e., not

terminated) for all threads. Range 1..0 evaluates to pair (1W, fW) that states that the first element is

vector 1
W
yet the range has terminated for all threads. We define the abbreviation 𝑖 + 𝑟 def

= (𝑖 +𝑛)..𝑚
when 𝑟 = 𝑛..𝑚. For instance, range 1 + (0..0) is an abbreviation for (0 + 1)..0.

3.2 Dynamic Semantics for Memory Access Protocols (Vector)
In this section, we introduce the semantics of a Memory Access Protocols for a single warp. Our

semantics is parameterized by a metric𝑀 , that can be instantiated to measure bank conflicts and

uncoalesced accesses.

Evaluating protocols. Figure 2 gives an operational big-step semantics, notation ⟨𝑝, 𝐵, 𝜎⟩ ⇓𝑀 𝑖 , to

evaluate a Memory Access Protocol 𝑝 , predicated (or masked) on a vector of enabled threads 𝐵, a

vector environment 𝜎 , and a metric𝑀 that yields a cost 𝑖 . Protocol skip yields a run-time cost of 0

abstract resources (e.g., conflicts). Accessing memory with A[𝑛] yields a cost of𝑀 (𝐼 , 𝐵), which takes

a vector of indices 𝐼 (obtained from evaluating 𝑛) and a vector of enabled threads 𝐵. Sequencing

protocols amounts to adding the costs. A conditional restricts the existing the set of enabled

threads 𝐼 with the result of the condition 𝐶 (from evaluating 𝑐). The for-loop yields a cost of 0
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Syntax

P ∋ 𝑝, 𝑞 ::= skip | A[𝑛] | 𝑝 ;𝑝 | if (𝑐) {𝑝} | for 𝑥 ∈ 𝑟 {𝑝}

Big-step semantics for protocols P ⟨𝑝, 𝐵, 𝜎⟩ ⇓𝑀 𝑖

skip

⟨skip, 𝐵, 𝜎⟩ ⇓𝑀 0

acc

⟨𝑛, 𝜎⟩ ⇓ 𝐼
⟨A[𝑛], 𝐵, 𝜎⟩ ⇓𝑀 𝑀 (𝐼 , 𝐵)

seq

⟨𝑝1, 𝐵, 𝜎⟩ ⇓𝑀 𝑖 ⟨𝑝2, 𝐵, 𝜎⟩ ⇓𝑀 𝑗

⟨𝑝1 ;𝑝2, 𝐵, 𝜎⟩ ⇓𝑀 𝑖 + 𝑗
if-t

⟨𝑐, 𝜎⟩ ⇓ 𝐶 𝐶 ≠ fW ⟨𝑝, 𝐵 ∧𝐶, 𝜎⟩ ⇓𝑀 𝑖

⟨if (𝑐) {𝑝}, 𝐵, 𝜎⟩ ⇓𝑀 𝑖

if-f

⟨𝑐, 𝜎⟩ ⇓ fW

⟨if (𝑐) {𝑝}, 𝐵, 𝜎⟩ ⇓𝑀 0

for-1

⟨𝑟, 𝜎⟩ ⇓ (𝐼 , fW)
⟨for 𝑥 ∈ 𝑟 {𝑝}, 𝐵, 𝜎⟩ ⇓𝑀 0

for-2

⟨𝑟, 𝜎⟩ ⇓ (𝐼 ,𝐶) 𝐶 ≠ fW

⟨𝑝, 𝐵 ∧𝐶, 𝜎 [𝑥 ↦→ 𝐼 ]⟩ ⇓𝑀 𝑗 ⟨for 𝑥 ∈ 1 + 𝑟 {𝑝}, 𝐵, 𝜎⟩ ⇓𝑀 𝑘

⟨for 𝑥 ∈ 𝑟 {𝑝}, 𝐵, 𝜎⟩ ⇓𝑀 𝑗 + 𝑘

Fig. 2. Syntax and semantics memory access protocols.

when range 𝑟 is empty fW. Otherwise (𝐶 ≠ fW), we add the cost of running one iteration 𝑖 with the

rest of the loop 𝑗 . To obtain 𝑖 , we run the loop body 𝑝 and assign the value 𝐼 of the lower bound

of range 𝑟 to loop variable 𝑥 , only enabling the threads 𝐶 that are still activated for this iteration.

To obtain 𝑗 , we continue the execution of the loop with one fewer iteration, by incrementing the

lower bound (1 + 𝑟 ).

Example 3.1 (Thread-divergent loop cost). Let𝑀E (𝐼 , 𝐵) return count(𝐵, t), i.e., returns the number

of occurrences of t in 𝐵. We now show that the evaluation of the protocol in Example 2.1 yields

10 = 4 + 3 + 2 + 1. We have

⟨1..tid, ∅⟩ ⇓ (14,fttt) ⟨A[0],fttt, {x : 14}⟩ ⇓𝑀E 3 ⟨for x ∈ 2..tid {A[0]}, t4, ∅⟩ ⇓𝑀E (2 + 1)
⟨for x ∈ 1..tid {A[0]}, t4, ∅⟩ ⇓𝑀E (3 + 2 + 1) (5)

and

⟨0..tid, ∅⟩ ⇓ (04, t4) ⟨A[0], t4, {x : 04}⟩ ⇓𝑀E 4 (5)
⟨for x ∈ 0..tid {A[0]}, t4, ∅⟩ ⇓𝑀E (4 + 3 + 2 + 1)

3.3 Dynamic Semantics for Resource Calculus (Scalar)
Our scalar abstract cost models are programs that operate on numeric and boolean expressions of

scalars. We give the syntax and semantics of our sequential programs in Figure 3. A statement 𝑠 is

either tick(𝑛) that uses 𝑛 resources, a sequence, a conditional, or a loop. The judgment ⟨𝑛, 𝑆⟩ ↓ 𝑖
states that numeric expression 𝑛 evaluates to a number 𝑖 and judgment ⟨𝑐, 𝑆⟩ ↓ 𝑏 states that

boolean expression 𝑐 evaluates to a boolean 𝑏. Both judgments use an environment 𝑆 that maps

variables to numbers (scalars). Judgment ⟨𝑠, 𝑆⟩ ↓ 𝑖 states that statement 𝑠 evaluates to a cost 𝑖 under

environment 𝑆 . The rule tick states that statement tick(𝑛) produces 𝑖 resources, which result from

evaluating the argument 𝑛 and obtaining a value of 𝑖 . Sequencing adds results from the cost of

statements 𝑠1 and 𝑠2. Conditionals take the cost of the guarded statement 𝑠 when the test 𝑐 evaluates

to true, otherwise the statement produces 0 resources. A for-loop becomes a summation of the cost

of the loop body 𝑠 .
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Syntax

S ∋ 𝑠, 𝑡, 𝑢 ::= tick(𝑛) | 𝑠 ; 𝑠 | if (𝑐) {𝑠} | for 𝑥 ∈ 𝑟 {𝑠}
𝑆 ∋ V → N

𝐸 ::= (𝐵, 𝜎, 𝑆).

Big-step semantics for numeric expressions 𝑛 ⟨𝑛, 𝑆⟩ ↓ 𝑖

⟨𝑖, 𝑆⟩ ↓ 𝑖 ⟨𝑥, 𝑆⟩ ↓ 𝑆 (𝑥)
⟨𝑛, 𝑆⟩ ↓ 𝑖 ⟨𝑚, 𝑆⟩ ↓ 𝑗

⟨𝑛★𝑚, 𝑆⟩ ↓ 𝑖★ 𝑗

Big-step semantics for boolean expressions 𝑐 and ranges 𝑛..𝑚 ⟨𝑐, 𝑆⟩ ↓ 𝑏 ⟨𝑛..𝑛, 𝑆⟩ ↓ (𝑖, 𝑏)

⟨𝑏, 𝑆⟩ ↓ 𝑏
⟨𝑛, 𝑆⟩ ↓ 𝑖 ⟨𝑚, 𝑆⟩ ↓ 𝑗

⟨𝑛 ⋄𝑚, 𝑆⟩ ↓ 𝑖 ⋄ 𝑗
⟨𝑐, 𝑆⟩ ↓ 𝑎 ⟨𝑑, 𝑆⟩ ↓ 𝑏

⟨𝑐 ◦ 𝑑, 𝑆⟩ ↓ 𝑎 ◦ 𝑏
⟨𝑛, 𝑆⟩ ↓ 𝑖 ⟨𝑛 ≤ 𝑚, 𝑆⟩ ↓ 𝑏

⟨𝑛..𝑚, 𝑆⟩ ↓ (𝑖, 𝑏)

Big-step semantics for statements 𝑠 ⟨𝑠, 𝑆⟩ ↓ 𝑖
tick

⟨𝑛, 𝑆⟩ ↓ 𝑖
⟨tick(𝑛), 𝑆⟩ ↓ 𝑖

seq

⟨𝑠1, 𝑆⟩ ↓ 𝑖1 ⟨𝑠2, 𝑆⟩ ↓ 𝑖2
⟨𝑠1; 𝑠2, 𝑆⟩ ↓ 𝑖1 + 𝑖2

if-t

⟨𝑐, 𝑆⟩ ↓ t ⟨𝑠, 𝑆⟩ ↓ 𝑖
⟨if (𝑐) {𝑠}, 𝑆⟩ ↓ 𝑖

if-f

⟨𝑐, 𝑆⟩ ↓ f

⟨if (𝑐) {𝑠}, 𝑆⟩ ↓ 0

for-skip

⟨𝑟, 𝑆⟩ ↓ (𝑖, f)
⟨for 𝑥 ∈ 𝑟 {𝑠}, 𝑆⟩ ↓ 0

for-iter

⟨𝑛..𝑚, 𝑆⟩ ↓ (𝑖, t) ⟨𝑠, 𝑆 [𝑥 ↦→ 𝑖]⟩ ↓ 𝑗 ⟨for 𝑥 ∈ 1 + 𝑟 {𝑠}, 𝑆⟩ ↓ 𝑘
⟨for 𝑥 ∈ 𝑟 {𝑠}, 𝑆⟩ ↓ 𝑗 + 𝑘

Dynamic relational cost judgment 𝐸 |= 𝑝 ∼ 𝑠

⟨𝑝, 𝐵, 𝜎⟩ ⇓𝑀 𝑖 ⟨𝑠, 𝑆⟩ ↓ 𝑗 𝑖 ∼ 𝑗

(𝐵, 𝜎, 𝑆) |= 𝑝 ∼ 𝑠

Fig. 3. Syntax and semantics of Resource calculus.

Example 3.2 (Sequential loop cost). We show that the statement in Example 2.1 yields a cost of 10

whenW = 4, which equals the cost of the thread-divergent (vector) counterpart (Example 3.1).

⟨0..(4 − 1), ∅⟩ ⇓ (0, t) ⟨tick(4 − x), {x : 0}⟩ ↓ 4 ⟨for x ∈ 1..(4 − 1) {tick(4 − x)}, ∅⟩ ↓ 6

⟨for x ∈ 0..(4 − 1) {tick(4 − x)}, ∅⟩ ↓ (4 + 6)

3.4 Dynamic Relational-Cost Analysis
The dynamic relational-cost provides the true cost measurement—in the logical sense—that serves

as the basis for establishing relational bounds of protocols with sequential programs. In this section,

we introduce a dynamic relational cost judgment that compares resource usage: protocols may

use exactly (=), at most (≤), or at least (≥) the same resources as sequential programs. We first

define the cost relation that parameterizes our analysis, then introduce our dynamic relational-cost

judgment · |= 𝑝 ∼ 𝑠 . Our judgment is parameterized by a cost relation, ∼, which we define following.

Definition 3.3 (Cost relation). We define a cost relation as a standard additive relation, ranged

over by ∼, as a binary relation on N × N where 0 ∼ 0 and relation ∼ is closed under addition, i.e.,
for any 𝑖1, 𝑖2, 𝑖3, 𝑖4 we have that 𝑖1 ∼ 𝑖3 and 𝑖2 ∼ 𝑖4 implies 𝑖1 + 𝑖2 ∼ 𝑖3 + 𝑖4.
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We have that =, ≤, and ≥ are all cost relations.

Let 𝐸 denote a dynamic (relational) environment, defined as 𝐸::=(𝐵, 𝜎, 𝑆) where 𝐵 denotes a

vector of enabled threads, 𝜎 denotes a vector environment, and 𝑆 denotes a scalar environment.

The vector of enabled threads 𝐵 and vector environment 𝜎 are both required to evaluate a protocol,

while scalar environment 𝑆 is required to evaluate a statement. This combined environment enables

our relational judgment to evaluate both the protocol and the statement within the same context,

allowing direct cost comparison. For instance, the relational environment (t4, ∅, ∅) contains empty

stores and enabled threads t4 for Example 2.1.

Judgment 𝐸 |= 𝑝 ∼ 𝑠 (Figure 3, bottom) states that the execution cost of protocol 𝑝 is related to

the execution cost of program 𝑠 by relation ∼ under environment 𝐸. We now apply this judgment

to demonstrate how the dynamic relational cost analysis validates the static cost equality from

Example 2.1. The vector evaluation takes the enabled threads t4 as a parameter and yields cost 10,

while the scalar evaluation takes the scalar store and also yields cost 10, establishing the equality

relation. The following inference rule formalizes this relational judgment:

⟨for x ∈ 0..tid {A[0]}, t4, ∅⟩ ⇓𝑀E 10 ⟨for x ∈ 0..(4 − 1) {tick(4 − x)}, ∅⟩ ↓ 10

(t4, ∅, ∅) |= (for x ∈ 0..tid {A[0]}) = (for x ∈ 0..(4 − 1) {tick(4 − x)})

4 Static Relational-Cost Analysis
We present the static type system that derives the cost relationships shown in the running examples

(Examples 2.1 and 2.2). Our type system uses relational types to reason about both vector and scalar

interpretations of expressions, enabling static cost analysis of thread-divergent GPU code. We first

present the type syntax and explain relational types (Section 4.1), then demonstrate the analysis on

the running examples (Section 4.2), and state the main soundness result (Section 4.3).

4.1 Type System
We define our relational type system in three parts: type syntax and environments, typing judgments

for expressions, and the main cost relation judgment.

Types and typing environments. The syntax of types 𝜏 is given in Figure 4. In our relational system,

the same variable has two meanings: a vector meaning (for GPU protocols) and a scalar meaning

(for sequential programs). Intuitively, a relational type can be thought of as a set of pairs, each

pair containing a vector and a scalar. The uniform type U describes a uniform value paired with

its scalar equivalent, say 4
W
and 4. The divergent type D describes a vector (whose elements vary)

paired with a scalar, say (0, 1, 2, 3) and 0. We now introduce our typing environments. A typing

environment Γ refines types with ranges to enforce correspondence between vector and scalar

interpretations; values assigned to each variable must be picked from the same 𝑖-th iteration of both

ranges. Typing ∅ denotes the empty context. Constructor Γ, 𝑥 : 𝜏 (𝑟,𝑟 ′ ) assigns type 𝜏 to variable 𝑥

and expresses that variable 𝑥 admits a vectorized value picked from range 𝑟 and a scalar value

picked from range 𝑟 ′. We may just omit range annotations when that information is unnecessary

and write Γ, 𝑥 : 𝜏 . To lookup a variable’s type, Γ(𝑥) returns 𝜏 if there is an element 𝑥 : 𝜏_ in Γ. The
domain of Γ is written as dom(Γ).

Typing expressions. We define typing judgments that assign uniform and divergent types to

numeric expressions, boolean expressions, and loop ranges. Capturing uniform expressions statically

provides the guarantee that the same expression has identical interpretations in vector and scalar

contexts. Judgment Γ ⊢ 𝑛 : 𝜏 states that, under typing context Γ, a numeric expression 𝑛 has type 𝜏 .

Literals 𝑖 are uniform; the thread identifier tid is thread divergent, as each thread holds a unique

identifier number; variables are looked up in the typing context Γ. Binary operations combine
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Syntax

𝜏 ::= U | D Γ ::= ∅ | Γ, 𝑥 : 𝜏 (𝑟,𝑟 ) Φ ::= t | Φ ∧ 𝑐 I ::= ≈ | ⪯ | ⪰

Typing expressions Γ ⊢ 𝑛 : 𝜏 Γ ⊢ 𝑐 : 𝜏 Γ ⊢ 𝑟 : 𝜏

Γ ⊢ 𝑖 : U Γ ⊢ tid : D Γ ⊢ 𝑥 : Γ(𝑥)
Γ ⊢ 𝑛 : 𝜏 Γ ⊢𝑚 : 𝜏 ′

Γ ⊢ 𝑛★𝑚 : 𝜏 + 𝜏 ′
Γ ⊢ 𝑏 : U

Γ ⊢ 𝑛 : 𝜏 Γ ⊢𝑚 : 𝜏 ′

Γ ⊢ 𝑛 ⋄𝑚 : 𝜏 + 𝜏 ′
Γ ⊢ 𝑐 : 𝜏 Γ ⊢ 𝑑 : 𝜏 ′

Γ ⊢ 𝑐 ◦ 𝑑 : 𝜏 + 𝜏 ′
Γ ⊢ 𝑛 : 𝜏 Γ ⊢𝑚 : 𝜏 ′

Γ ⊢ 𝑛..𝑚 : 𝜏 + 𝜏 ′

Relational cost judgment Γ;Φ ⊢ 𝑝 ∼ 𝑠
skip

Γ;Φ ⊢ skip ∼ tick(0)

acc

Γ;Φ ⊢ 𝑀 (𝑛) ∼𝑚
Γ;Φ ⊢ A[𝑛] ∼ tick(𝑚)

seq

Γ;Φ ⊢ 𝑝1 ∼ 𝑠1 Γ;Φ ⊢ 𝑝2 ∼ 𝑠2
Γ;Φ ⊢ 𝑝1 ;𝑝2 ∼ 𝑠1 ; 𝑠2

if-u

Γ ⊢ 𝑐 : U Γ;Φ ⊢ 𝑝 ∼ 𝑠
Γ;Φ ⊢ if (𝑐) {𝑝} ∼ if (𝑐) {𝑠}

if-d

Γ ⊢ 𝑐 : D Γ;Φ ∧ 𝑐 ⊢ 𝑝 ∼ 𝑠
Γ;Φ ⊢ if (𝑐) {𝑝} ∼ 𝑠

for

Γ;Φ ⊢∼ 𝑟 I 𝑟 ′ : 𝜏 Γ, 𝑥 : 𝜏 (𝑟,𝑟 ′ ) ;Φ ⊢ 𝑝 ∼ 𝑠
Γ;Φ ⊢ for 𝑥 ∈ 𝑟 {𝑝} ∼ for 𝑥 ∈ 𝑟 ′ {𝑠}

Fig. 4. Relational-cost analysis of vectorized protocols vs scalar programs.

uniformity with 𝜏1 + 𝜏2 defined as follows U + 𝜏 = 𝜏 + U = 𝜏 + 𝜏 = 𝜏 , which states that the result

is uniform only when the type of both operands is uniform, otherwise the result is divergent D.
Judgment Γ ⊢ 𝑐 : 𝜏 states boolean expression 𝑐 has a type 𝜏 under typing context Γ. The rules are
similar to those of numeric expressions. Finally, judgment Γ ⊢ 𝑛..𝑚 : 𝜏 assigns a type to a loop

range. When both bounds of a range are uniform, the range is uniform.

Typing protocols with programs. We now describe our judgment to relate protocols with programs.

Judgment Γ;Φ ⊢ 𝑝 ∼ 𝑠 relates the execution costs of protocol 𝑝 and program 𝑠 under cost relation ∼
and metric𝑀 . Judgment Γ;Φ ⊢ 𝑝 = 𝑠 states that protocol 𝑝 has the same execution cost as that of

program 𝑠 , while Γ;Φ ⊢ 𝑝 ≤ 𝑠 states that the execution cost of 𝑝 is lower than the execution cost of

program 𝑠 . The judgment uses typing environment Γ for variables and constraint environment Φ
to control which threads are active. For instance, constraint t ∧ 𝑥 = 3 only activates threads for

which the condition 𝑥 = 3 evaluates to true.

We now explain the rules of judgment Γ;Φ ⊢ 𝑝 ∼ 𝑠 . Rule skip states that protocol skip has

an execution cost of 0 ticks. Rule acc states that the cost of a memory access is given by the

judgment Γ;Φ ⊢ 𝑀 (𝑛) ∼𝑚, called themetric analysis. We postpone the full definition to Section 5.3,

but illustrate with an example from Example 2.1: ∅, x : D(0..tid,0..W−1) ; t ⊢ ME (0) =W − x establishes
that the number of active threads accessing index 0 is given by the scalar expression W − x. In this

example, the type D(0..tid,0..W−1) being assigned to x gives us the required information to conclude

that the scalar expressionW− x is correct (see Lemma 5.8). Since variable x is picked from the same
iteration from both ranges, when we are at iteration 𝑖 , we have x = 𝑖W (vector) and x = 𝑖 (scalar).

This means there are W − 𝑖 active threads.
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Rule seq is straightforward. We have two rules for conditionals that depend on the type of the

test 𝑐 . Rule if-u states that when the test 𝑐 is uniform U and the conditional’s body is related Γ;Φ ⊢
𝑝 ∼ 𝑠 , then the conditional preserves the cost. When 𝑐 is thread divergent (Rule if-d), then the scalar

program cannot express the conditional directly, so we constrain the active threads, by extending

the typing environment Φwith the test 𝑐 . Indeed, by extending the constraint, we delegate capturing

the divergent condition 𝑐 to the metric analysis.

Rule for states that when the two iteration spaces are related, Γ;Φ ⊢ 𝑟 I 𝑟 ′ : 𝜏 , and we can relate

the cost of the loop bodies 𝑝 with 𝑠 under a typing context extended with 𝑥 : 𝜏 , then the two loops are

related. Iteration type ≈ states that both ranges must have the same number of iterations, iteration

type ⪯ represents that the left-hand side range must terminate before or at the same time of the

right-hand side, and iteration type ⪰ represents the converse. Judgment Γ;Φ ⊢∼ 𝑟 I 𝑟 ′ : 𝜏 , called
the loop analysis, lets us relate two iteration spaces with an iteration type I for a cost relation ∼.
We postpone the full definition to Section 5.2, but illustrate with an example. For instance, from

Example 2.1, the judgment ∅; t ⊢= 0..tid ≈ 0..W − 1 : D states that ranges have the same (≈) number

of iterations (here there are W iterations). The loop analysis yields a divergent type D because

threads become inactive at different iterations, i.e., we have thread divergence.

4.2 Running Examples
We demonstrate our type system by working through the derivations from the running examples

(Examples 2.1 and 2.2). Each derivation demonstrates the expressiveness of our type system: reason-

ing about thread-divergent loops with precise cost relationships and thread-divergent conditionals

with bounded costs. In both cases we postpone the proofs of loop and metric analyses to Sections 5.2

and 5.3, respectively.

Example 4.1. The following derivation proves Equation (1), from Example 2.1.

(6) ∅; t ⊢= 0..tid ≈ 0..W − 1 : D

(7) ∅, x : D(0..tid,0..W−1) ; t ⊢ 𝑀E (0) =W − x

∅, x : D(0..tid,0..W−1) ; t ⊢ A[0] = tick(W − x)
acc

∅; t ⊢ (for x ∈ 0..tid {A[0]}) = (for x ∈ 0..W − 1 {tick(W − x)})
for

The loop analysis of Equation (6) states that the vector-range 0..tid has the same number of

iterations (≈) as the scalar-range 0..W − 1, and that the vector-range is thread divergent (D), under
an empty environment ∅ and constraint t.

∅; t ⊢= 0..tid ≈ 0..W − 1 : D (6)

The metric analysis of Equation (7) establishes that the number of active threads (metric 𝑀E)

equals (=) the scalar expressionW−x. This example demonstrates our type system’s expressiveness

in capturing exact static bounds for thread-divergent metrics. Observe that even though the loop

range 0..tid is typed as divergent (D), which is a sound approximation of the execution behavior, the

typing does not prevent the metric analysis from deriving an exact cost relation (=). Divergent types

only add more proof effort, as uniform ranges are simpler to reason about. The typing environment

declares a relational range of values that can be assigned to x, that is, in the vectorized context x is

picked from 0..tid and in the scalar context x is picked from 0..(W − 1).

∅, x : D(0..tid,0..W−1) ; t ⊢ ME (0) =W − x (7)

Example 4.2. The following derivation shows the relational cost analysis stated in Equation (2),

from Example 2.2. Observe how the thread-divergent conditional pushes a constraint tid % 2 = 0



12 Gregory Blike, Hannah Zicarelli, Udaya Sathiyamoorthy, Julien Lange, and Tiago Cogumbreiro

which then affects the metric analysis.

(8) ∅; t ⊢≤ 0..𝑖 ≈ 0..𝑖 : U

(9) ∅, x : U0..𝑖,0..𝑖 ; t ∧ tid % 2 = 0 ⊢ ua(tid × 𝑖 + x) ≤ ⌊W/2⌋
∅, x : U0..𝑖,0..𝑖 ; t ∧ tid % 2 = 0 ⊢ A[tid × 𝑖 + x] ≤ tick(⌊W/2⌋)

acc

∅ ⊢ tid % 2 = 0 : D

∅, x : U0..𝑖,0..𝑖 ; t ⊢ if (tid % 2 = 0) {A[tid × 𝑖 + x]} ≤ tick(⌊W/2⌋)
if-d

∅; t ⊢ for x ∈ 0..𝑖 {if (tid % 2 = 0) {A[tid × 𝑖 + x]}} ≤ for x ∈ 0..𝑖 {tick(⌊W/2⌋)}
for

The loop analysis of Equation (8) states that the vector-range 0..𝑖 has the same number of

iterations (≈) as the scalar-range 0..𝑖 , and that the vector-range is thread uniform (U), under an
empty environment ∅ and constraint t.

∅; t ⊢≤ 0..𝑖 ≈ 0..𝑖 : U (8)

Themetric analysis of Equation (9) establishes that the number of uncoalesced accesses (metric ua)

is bounded from above (≤) by the scalar expression ⌊W/2⌋.

∅, x : U0..𝑖,0..𝑖 ; t ∧ tid % 2 = 0 ⊢ ua(tid × 𝑖 + x) ≤ ⌊W/2⌋ (9)

4.3 Closed Soundness
We present the main soundness result of this paper. Soundness establishes that static cost relations,

∅; t ⊢ 𝑝 ∼ 𝑠 , derived by our type system correspond to actual dynamic cost relations, (tW, ∅, ∅) |=
𝑝 ∼ 𝑠 , observed during execution. We first present a simplified version for closed terms (programs

without free variables), see Corollary 4.3 below. The empty environments ensure that protocols

and statements are closed, while the t constraint means all threads are active (denoted by tW

dynamically). The full proof with open terms is developed in Section 5.4.

Corollary 4.3 (Soundness for closed terms). Let 𝑀 be a metric and ∼ a cost relation. If
∅; t ⊢ 𝑝 ∼ 𝑠 then (tW, ∅, ∅) |= 𝑝 ∼ 𝑠 .

5 Meta-Theory and Soundness
This section describes the meta-theory to establish Corollary 4.3 as well as its generalized counter-

part. Readers interested primarily in the cost analysis approach and practical applications may skip

the technical development that follows. We prove that our static type system accurately captures dy-

namic GPU execution costs. Recall that all definitions and proofs in this article have been formalized

and machine-checked in Rocq. The goal of this section is twofold: first, we establish the soundness

of our type system; second, we demonstrate the expressiveness and practical applications illustrated

by our running examples (Examples 2.1 and 2.2) through formal proofs of their metric and loop

analyses. Our approach to the metric and loop analysis judgments departs from the usual way of

defining type systems: to maintain generality and support arbitrary metrics and cost relations, we

define these judgments in terms of dynamic relational-cost rather than through syntactic rules. We

accomplish these goals through compatible environments (Section 5.1), followed by three main

developments. First, we define loop analysis, establish a key soundness lemma for loops, and prove

the loop analyses (Section 5.2). Second, we formally define metric analysis and prove the soundness

of the metric analyses (Section 5.3). Third, we present our main contribution: our general soundness

theorem that ensures static cost derivations correspond to dynamic execution costs (Section 5.4).

5.1 Compatible Environments
Our goal with soundness is to state that a static relational cost (Γ;Φ ⊢ 𝑝 ∼ 𝑠) implies a dynamic

relational cost (𝐸 |= 𝑝 ∼ 𝑠). To be able to state such a result, we need an invariant, which relates a

typing environment Γ;Φ with a dynamic environment 𝐸.
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Nonempty ranges 𝐸 |= 𝑟 ⇓ 𝑏 𝐸 |= 𝑟 ↓ 𝑏

⟨𝑛 ≤ 𝑚,𝜎⟩ ⇓ 𝐶 𝐶 ≠ fW

(𝐵, 𝜎, 𝑆) |= 𝑛..𝑚 ⇓ t

⟨𝑛 ≤ 𝑚,𝜎⟩ ⇓ fW

(𝐵, 𝜎, 𝑆) |= 𝑛..𝑚 ⇓ f

⟨𝑛 ≤ 𝑚, 𝑆⟩ ↓ 𝑏
(𝐵, 𝜎, 𝑆) |= 𝑛..𝑚 ↓ 𝑏

Uniform expressions 𝐸 |= 𝑛 unif 𝐸 |= 𝑐 unif 𝐸 |= 𝑟 unif

𝑥 ∈ fv(𝑛) =⇒ 𝑆 (𝑥)W = 𝜎 (𝑥)
(𝐵, 𝜎, 𝑆) |= 𝑛 unif

𝑥 ∈ fv(𝑐) =⇒ 𝑆 (𝑥)W = 𝜎 (𝑥)
(𝐵, 𝜎, 𝑆) |= 𝑐 unif

𝐸 |= 𝑛 unif 𝐸 |=𝑚 unif

𝐸 |= 𝑛..𝑚 unif

Environment compatibility Γ;Φ ⊲⊳ 𝐸

empty

∅; t ⊲⊳ (tW, ∅, ∅)

cnd

Γ;Φ ⊲⊳ (𝐵, 𝜎, 𝑆) ⟨𝑐, 𝜎⟩ ⇓ 𝐶
Γ;Φ ∧ 𝑐 ⊲⊳ (𝐵 ∧𝐶, 𝜎, 𝑆)

var-1

Γ;Φ ⊲⊳ (𝐵, 𝜎, 𝑆) 𝑥 ∉ dom Γ (𝜏 = U =⇒ (𝐵, 𝜎, 𝑆) |= 𝑟 unif ∧ 𝑟 ′ = 𝑟 )
⟨ 𝑗 + 𝑟, 𝜎⟩ ⇓ (𝐼 ,𝐶) 𝐶 ≠ fW ⟨ 𝑗 + 𝑟 ′, 𝑆⟩ ↓ (𝑖, t)

Γ, 𝑥 : 𝜏 (𝑟,𝑟 ′ ) ;Φ ⊲⊳ (𝐵 ∧𝐶, 𝜎 [𝑥 ↦→ 𝐼 ], 𝑆 [𝑥 ↦→ 𝑖])
var-2

Γ;Φ ⊲⊳ (𝐵, 𝜎, 𝑆) 𝑥 ∉ dom Γ ⟨𝑟, 𝜎⟩ ⇓ (𝐼 ,𝐶) ⟨𝑟 ′, 𝑆⟩ ↓ (𝑖, 𝑏) (𝑏 = f ∨𝐶 = fW)
Γ, 𝑥 : 𝜏 (𝑟,𝑟 ′ ) ;Φ ⊲⊳ (𝐵 ∧𝐶, 𝜎 [𝑥 ↦→ 𝐼 ], 𝑆 [𝑥 ↦→ 𝑖])

Iteration space judgment 𝐸 |= 𝑟 I 𝑟 ′

step

𝐸 |= (1 + 𝑟 ) I (1 + 𝑟 ′) 𝐸 |= 𝑟 ⇓ t 𝐸 |= 𝑟 ′ ↓ t

𝐸 |= 𝑟 I 𝑟 ′

eq

𝐸 |= 𝑟 ⇓ f 𝐸 |= 𝑟 ′ ↓ f

𝐸 |= 𝑟 ≈ 𝑟 ′

le

𝐸 |= 𝑟 ⇓ 𝑏 𝐸 |= 𝑟 ′ ↓ f

𝐸 |= 𝑟 ⪯ 𝑟 ′

ge

𝐸 |= 𝑟 ⇓ f 𝐸 |= 𝑟 ′ ↓ 𝑏
𝐸 |= 𝑟 ⪰ 𝑟 ′

Cost relation and iteration type compatibility ∼ : I

∼ : ≈
∀𝑖 : 0 ∼ 𝑖
∼ : ⪯

∀𝑖 : 𝑖 ∼ 0

∼ : ⪰

Fig. 5. Soundness judgments.

Judgment Γ;Φ ⊲⊳ 𝐸 (Figure 5) states that typing environment Γ;Φ is compatible with a dynamic

environment 𝐸. Rule empty states that the empty typing context is compatible with the empty

runtime environment. The constraint t states that all threads are initially active, which is captured

dynamically by tW. The remaining rules extend compatible environments Γ;Φ⊲⊳ (𝐵, 𝜎, 𝑆) with either
a new constraint (Rule cnd), or a new variable (Rules var-1 and var-2). Rule cnd adds a static

constraint 𝑐 and dynamic constraint𝐶 when ⟨𝑐, 𝜎⟩ ⇓ 𝐶 to a compatible environment Γ;Φ ⊲⊳ (𝐵, 𝜎, 𝑆),
which mirrors the Rule if-t of protocol evaluation (Figure 2). The expression 𝑐 (dynamically 𝐶)

represents a test of a conditional that restricts the set of active threads Φ (dynamically 𝐵).



14 Gregory Blike, Hannah Zicarelli, Udaya Sathiyamoorthy, Julien Lange, and Tiago Cogumbreiro

Rules var-1 and var-2 allow us to extend compatible environments with a binding for variable 𝑥 .

This amounts to adding type 𝜏 for 𝑥 in the static environment, and adding corresponding values

(scalar 𝑖 in the scalar environment 𝑆 and vector 𝐼 in the vector environment 𝜎) in the dynamic

environment. The added values are picked from their respective ranges. Rule var-1 is used when

both ranges 𝑟 and 𝑟 ′ are nonempty. Rule var-2 is used when at least one range is empty.

To explain these rules in detail, we first need to define (dynamic) uniformity. We introduce

uniformity for expressions in Figure 5. Judgment 𝐸 |= 𝑛 unif states that expression 𝑛 is uniform

under environment 𝐸. We say that an expression 𝑛 is uniform when every free variable 𝑥 therein

has the “same” value in vector 𝜎 and scalar 𝑆 environments, that is, 𝑆 (𝑥)W = 𝜎 (𝑥). Function fv(·)
is the standard free variables function for protocols 𝑝 , statements 𝑠 , and expressions (𝑟 , 𝑐 , and

𝑛). Judgment 𝐸 |= 𝑐 unif states that expression 𝑐 is uniform under environment 𝐸, and judgment

𝐸 |= 𝑟 unif states the same for range expressions.

Rule var-1 states that the value being assigned to a loop variable 𝑥 is picked in lockstep from the

same 𝑗-th iteration picked from the vector 𝑟 and scalar 𝑟 ′ ranges. The rule also requires range 𝑟 to

be uniform (𝐸 |= 𝑟 unif) when the assigned type is uniform 𝜏 = U. Rule var-2 states that if either of
the ranges have terminated, 𝑏 = f ∨𝐶 = fW, then the first value of each range (vector 𝐼 and scalar 𝑖)

are assigned to variable 𝑥 in their respective environment (vector 𝜎 [𝑥 ↦→ 𝐼 ] and scalar 𝑆 [𝑥 ↦→ 𝑖]).
Having established the rules for compatible environments, we can now examine their implications.

We observe that compatible environments yield strong guarantees about the possible values of each

variable and how such values relate. For instance, given type information Γ(𝑥) = 𝜏 (𝑟,𝑟 ′ ) if we know
that both ranges are nonempty (i.e., ⟨𝑟, 𝑆⟩ ↓ t and ⟨𝑟 ′, 𝜎⟩ ⇓ t), then there must exist an iteration 𝑖

such that: the vector-value of 𝑥 (i.e., 𝜎 (𝑥) = 𝐼 ) results from iteration 𝑖 (i.e., ⟨𝑖 + 𝑟, 𝜎⟩ ⇓ (𝐼 , 𝐵′)),
and range 𝑟 is nonempty at that point (𝐵 ≠ fW); the scalar-value of 𝑥 (i.e., 𝑆 (𝑥) = 𝑗 ) results from

iteration 𝑖 (i.e., ⟨𝑖 + 𝑟 ′, 𝑆⟩ ↓ ( 𝑗, t)), and range 𝑟 ′ is nonempty at that point.

We formalize this relation in Lemma 5.1 below.

Lemma 5.1. Let Γ;Φ ⊲⊳ (𝐵, 𝜎, 𝑆). If Γ(𝑥) = 𝜏 (𝑟,𝑟 ′ ) , ⟨𝑟, 𝑆⟩ ↓ t, ⟨𝑟 ′, 𝜎⟩ ⇓ t, then there exists 𝑖 such that
⟨𝑖 + 𝑟, 𝜎⟩ ⇓ (𝐼 , 𝐵′) and 𝐵′ ≠ fW and 𝜎 (𝑥) = 𝐼 ; and, ⟨𝑖 + 𝑟 ′, 𝑆⟩ ↓ ( 𝑗, t) and 𝑆 (𝑥) = 𝑗 .

Proof. The proof follows by induction on the structure of Γ;Φ ⊲⊳𝐸 and the various cases proceed

with usual weakening and strengthening lemmas, all are included in the Rocq mechanization. □

We introduce an auxiliary result that obtains an expression encoding the vector of active threads.

Lemma 5.2 (Active thread condition). Let function 𝑎𝑐𝑡 (Γ) be defined inductively as 𝑎𝑐𝑡 (∅) = t
and 𝑎𝑐𝑡 (Γ, 𝑥 : 𝜏 (𝑛..𝑚,𝑟 ′ ) ) = 𝑎𝑐𝑡 (Γ) ∧ 𝑛 ≤ 𝑥 ≤ 𝑚. If Γ;Φ ⊲⊳ (𝐵, 𝜎, 𝑆), then ⟨𝑎𝑐𝑡 (Γ) ∧ Φ, 𝑆⟩ ↓ 𝐵.

Proof. The proof follows by induction on the structure of Γ;Φ ⊲⊳ (𝐵, 𝜎, 𝑆). □

5.2 Loop Analysis
In this section, we present three main developments. First, we define the loop analysis judgment

directly in terms of dynamic relational behavior between iteration spaces. Second, we establish our

main result: a key soundness lemma for loops. Third, we prove the loop analyses for our running

examples (Examples 4.1 and 4.2).

Relational evaluation of ranges. Judgment 𝐸 |= 𝑟 I 𝑟 ′ (defined in Figure 5) states that the number

of iterations of vector-𝑟 are related with the number of iterations of scalar 𝑟 ′ according to iteration

type I. The judgment “reduces” both ranges one step at a time (Rule step), by incrementing the

lower bound, until one of the ranges terminates, depending on the loop type’s constraints. When

the iteration type is ≈ then both ranges must terminate together (Rule eq). When the iteration type
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is ⪯ then if the scalar-range terminates, then vector-range must terminate (Rule le). When the

iteration type is ⪰ then if the vector-range terminates, then scalar-range must terminate (Rule ge).

Loop analysis. We can now define the loop analysis judgment formally. The judgment holds when

five conditions are satisfied: (1) the cost relation ∼ and iteration type I are compatible (∼ : I), (2)
the vector-range 𝑟 is well typed, (3) the scalar range 𝑟 ′ is well-formed, (4) for uniform ranges, both

ranges must be syntactically equal, and (5) the ranges are dynamically related under all compatible

environments. Well-formed terms 𝛼 (e.g., a statement 𝑠) are defined as 𝑋 ⊢ 𝛼
def

= 𝑋 ⊆ fv(𝛼).
Judgment Γ;Φ ⊢∼ 𝑟 I 𝑟 ′ : 𝜏 requires that for any compatible environment 𝐸 (where Γ;Φ ⊲⊳ 𝐸), the

dynamic relation 𝐸 |= 𝑟 I 𝑟 ′ holds between the vector and scalar iteration spaces.

Definition 5.3 (Loop analysis). Judgment Γ;Φ ⊢∼ 𝑟 I 𝑟 ′ : 𝜏 is defined as follows.

∼ : I Γ ⊢ 𝑟 : 𝜏 dom Γ ⊢ 𝑟 ′ 𝜏 = U =⇒ 𝑟 = 𝑟 ′ ∀𝐸 : Γ;Φ ⊲⊳ 𝐸 =⇒ 𝐸 |= 𝑟 I 𝑟 ′

Γ;Φ ⊢∼ 𝑟 I 𝑟 ′ : 𝜏
Soundness for loops. Our soundness result for loops establishes loop-level soundness by proving

the soundness of each individual iteration, i.e., by comparing iteration 𝑖 of loop 𝑟 with iteration 𝑖 of

range 𝑟 ′. To achieve an expressive system that can relate loops of different lengths, we introduce

iteration types I and a notion of compatibility that restricts which cost relations can be combined

in loops of different iteration types.

Cost relation compatibility. Judgment ∼ : I, introduced in Figure 5, governs the requirements

on a cost relation ∼ to compare loops of an iteration type I. To understand the rules, consider

comparing loops for 𝑥 ∈ 𝑟 {𝑝} ∼ for 𝑥 ∈ 𝑟 ′ {𝑠} where we have an iteration type Γ;Φ ⊢∼ 𝑟 I 𝑟 ′ : 𝜏 .
Equal type ≈ imposes no restrictions since it guarantees the same number of iterations for both

ranges, and any ∼ is closed under addition. At-most (⪯) requires 0 ∼ 𝑖 for any 𝑖 since the first loop
may terminate (a cost of 0) before the second (a cost of 𝑖). At-least (⪰) requires 𝑖 ∼ 0 for any 𝑖

since the second loop may terminate (a cost of 0) before the first (a cost of 𝑖). Relations =, ≤, ≥ are

compatible with ≈; ≤ with ⪯; and ≥ with ⪰.

Nonempty ranges. We introduce two judgments (in Figure 5) to state whether a range has elements,

one for vector expressions and one for scalar expressions. Judgment 𝐸 |= 𝑟 ⇓ 𝑏 (resp. 𝐸 |= 𝑟 ↓ 𝑏)
states whether range 𝑟 has at least one element (𝑏 = t) using the vector (resp. scalar) semantics

under environment 𝐸.

The following lemma states that as long as relation ∼ and type I are compatible, ∼ : I, then if

we can prove that for every iteration the loop bodies are related 𝑝 ∼ 𝑠 then the loops are related,

i.e., for 𝑥 ∈ 𝑟 {𝑝} ∼ for 𝑥 ∈ 𝑟 ′ {𝑠}. For each iteration, we are given that: vector 𝐼 is the vector-value

of variable 𝑥 and the constraint on active threads 𝐶 are both given by the vector-evaluation of

iteration 𝑖 , that is, ⟨𝑖+𝑟, 𝜎⟩ ⇓ (𝐼 ,𝐶); 𝑗 is the scalar-value of variable 𝑥 ; and, both ranges are nonempty.

Lemma 5.4. If ∼ is a cost relation, ∼ : I, dom𝜎 ⊢ for 𝑥 ∈ 𝑟 {𝑝}, dom 𝑆 ⊢ for 𝑥 ∈ 𝑟 ′ {𝑠}, 𝐸 |= 𝑟 I 𝑟 ′,
and ∀𝑖, 𝐼 ,𝐶, 𝑗

⟨𝑖 + 𝑟, 𝜎⟩ ⇓ (𝐼 ,𝐶) ∧𝐶 ≠ fW ∧ ⟨𝑖 + 𝑟 ′, 𝑆⟩ ↓ ( 𝑗, t) =⇒ (𝐵 ∧𝐶, 𝜎 [𝑥 ↦→ 𝐼 ], 𝑆 [𝑥 ↦→ 𝑗]) |= 𝑝 ∼ 𝑠
then (𝐵, 𝜎, 𝑆) |= for 𝑥 ∈ 𝑟 {𝑝} ∼ for 𝑥 ∈ 𝑟 ′ {𝑠}.

Proof of loop analysis of Example 4.1. Our goal is to prove the derivation of Equation (6) (∅; t ⊢=
0..tid≈ 0..W − 1 : D). This proof demonstrates our analysis’s ability to handle thread-divergent loop

bounds where different threads execute different numbers of iterations. The key insight is showing
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that despite the divergent execution, the total iteration count remains predictable and matches the

sequential case. We prove a slightly stronger result following.

Lemma 5.5. If ∼ : I, then Γ;Φ ⊢∼ (𝑖 ..tid) I (𝑖 ..(W − 1)) : D for any 𝑖 .

Proof. The proof strategy is similar to that of Lemma 5.6. The interesting case is showing

that max(𝐼N − 𝑖W) = W − 1 − 𝑖 , which correspond to the number of iterations for vector and scalar

ranges, respectively. □

Proof of loop analysis of Example 4.2. Our goal is to prove the derivation of Equation (8) (∅; t ⊢≤
0..w ≈ 0..w : U). This proof establishes the correctness of our analysis for uniform loops where

all threads execute the same iteration space. The key contribution is showing that uniformity

guarantees identical iteration counts between vector and scalar executions, enabling precise cost

analysis. We prove a stronger result, if the vector-range 𝑟 is uniform and 𝑟 = 𝑟 ′, then the following

loop analysis holds.

Lemma 5.6 (Uniform-loop analysis). If Γ ⊢ 𝑟 : U and ∼ : I, then Γ;Φ ⊢∼ 𝑟 I 𝑟 : U.

Proof. We give a proof intuition, as this proof requires introducing multiple new judgments that

distract from the focus of the paper. First, we define a judgment that yields the number of iterations

of a range. Next, we show that if the vector 𝑟 and scalar 𝑟 ′ ranges have the same number of iterations

under an environment 𝐸, then Γ;Φ ⊢∼ 𝑟 I 𝑟 ′. Then, from Γ ⊢ 𝑟 : U we get 𝐸 |= 𝑟 unif. Finally, we
show that if 𝐸 |= 𝑟 unif, then 𝑟 has the same length under vector and scalar evaluation. □

5.3 Metric Analysis
In this section, we define the metric analysis judgment and prove the metric analyses for our

running examples (Examples 4.1 and 4.2). To make our type system support arbitrary metrics and

cost relations, we depart from the usual way of defining type systems for this judgment. Rather than

resorting to syntactic rules, we define the metric analysis in terms of the dynamic relational-cost.

Judgment Γ;Φ ⊢ 𝑀 (𝑛) ∼𝑚 requires that for any compatible environment 𝐸 (where Γ;Φ ⊲⊳ 𝐸), the

dynamic cost relation 𝐸 |= A[𝑛] ∼ tick(𝑚) holds.

Definition 5.7 (Metric analysis). A metric analysis is parametric on metric𝑀 and on relation ∼.

Γ;Φ ⊢ 𝑀 (𝑛) ∼𝑚 def

= ∀𝐸 : Γ;Φ ⊲⊳ 𝐸 =⇒ 𝐸 |= A[𝑛] ∼ tick(𝑚)

The compatibility constraint is what makes metric analysis proofs possible. For instance, we

cannot show 𝐸 |= A[0] = W− x for an arbitrary 𝐸, as we have no guarantee that variable x respects
its type range 0..W − 1 and no information about which threads are active.

Verification of running examples. We prove that the metric analyses from Examples 4.1 and 4.2

hold under compatible environments. The proof of the former example showcases our analysis’s

expressiveness in capturing thread-divergent costs. We can statically predict runtime costs that

vary dynamically as threads diverge during execution. Moreover, the following proof demonstrates

how compatibility enables us to establish the exact equality.

Lemma 5.8. Proposition ∅, x : D(0..tid,0..W−1) ; t ⊢ ME (0) =W − x, from Equation (7), holds.

Proof. It is enough to show that given ∅, x : D(0..tid,0..W−1) ; t ⊢ 𝐸 and ⟨W − x, 𝑆⟩ ↓ 𝑖 where

𝐸 = (𝐵, 𝜎, 𝑆), then we must show count(𝐵, t) = 𝑖 . Let 𝑆 (x) = 𝑖x and 𝜎 (x) = 𝐼x. From ⟨W − x, 𝑆⟩ ↓ 𝑖
we can get that W − 𝑖x = 𝑖 . We can do a case analysis test whether the value of x (i.e., 𝑖x) falls
within the loop range 0..W − 1, given that we have ⟨x < W, 𝑆⟩ ↓ 𝑏 for some 𝑏 and we can do a case

analysis on 𝑏.
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Case 𝑖x < W. We first assume that 𝐼x = 𝑖x
W

to conclude our case. Afterwards, we prove 𝐼x = 𝑖x
W
.

We have that 𝐵 = 0
W ≤ 𝑖x

W ≤ 𝐼N (from Lemma 5.2), which can be simplified to 𝐵 = 𝑖x
W ≤ 𝐼N.

Our goal becomes count(𝑖xW ≤ 𝐼N, t) = W − 𝑖x, which can be obtained by proving a more general

result: ∀𝑙, 𝑢, 𝑥 : 𝑙 ≤ 𝑢 =⇒ count((𝑥 + 𝑙)𝑢+1 ≤ (𝑥 + 𝑙, . . . , 𝑥 + 𝑙 + 𝑢), t) = (𝑢 + 1) − 𝑙 . We are left with

showing that 𝐼x = 𝑖x
W
. Firstly, we use Lemma 5.1 to obtain ∃ 𝑗 such that ⟨(0..tid) + 𝑗, 𝜎⟩ ⇓ (𝐼x, 𝐵′)

and ⟨(0..W − 1) + 𝑗, 𝑆⟩ ↓ (𝑖x, t). We can now use the latter to conclude that 𝑗 = 𝑖x. By replacing

𝑗 = 𝑖x in ⟨(0..tid) + 𝑗, 𝜎⟩ ⇓ (𝐼x, 𝐵′) and inverting the latter, we conclude our remaining goal.

Case 𝑖x ≥ W. We first show that we can conclude this case given 𝐵 = fW, and then we show how

to obtain 𝐵 = fW. We have that count(𝐵, t) = 𝑖 ⇐⇒ count(fW, t) = W − 𝑖x ⇐⇒ 0 = W − 𝑖x.
Thus, we are left showing that 0 = W − 𝑖x, which follows from 𝑖x ≥ W. We are left with showing

that 𝐵 = fW. By doing a case analysis on ∅, x : D(0..tid,0..W−1) ; t ⊢ 𝐸 understand the structure of 𝐵 we

get two cases to consider. Case var-1 (range is not empty), then we can obtain 𝑖x < W and reach a

contradiction. Case var-2 (range is empty) yields assumptions 𝐵 = 𝐵1 ∧ 𝐵2, ⟨x ≤ W, 𝜎⟩ ⇓ 𝐵1, and
(𝐴1) 𝐵1 = fW ∨ 𝑏 = f. From Lemma 5.5 can conclude that 𝐵1 = fW ∧ 𝑏 = f and thus 𝐵 = fW. □

The proof of Equation (9) demonstrates two key technical contributions of our approach. First,

our metric analysis can express an exact cost of a computation running under a thread-divergent

conditional like tid % 2 = 0, which is a novel contribution. Second, we establish upper bounds

for a complex metric (uncoalesced accesses) by leveraging the exact cost of a simpler metric

(active threads). To prove that the metric analysis of this example holds, we begin by defining the

uncoalesced accesses metric formally, then establish the upper bound relationship.

We can define an uncoalesced accesses metric that counts the number of distinct memory

transactions (cache lines) required to satisfy the indices in 𝐼 for active threads 𝐵 of a warp.

ua(𝐵, 𝐼 ) = |{⌊𝐼 ( 𝑗 )/C⌋ | 0 ≤ 𝑗 < W ∧ 𝐵( 𝑗) = t}|
Parameter C represents the number of array elements that can be fetched in a single memory

transaction and depends on the type of the array being accessed. Henceforth, and to help with

comparing with related work, we set the parameter to match the choice of [45], i.e., C = 4. The

relevant points to keep in mind for our analysis are that the uncoalesced accesses metric depends

on which threads are active (𝐵) and which indices are being accessed (𝐼 ). Next, we show that the

total number of active threads𝑀E is an upper bound for uncoalesced accesses.

Lemma 5.9. If Γ;Φ ⊢ 𝑀E (𝑛) ≤ 𝑚, then Γ;Φ ⊢ ua(𝑛) ≤ 𝑚.

Finally, we can prove the metric analysis of Equation (9).

Lemma 5.10. ∅, i : U0..𝑖,0..𝑖 ; t ∧ tid % 2 = 0 ⊢ ua(tid × 𝑖 + i) ≤ ⌊W/2⌋

Proof. By using Lemma 5.9 we simply need to show ∅, i : U0..𝑖,0..𝑖 ; t ∧ tid % 2 = 0 ⊢ 𝑀E (tid ×
𝑖 + i) ≤ ⌊W/2⌋. The rest of the proof follows a similar structure of the proof of Lemma 5.8. It is

enough to show that given ∅, i : U0..𝑖,0..𝑖 ; t ∧ tid % 2 = 0 ⊢ 𝐸 where 𝐸 = (𝐵, 𝜎, 𝑆), then we must show

count(𝐵, 𝐼N % 2
W = 0

W) = ⌊W/2⌋, which follows by induction on W. □

5.4 Soundness
In this sectionwe prove ourmain result, Corollary 4.3. To this end, we introduce amore general result

on soundness that applies to any compatible environment 𝐸 (where Γ;Φ ⊢ 𝐸). If a protocol 𝑝 and a

statement 𝑠 are related by ∼ statically (Γ;Φ ⊢ 𝑝 ∼ 𝑠), then the comparison holds dynamically (𝐸 |=
𝑝 ∼ 𝑠). We first present a well-formedness lemma, then our general soundness theorem with its

proof by induction on the typing derivation. Finally, we restate Corollary 4.3 with its proof as a

direct corollary of the general result.
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Fig. 6. Overview of the data flow of Pico.

Lemma 5.11. Let 𝐸 = (𝐵, 𝜎, 𝑆). If Γ;Φ ⊢ 𝐸 and Γ;Φ ⊢ 𝑝 ∼ 𝑠 , then dom𝜎 ⊢ 𝑝 and dom 𝑆 ⊢ 𝑠 .

Theorem 5.12 (Soundness). If Γ;Φ ⊢ 𝑝 ∼ 𝑠 , then for any 𝐸 such that Γ;Φ ⊢ 𝐸, then 𝐸 |= 𝑝 ∼ 𝑠 .

Proof. Let 𝐸 = (𝐵, 𝜎, 𝑆). The proof follows by induction on the derivation of Γ;Φ ⊢ 𝑝 ∼ 𝑠 .
Case skip. Since ⟨skip, 𝐵, 𝜎⟩ ⇓𝑀 0, ⟨tick(0), 𝑆⟩ ↓ 0, and 0 ∼ 0 (from Definition 3.3), then we can

conclude 𝐸 |= skip ∼ tick(0).
Case acc. We get Γ;Φ ⊢ 𝑀 (𝑛) ∼ 𝑠 and must show 𝐸 |= A[𝑛]𝑠 , which follows from Definition 5.7.

Case seq. We have induction hypotheses 𝐸 ⊢ 𝑝1 ≤ 𝑠1 and 𝐸 ⊢ 𝑝2 ≤ 𝑠2. Our goal is to show

𝐸 ⊢ 𝑝1;𝑝2 ≤ 𝑠1; 𝑠2. From 𝐸 |= 𝑝1 ∼ 𝑠1 we get ⟨𝑝1, 𝐵, 𝜎⟩ ⇓𝑀 𝑖1 and ⟨𝑠1, 𝑆⟩ ↓ 𝑗1 where the two costs are

in the relation 𝑖1 ∼ 𝑗1. From 𝐸 |= 𝑝2 ∼ 𝑠2 we get ⟨𝑝2, 𝐵, 𝜎⟩ ⇓𝑀 𝑖2 and ⟨𝑠2, 𝑆⟩ ↓ 𝑗2 where the two costs
are in the relation 𝑖2 ∼ 𝑗2. To conclude, we must show (𝑖1 + 𝑖2) ∼ ( 𝑗1 + 𝑗2), which holds since ∼ is

closed under addition.

Case if-u. We have Γ ⊢ 𝑐 : U, our induction hypothesis is 𝐸 |= 𝑝 ∼ 𝑠 , and we must show 𝐸 |=
if (𝑐) {𝑝} ∼ if (𝑐) {𝑠}. We can get that ⟨𝑐, 𝜎⟩ ⇓ 𝑏W and ⟨𝑐, 𝑆⟩ ↓ 𝑏 from Γ ⊢ 𝑐 : U. If 𝑏 = t then we can

conclude by using our induction hypothesis. Otherwise, 𝑏 = t and we can conclude since 0 ∼ 0.

Case if-d.We have Γ ⊢ 𝑐 : U, our induction hypothesis is ∀𝐸′ : Γ;Φ ∧ 𝑐 ⊢ 𝐸′ =⇒ 𝐸′ |= 𝑝 ∼ 𝑠 , and
we must show 𝐸 |= if (𝑐) {𝑝} ∼ 𝑠 . We have that there exists a vector 𝐵 such that ⟨𝑐, 𝜎⟩ ⇓ 𝐶 , thus we
can obtain (𝐵 ∧𝐶, 𝜎, 𝑆) |= 𝑝 ∼ 𝑠 from our induction hypothesis and Rule cnd. The remainder of

the case uses the rules for if-t or if-f of Figure 2, by doing a case analysis on 𝐶 = fW.

Case for. We start by applying Lemma 5.4, Lemma 5.11, and our induction hypothesis. We

get Γ, 𝑥 : 𝜏 ;Φ ⊢ (𝐵 ∧𝐶, 𝜎 [𝑥 ↦→ 𝐼 ], 𝑆 [𝑥 ↦→ 𝑗]), which follows from using Rule for-2.

□

Corollary 4.3 (Soundness for closed terms). Let 𝑀 be a metric and ∼ a cost relation. If
∅; t ⊢ 𝑝 ∼ 𝑠 then (tW, ∅, ∅) |= 𝑝 ∼ 𝑠 .

Proof. This follows directly from the general soundness theorem above with the empty com-

patible environment ∅; t ⊲⊳ (tW, ∅, ∅). □

6 Pico: Cost Analysis for GPU Kernels
Pico implements resource cost analysis to estimate the performance costs of bank conflicts on

shared memory and uncoalesced accesses on global memory in GPU kernels. The data flow of our

tool is depicted in Figure 6. Pico uses Faial [19] to convert a CUDA kernel into a memory access

protocol 𝑝 (Section 6.1), which then goes through two main transformations to yield a symbolic

cost 𝑛: (Section 6.2) relational cost generation that converts a protocol 𝑝 into a sequential statement 𝑠

such that 𝑝 ≤ 𝑠 , and (Section 6.3) sequential cost analysis that takes a sequential statement 𝑠 and

computes an upper-bound cost 𝑛, using a computer algebra system (CAS), or an off-the-shelf cost

analysis tool. We conclude by detailing the implementation of our metric analyses in Section 6.4

and our exactness check for precision analysis in Section 6.5. Notably, our translation to CAS does
not add approximations to the analysis, these can only result from the relational-cost generation step.
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6.1 Translating CUDA into Memory Access Protocols
Pico uses Faial to translate CUDA kernels into Memory Access Protocols by parsing the source

code with libclang [36] and extracting memory accesses with their surrounding control-flow from

the AST. Accurate cost analysis for our target metrics (uncoalesced accesses and bank conflicts)

depends on preserving this control-flow in the protocol.

The cost analysis becomes inexact (i.e., the cost relation becomes ≤) when program variables are

over-approximated, yielding upper bounds instead of exact costs. The translation introduces over-

approximations when: variable updates cannot be captured (e.g., unsupported mutation patterns

or external function calls), loop bounds are not found (e.g., unsupported while-loops), or indices
are computed from array values. For instance, an array read in a conditional such as if(A[x]>0)
is over-approximated as if($A1 > 0), where $A1 is an unconstrained variable that weakens

the conditional. Similarly, a read used as an index in B[A[x]] is over-approximated as B[$A2],
weakening the metric analysis. Liew et al. [43] discuss sources and impact of over-approximation

in memory access protocols. In Section 6.5, we develop an exactness analysis to measure how

frequently over-approximated variables impact conditionals and loops, with results in Section 7.

Faial supports CUDA features essential for memory cost analysis: barrier synchronization,

atomics, memory spaces (global and shared memory), and multi-dimensional thread identifiers.

Supported C++ features include templates, array aliasing, bitwise operations, inter-procedural

calls, for/do/while-loops, and kernel parameters. Unsupported features include memory fences,

warp-level communication primitives, and the thread-cooperative runtime. We direct the interested

reader to [19, §6] and [43, §5.1] for a detailed discussion of supported features.

6.2 Relational-Cost Generation
Generating a statement 𝑠 from a protocol 𝑝 such that 𝑝 ≤ 𝑠 consists of three stages: optimization,

loop analysis, and metric analysis. This is done by traversing the protocol 𝑝 recursively and using

the rules from Figure 4 to generate 𝑠 .

Optimization. Pico first prepares protocols for analysis through array filtering and constant

folding to increase precision and simplify other stages of the cost analysis. This optimization stage

takes a protocol as input and outputs an optimized protocol. Arrays are filtered by their memory

type (shared memory, global memory, etc.) to select relevant memory locations — shared memory

arrays for bank conflict analysis, global memory arrays for uncoalesced access analysis. Then,

Pico performs constant folding and propagation when there are known parameters, such as block

dimensions, grid dimensions, and kernel parameters. Constant folding eliminates conditionals and

unrolls loops while increasing precision in the metric analysis by replacing variables with their

values whenever possible.

Loop analysis. When traversing the protocol to generate a program, our loop analysis typechecks

each vector-range 𝑟 and matches on the resulting type. Thread-uniform ranges. If the vector-
range 𝑟 is thread-uniform (type U), then our algorithm proceedswith Lemma 5.6, which states Γ;Φ ⊢∼
𝑟 ≈ 𝑟 : U. That is, our algorithm takes a uniform loop 𝑟 , and outputs the same range 𝑟 as scalar.

Thread-divergent ranges. If the vector-range 𝑟 = 𝑛..𝑚 is thread-divergent (type D), then our

algorithm replaces tid in 𝑟 by max(𝑚 −𝑛), maximizing the iteration space. For example, Lemma 5.5

shows that Γ;Φ ⊢∼ (𝑖 ..tid) I (𝑖 ..(W − 1)) : D, so maximizing tid − 𝑖 yields 𝑟 ′ = 𝑖 ..(W − 1). In more

detail, our algorithm outputs a scalar range 𝑟 ′ such that Γ;Φ ⊢∼ 𝑛..𝑚 ≈ 𝑟 ′ : D when all free variables

are thread-uniform, i.e., ∀𝑥 ∈ fv(𝑛..𝑚) =⇒ Γ(𝑥) = U. The procedure is to replace tid with

the following optimization problem (handled by an off-the-shelf SMT solver): what value of tid
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maximizes the number of iteration𝑚 − 𝑛, formally:

max

tid
(𝑚 − 𝑛)

The constraint ∀𝑥 ∈ fv(𝑛..𝑚) =⇒ Γ(𝑥) = U is necessary, otherwise the optimization may generate

potentially impossible valuations in the output range.

Metric analysis. When traversing the protocol to generate a program, our metric analysis pro-

cesses each memory access to generate cost annotations. Since memory access protocols support

multi-dimensional array accesses, and metric analyses are defined in terms of hardware-level

accesses, Pico translates each memory access from source-code-level to hardware-level as fol-

lows. First, by flattening multi-dimensional array accesses, then by applying data-type multipliers

to match how GPU hardware addresses memory. For instance, when an array A is declared as

int A[512][32], a source-code access A[i][j] becomes a hardware access A[(i*32 + j) *
sizeof(int)]. Pico then invokes a metric analysis to generate a cost, as per Definition 5.7.

6.3 Sequential Cost Analysis
This stage takes a sequential statement 𝑠 and computes its cost 𝑛. Pico provides multiple backends:

(𝑖) our bespoke solution that relies on a Computer-Algebra-System (CAS) based solver, and (𝑖𝑖)

bridges from a resource cost statement into off-the-shelf sequential cost analyses. Currently Pico
supports Absynth [47], CoFloCo [25], and KoAT [26].

Loop ranges in memory access protocols are normalized, which greatly simplifies our cost

analysis. Protocols unify for-loops, while-loops, and do-loops into a single representation. Loop

ranges further distinguish the stride in the following ways: direction (increasing, decreasing), type

(additive, multiplicative), and value (the amount added or multiplied per iteration).

The separation of direction from type, combined with Resource Calculus having no side effects

(no early returns, no mutation), simplifies the problem of handling different loop ranges in cost

analysis. Instead of handling each loop operator separately (e.g., addition, subtraction, etc.) the
direction can be ignored, reducing the problem to two patterns: additive and multiplicative ranges.

The CAS backend translates a statement 𝑠 into a symbolic algebraic expression that is then

simplified symbolically with Maxima [40]. Using a resource with tick(𝑛) becomes expression 𝑛,

loops become summations, and sequencing becomes addition. There is a mismatch between loop

ranges (which can have arbitrary step values) and mathematical summations (which iterate over

every element in the range). To bridge that gap, we apply loop index normalization [41], a standard

compiler technique, to transform each range into an equivalent range with unit stride
1
(additive

type, value of 1), as follows. For additive steps, we replace the loop variable with a multiplication: a

loop for(x=0; x<n; x+=k) S becomes for(y=0;y<n/k; y++)S[x ↦→ y*k]. For multiplicative

steps, we replace the loop variable with exponentiation: a loop for(x=1; x<n; x*=k)S becomes

for(y=log𝑘(1); y<log𝑘(n); y++)S[𝑥 ↦→ 𝑘𝑦]. Maxima applies symbolic simplification to the

resulting expression with tactics logcontract, simpsum, and ratsimp.
The Absynth backend provides a straightforward translation of Resource Calculus statements

into Absynth’s imperative language, since Absynth can directly express all Resource Calculus

constructs. The only minor transformation needed is converting for-loops into while-loops.

Discussion. In our experience, the CAS backend can handle more inputs than Absynth. Overall

memory utilization is about slightly higher with Maxima (around 6–10%). Absynth exhibits a

greater range in execution time and Maxima had a more stable execution time, as we will see in our

evaluation (Table 1). In terms of inputs, Maxima supports the various mathematical expressions

1
We remind that in the formalism of this paper loop ranges have a stride of 1 too.
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// test −1

for( i=0; i< (ub>>1) ; i++)

g[tid] = i ;

// test −2

for( i=0; i<ub; i+= st )
g[tid] = i ;

// test −3

for( i= lb ; i<ub; i*=2)
g[tid] = i ;

// test −4
for( i=0; i<ub; i++)
for( j=0; j<ub; j++)
for(k=0;k<ub;k++)
g[tid] = i ;

Fig. 7. Unsupported features in Absynth.

being generated, so more challenging inputs just yield symbolic expressions that Maxima may not

be able to simplify. Absynth cannot analyze programs with certain numeric expressions and control-

flow patterns, which we document in Figure 7. We identified the following list of unsupported

features: bitwise operators—commonly used in GPU programs (test-1); variables cannot appear in
the step increment (test-2); loops that use multiplication or division in the step statement cannot

have variables in the initializer (test-3); three or more nested loops (test-4). We note that every

limitation of Absynth is also shared by RaCUDA.

6.4 Metric Analyses Implementation
Uncoalesced memory accesses. This metric counts the number of distinct memory transactions

(cache lines) required when threads access memory indices that cannot be combined into a single

transaction. We restate the uncoalesced metric for a global parameter C:

ua(𝐵, 𝐼 ) = |{⌊𝐼 ( 𝑗 )/C⌋ | 0 ≤ 𝑗 < W ∧ 𝐵( 𝑗) = t}|

This metric analysis handles five cases in order, given an index 𝑛 of type 𝜏 and let 𝑖W be result cost of

the metric analysis of𝑀E (enabled threads). Case 1:When 𝜏 = U the cost is 1. Case 2:When 𝑛 is of

the form𝑚 × tid and𝑚 is of type D, then cost is max(𝑚, 𝑖W). Case 3: When 𝜏 = D, the expression 𝑛
is simplified by removing memory-aligned sub-expressions (multiples of word boundaries like 32

bytes) and then simulated (explained after). Case 4:When 𝑛 is of the form 𝑛1 +𝑛2 where the type of
𝑛1 is divergent (D), 𝑛2 is uniform (U), and 𝑛2 contains a variable, then 𝑛 is potentially misaligned. In

which case, we obtain the cost 𝑛′
1
of 𝑛1 (eliding 𝑛2) and return max(𝑛′

1
+ 1, 𝑖W). Case 5: Otherwise,

return 𝑖W (the worst case cost).

Bank conflicts. This metric counts the maximum number of threads accessing the same memory

bank simultaneously, representing the extra transactions required to resolve conflicts when multiple

threads compete for the same bank. First, we define the bank conflicts metric. Let bank(𝑖, 𝐼 , 𝐵) give
the set of threads accessing bank 𝑖 . The bank conflicts metric bc(𝐵, 𝐼 ) returns the maximum number

of banks and subtracts 1, so that the metric only accounts for the number of extra transactions

performed (i.e., the number of conflicts).

bank(𝑖, 𝐼 , 𝐵) = {𝐼 ( 𝑗) | 0 ≤ 𝑗 < W ∧ 𝐼 ( 𝑗) mod B = 𝑖 ∧ 𝐵( 𝑗) = t}
bc(𝐵, 𝐼 ) = max{|bank(0, 𝐼 , 𝐵) |, . . . , |bank(B − 1, 𝐼 , 𝐵) |} − 1

Our metric analysis handles four cases in order, given an index 𝑛 of type 𝜏 and let 𝑖W be result cost

of the metric analysis of 𝑀E (enabled threads). Case 1: When 𝜏 = U the cost is 0. Case 2: When

𝑛 = 𝑛1 + 𝑛2 and the type of 𝑛2 is U, then return cost of recursively analyzing 𝑛1. Since simulation is

only possible for closed expressions, this step eliminates as many program variables as possible,

by removing constant offsets. The simplification is possible because the cost of 𝑛1 + 𝑛2 equals
the cost of 𝑛1 when 𝑛2 is uniform, as the bank conflicts metric depends only on the number of

unique banks accessed. For instance, the accesses A[threadIdx.x + 7] and A[threadIdx.x]
have identical conflict patterns with banks just relabeled. Formally, for any bank 𝑖 , the identity
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bank(𝑖, 𝐼 + 𝑗W, 𝐵) = bank((𝑖+ 𝑗) mod B, 𝐼 + 𝑗W, 𝐵) holds.Case 3: The cost is the result of simulating

the metric (see following paragraph). Case 4: Otherwise, return 𝑖W − 1 (the worst case cost).

Metric analysis by simulation. Simulation works by evaluating the active thread condition to

determine which threads are active 𝐵, evaluating the index expression to get the memory access

pattern 𝐼 , and then applying the cost metric𝑀 (𝐵, 𝐼 ) to compute the actual cost, formally to obtain

Γ;Φ ⊢ 𝑀 (𝑛) ≤ 𝑚 for any metric𝑀 . We can evaluate the condition of active threads, i.e., ⟨Φ, ∅⟩ ↓ 𝐵
(from Lemma 5.2), and evaluate the index ⟨𝑛, ∅⟩ ↓ 𝐼 and then return the cost𝑚 = 𝑀 (𝐵, 𝐼 ).

6.5 Exactness Check
To help users determine whether computed cost bounds are exact or affected by analysis over-

approximations, we introduce an exactness check that analyzes the precision of the resulting cost.

Our soundness theorem (Theorem 5.12) shows that the cost relation ∼ between protocol and

program depends directly on what the loop and metric analyses can prove. In our experiments, we

observed that the loop analysis of Pico can always generate a scalar range with the same iteration

length (≈) as the vector range. Given that type ≈ imposes no constraints on the cost relation (c.f.,
judgment ∼ : I), in practice the precision of Pico solely depends on the precision of the metric

analyses being used.

Our exactness check detects whether the active thread condition (c.f., Lemma 5.2) can be used

by the metric analysis or if the condition needs to be strengthened, thereby introducing an ap-

proximation (i.e., approximation means more threads, so a potentially-higher cost). We say that

a typing environment Γ is inexact, when there is any thread-divergent binding (D). For instance,
∅, x : D is inexact. We say that a constraint environment Φ is inexact, when there exists a thread

divergent condition 𝑐 that contains a free variable of type D. For instance, x > 10 is inexact when x
is thread-divergent. For instance, the environment ∅, x : D; t from Equation (7) is inexact, and the

environment ∅, i : U; tid % 2 = 0 from Equation (9) is exact.

Simulation metric analysis requires closed expressions to evaluate costs, but our environment

may contain program variables that prevent simulation from proceeding. A naive approach would

assume all threads are active and yield sound, yet higher costs. Instead, our implementation uses

the exactness check to selectively discard only the inexact constraints, reducing the approxima-

tion error. For bank conflicts and uncoalesced access metrics, this selective constraint removal

is sound because dropping constraints can only increase the estimated number of active threads,

providing a safe upper bound without introducing unsoundness. For instance, given environment

∅, x : D, y : U; tid % 2 ∧ x > 10, our algorithm retains the exact constraint tid % 2 while discarding

the inexact constraint x > 10, yielding ∅, y : U; tid % 2.

7 Evaluation
We consider two key questions in evaluating the effectiveness of the cost analysis:

§7.1 How does Pico compare to the state of the art, RaCUDA?

§7.2 How frequently does control flow affect the accuracy of Pico?

We answer each question with a different experiment. First, we reuse the evaluation conducted

in [45] to compare RaCUDA and Pico for performance and correctness in analyzing uncoalesced

accesses and bank conflicts. Second, we evaluate our model’s effectiveness by finding the ratio of

precisely analyzable structured loops and boolean expressions in a well-known dataset.

Experimental setup. The experimental tests ran on a machine with 8GB of memory and an

AMD Ryzen 7 5800X 8-core processor. Due to the many configurations to compare, we wrote an

automated testing program to ensure that tools were fairly executed and compared.
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7.1 How Does Pico Compare to the State of the Art, RaCUDA?
We compare Pico against RaCUDA by evaluating both supported CUDA features and the preci-

sion of predicted bounds. We first discuss expressiveness differences, then present a quantitative

comparison reproducing the experiment from [45].

Expressiveness differences. Pico is the first tool to introduce support for thread-divergence (dis-

cussed in Section 6.2); RaCUDA simply rejects any program with thread-divergence in loops and

ignores any thread-divergence appearing in conditionals. Pico also supports multiplicative and

bitwise loop steps, whereas RaCUDA treats multiplicative loops as additive loops, e.g., treating
range (i=1;i<512;i*=2) as (i=1;i<512;i++). Pico supports C++ features including templates,

inter-procedural analysis, and array aliasing through Faial, which RaCUDA does not support.

RaCUDA has additional limitations with variables in loop step increments and analyzing multiple

nested loops (see Section 6.3).

Quantitative comparison. We use the Absynth backend for Pico so both tools use the same cost

calculation algorithm. While the cost calculation is shared, each tool generates its own program

representation for Absynth, isolating differences in how GPU-specific features are handled. The

experiment is parameterized by two metrics. The first metric runs each tool to predict the bounds

of uncoalesced accesses. The second metric runs each tool to predict the bounds of bank conflicts. A

lower predicted bound is better, unless the analysis is unsound, in which case we give a justification.

We manually validate every predicted bound. The dataset consists of 15 kernels hand-crafted by

the authors of [45]. We omit kernel mandelbrot from the experiment in [45], as the program is not

included in the paper’s artifact. In the bank conflicts experiment, we omit any kernel that does

not declare shared memory, because the bank conflicts only occur in shared memory. The dataset

includes example kernels for matrix multiplication, vector addition, histogram, reduction operations,

and addition on subarrays. Kernel vectorAdd is an easy to analyze and verify test of addition over

several arrays with a loop to showmatrixMul, matrixMulBad, and matrixMulTranspose each feature

matrix multiplication which requires a great deal of array accesses across different dimensions. The

reduce family of kernels combine values by addition over a memory into shared memory. Kernel

histogram bins then combines values in both global and shared memory. The addsub family of

kernels adds values from portions of arrays with analyzable strides patterns. Table 1 summarizes

the predicted bounds of both experiments. As an example, the first row reports on the kernel

matrixMul which was analyzed using the uncoalesced access metric and a cost formula dependent

on𝑤𝐴 and a runtime of less than half a second. Table 1 reports on both RaCUDA and Pico.

Discussion. Pico produces the best results in every run, outperforming RaCUDA in 10 runs (1.7×
better). Notably, RaCUDA predicts 4 incorrect upper bounds and fails to run 2 kernels. Sources
of over-approximation: Because our analysis takes into consideration some thread-divergence

expressions, Pico correctly predicts the cost of broadcasts with a cost of 1 (tag C), whereas RaCUDA
identifies a cost of 2. Incorrect bounds in RaCUDA: In 3 kernels (tagged with M), RaCUDA incorrectly

assumes that the array access is always aligned and does not span a memory bank boundary. For

instance, given index wB * threadIdx.y + threadIdx.x, RaCUDA predicts a cost of 4 and yet

when wb = 100 and threadIdx.y = 1 the program yields a cost of 5. In 1 kernel (tagged with R)
RaCUDA also predicts an incorrect upper bound because for expression data%256 it reports a

bank-conflict of 7, when it should be 31, given that data could be distinct for each thread. Failed
bounds: RaCUDA aborts the analysis when an access appears within a loop that decrements its

loop-variable with a division, say, x /= 2.
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Table 1. Predicted bound for uncoalesced accesses and bank conflicts for RaCUDA and Pico. The first three
columns list: Kernel for the program name, LOC for the kernel’s line count, and M for the metric name (U for
uncoalesced, and B for bank conflicts). Then, for each tool, we have 3 columns. The first column summarizes
the outcome with a symbol, where Ë denotes lowest predicted bound, M denotes incorrect bound due to
memory alignment, D denotes over-approximation due to thread divergence, C denotes over-approximation
due to broadcast, N denotes over-approximation due to warp-uniform data, E denotes error, and R denotes
incorrect bound due to arithmetic. The second column is the bound. The third column is the tool’s execution
time in seconds. The last row tallies the kernels that exhibit the lowest predicted bound for each tool.

Kernel LOC M RaCUDA Pico

matrixMul 127 U M 0.31 wA + 14.0 0.2 Ë 0.31 wA + 15.0 0.3

matrixMulBad 120 U M 15 wA + 465 9.6 Ë 16.0 wA + 496.0 0.5

matrixMulTranspose 126 U M 0.31 wA + 14.0 0.2 Ë 0.31 wA + 15.0 0.3

vectorAdd 42 U Ë 12 0.0 Ë 12 0.3

reduce0 55 U Ë 5 0.1 Ë 5 0.3

reduce1 55 U Ë 5 0.1 Ë 5 0.3

reduce2 53 U Ë 5 0.1 Ë 5 0.3

reduce2a 54 U Ë 5 0.1 Ë 5 0.4

reduce3 59 U Ë 9 0.1 Ë 9 0.2

reduce3a 60 U Ë 9 0.1 Ë 9 0.3

histogram256 57 U Ë 0.08 d + 49.9 1.2 Ë 0.08 d + 49.9 0.3

addSub0 10 U D 132 w 0.3 Ë 66𝑤 0.5

addSub1 7 U C 132 w 0.0 Ë 130𝑤 0.4

addSub2 7 U Ë 14 h + 14 0.0 Ë 14 h + 14 0.3

addSub3 9 U Ë 10 h + 14 0.0 Ë 10 h + 14 0.3

matrixMul 127 B N 31 wA + 961 0.1 Ë 0 0.3

matrixMulTranspose 126 B N 31.97 wA + 991.1 0.2 Ë 0.97 wA + 30.0 0.3

reduce0 55 B Ë 0 0.0 Ë 0 0.2

reduce1 55 B Ë 23715 0.0 Ë 23715 0.3

reduce2 53 B E n/a 1.4 Ë 0 0.2

reduce2a 54 B Ë 0 0.1 Ë 0 0.2

reduce3 59 B E n/a 1.5 Ë 0 0.3

reduce3a 60 B Ë 0 0.1 Ë 0 0.4

histogram256 57 B R 0.88 d + 55.0 1.4 Ë 3.88 d + 244.0 0.3

addSub3 9 B Ë 0 0.0 Ë 0 0.2

Total: 15 25

7.2 How Frequently Does Control Flow Affect the Accuracy of Pico?
To verify the accuracy of our analysis in a broader context, we are interested in knowing the ratio

of loops and conditionals our exactness check deems exact (Section 6.5); Pico is dependent on this

precision for tight bounds. In this experiment, we use the CAS backend, and we target a well-studied

data set of 226 kernels. We report the statistics on the frequency of loops and conditionals that can

be exactly analyzed per metric. Our Absynth backend was unable to analyze the whole dataset and

was therefore excluded (see Section 6.3).

Data selection. The CAV’14 [4] dataset is a benchmark suite of 226 CUDA kernels from 4 bench-

mark suites: NVIDIA GPU Computing SDK v2.0 (8 kernels), NVIDIA GPU Computing SDK v5.0

(165 kernels), Microsoft C++ AMP Sample Projects (20 kernels), gpgpu-sim benchmarks [3] (33

kernels). The CAV’14 dataset includes 1812 array accesses, 471 structured loops, and 670 conditional
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Fig. 8. Ratio of exact vs. approximated analysis by metric in CAV’14 dataset.

expressions. We count each binary boolean operation in the boolean expression of a conditional

separately. Figure 8 summarizes the statistics which includes the number of loops and boolean

sub-expressions across all files of the dataset that can be analyzed exactly. We separate the results

per metric, since either metric focuses on different types of memory and performance issues, and

are consequently, not directly comparable.

Discussion. At least 75.3% of conditionals and at least 85.4% loops can be precisely captured

across metrics, which highlights the overall accuracy of Pico. We find that, in uncoalesced accesses,

346 out of 403 (85.9%) conditionals are exact, and 216 out of 253 (85.4%) loops are exact. With regard

to bank conflicts, we find that 324 out of 430 (75.3%) conditionals are exact, and 255 out of 298

(85.6%) loops are exact.

8 Related Work
Performance analysis of GPU kernels. PUG was the first static performance analysis for GPU

kernels (bank conflicts and uncoalesced accesses) using SMT-encoding [37, 38]. GKLEE uses con-

colic execution to detect bank conflicts [39]. GPUDrano detects uncoalesced accesses by abstract

interpretation [1, 2]. Horga et al. use symbolic execution and genetic algorithms to find bank

conflicts in cryptographic algorithms [30, 31]. These analyses can detect performance bottlenecks

but cannot quantify their impact. RaCUDA proposed the first cost analysis for GPU kernels [45, 46],

supporting warp-parallel metrics (divergent warps, bank conflicts, uncoalesced accesses) and task-

parallel metrics (work and span, c.f., [11, 12]). RaCUDA uses automated amortized resource analysis

(AARA) [28, 29] that only captures upper bounds, while our relational cost analysis produces exact

bounds, lower bounds, and upper bounds. A key technical distinction is loop handling: AARA re-

quires invariants (being Hoare-logic based), while ours does not. We suspect invariant requirements

complicate handling thread-divergent loops in RaCUDA, which are currently unsupported.

Cost analysis. RelCost was the first to introduce relational cost analysis [16]. RelCost establishes

a precise bound on the difference between execution of two programs of the same language. ARel

extends RelCost with array datatypes [49]. An important distinction in our work, is that our rela-

tional judgment takes two distinct computational models (one parallel/vectorial and one scalar),

whereas the relational judgment in RelCost/ARel takes two terms of the same computational model.

Several approaches already exist to solve cost analysis of sequential programs. The approaches

listed here are non-relational cost models. KoAT analyzes the complexity of integer programs

providing upper runtime and size bounds for parts of programs through control-flow graph refine-

ment [26, 44]. CoFloCo also provides a resource analysis compositionally through control-flow

refinement [25]. Absynth estimates costs using an automatic amortized resource analysis based on

weakest preconditions in the analyzed program [47].

Static analysis of GPU kernels. Faial uses memory access protocols to handle data-races in

CUDA [19, 20, 42, 43]. GPUVerify checks for data-races and barrier divergence in CUDA andOpenCL
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kernels [4–6, 8, 9, 21]. Ferrel et al. formalize CUDA assembly semantics in Coq [24]. VeriCUDA [34,

35] focuses on reasoning about the functional correctness using Hoare-logic. VerCors [14] uses

separation logic to prove the functional correctness and data-race freedom.

9 Conclusion and Future Work
We proposed the first static cost analysis that can produce exact cost for warp-parallelism, with

thread divergence support. Our analysis is parametric on resource metrics𝑀 and supports key GPU

performance bottlenecks (bank conflicts, and uncoalesced accesses). Our technique uses relational-

cost analysis, translating GPU kernels into sequential programs. Since the symbolic cost of generated

programs can always be precisely derived and simplified with a CAS solver (c.f., Section 6.3),

we isolate approximations to the translation process (i.e., the relational analysis). Corollary 4.3

establishes soundness for any cost relation ∼, including exact cost (=), over-approximations (≤),
and under-approximations (≥). We provide mechanized proofs of all results in Rocq.

Our theory was implemented in Pico, as the first sound and exact cost analysis tool for GPU

kernels with thread divergence support. We introduce a novel loop analysis that relies on an SMT

solver to handle thread-divergent loops, as well as multiple heuristics to quantify uncoalesced ac-

cesses and bank conflicts. Pico features several alternatives to derive a symbolic cost, our CAS-based

solution, and translators for Absynth, CoFloCo, and KoAT. We evaluate Pico in two experiments:

we show Pico’s improvements over the state of the art, and show the accuracy of our cost analysis.

Our first experiment reproduces a benchmark from [45]: Pico achieves the lowest bound in all

25 kernels, outperforming RaCUDA in 10 kernels (1.7× better). Our second experiment assesses

whether loops and conditionals can be handled accurately by Pico, considering a well-studied

dataset [4] of 226 kernels. We found that at least 75.3% of conditionals can be precisely captured,

and at least 85.4% loops can be precisely captured, which highlights the overall accuracy of Pico.
Future work is to enhance both correctness and usefulness of cost analyses. We will formally

prove the correctness of metrics we have implemented, and explore trade-offs between accuracy

and performance. Our framework currently reports aggregate costs for entire kernels or memory

accesses, but providing per-component breakdowns could help users identify specific performance

bottlenecks caused by over-approximation or high variability. We plan to study alternative reporting

strategies for better static understanding of performance bottlenecks.
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