
A Modular Static Cost Analysis

For GPU Warp-Level Parallelism

Gregory Blike†, Hannah Zicarelli†, Udaya Sathiyamoorthy†

Julien Lange⸸, Tiago Cogumbreiro†

† UMass Boston / ⸸ Royal Holloway, University of London

POPL, 2026

1 / 53



Overview
1. Motivation: Why GPUs matter and challenges of analyzing performance bottlenecks

2. Problem statement: Cost analysis of GPU kernels

3. Theory: Relational-Cost Analysis

4. Practice: Pico, a tool to analyze performance bottlenecks of CUDA kernel & Evaluation

5. Conclusion

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 2 / 53



Motivation
- Why GPUs matter

- Challenges of analyzing performance bottlenecks

3 / 53



Why do GPUs matter?

GPUs are everywhere

4 / 53



The LLM revolution is powered by GPUs

GPT-5 was trained using 200k GPUs

Source: www.linkedin.com/feed/update/urn:li:activity:7359279165121970176/

5 / 53

https://www.linkedin.com/feed/update/urn:li:activity:7359279165121970176/


Name GPU

1 🇺🇸 El Capitan 🗹

2 🇺🇸 Frontier 🗹

3 🇺🇸 Aurora 🗹

4 🇪🇺 JUPITER 🗹

5 🇺🇸 Eagle 🗹

6 🇪🇺 HPC6 🗹
7 🇯🇵 Fugaku ☐

8 🇨🇭 Alps 🗹

9 🇪🇺 LUMI 🗹

10 🇪🇺 Leonardo 🗹
top500.org/lists/top500/list/2025/06/

Credit: asc.llnl.gov

Scientific advancement is powered by GPUs

Power 9 out of 10 of the Top 10 super computers

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 6 / 53

https://top500.org/lists/top500/list/2025/06/
https://asc.llnl.gov/exascale/el-capitan


Performance

The raison dêtre of GPU programming

7 / 53



Optimizing GPU programs
Maximize parallelism

Optimize memory access

Minimize divergent behavior (more on this later)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 8 / 53



Analyzing performance bottlenecks

Dynamic approaches

Nvidia’s nSight (fixed run, requires input); no worst-case analysis

Symbolic-execution tools only presence, not frequency/cost

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 9 / 53



Analyzing performance bottlenecks

Static approaches

PUG [FSE10,IPDPSW12] and GPUDrano[CAV17,FMSD21] only detect location, but not how frequent

State-of-the-art RaCUDA[POPL21,TOPC24] has limited support:

GPU-specific semantics, leading to over approximations

cannot reason about the precision of the analysis (no exact costs)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 10 / 53



Problem statement:
Cost analysis of GPU kernels

11 / 53



How to analyze the cost of a performance
bottleneck statically?

Cost analysis: statically analyzing the amount of resources
needed to run a program.

12 / 53



Cost Analysis

Problem: count active threads per memory access

for (int x = 0; x <= threadIdx.x; x++) {
    read(array[x]); // How many threads are active?
}

Solution:

Thus, when :

cost = (W +2 W )/2 where W  is the number of threads

W = 4

(4 +2 4)/2 = 20/2 = 10

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 13 / 53



But, why is the cost ?

Understanding Warp-Semantics

(W +2 W )/2

14 / 53



Warp semantics in GPU programming

for (int x = 0; x <= threadIdx.x; x++) {
    foo(A[x]);
}

Warp: a group of -threads that execute the kernel lockstep

threadIdx.x is a unique thread-identifier

W

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 15 / 53



for(x=0;x<=0;x++){
    foo(A[x]);
}

for(x=0;x<=1;x++){
    foo(A[x]);
}

for(x=0;x<=2;x++){
    foo(A[x]);
}

for(x=0;x<=3;x++){
    foo(A[x]);
}

At runtime: per-thread view for W = 4

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 16 / 53



for(x=0;x<=0;x++) for(x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)

Warp semantics example
x = 0

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 17 / 53



for(x=0;x<=0;x++) for(x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)

  foo(A[0])   foo(A[0])   foo(A[0])   foo(A[0])

Warp semantics example
x = 0

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 17 / 53



for(x=0;x<=0;x++) for(x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)

  foo(A[0])   foo(A[0])   foo(A[0])   foo(A[0])

// x <= 0 is FALSE for(x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)

Warp semantics example
x = 0

x = 1

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 17 / 53



for(x=0;x<=0;x++) for(x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)

  foo(A[0])   foo(A[0])   foo(A[0])   foo(A[0])

// x <= 0 is FALSE for(x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)

// inactive   foo(A[1])   foo(A[1])   foo(A[1])

Warp semantics example
x = 0

x = 1

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 17 / 53



for(x=0;x<=0;x++) for(x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)

  foo(A[0])   foo(A[0])   foo(A[0])   foo(A[0])

// x <= 0 is FALSE for(x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)

// inactive   foo(A[1])   foo(A[1])   foo(A[1])

// x <= 0 is FALSE // x <= 0 is FALSE for(x=0;x<=2;x++) for(x=0;x<=3;x++)

Warp semantics example
x = 0

x = 1

x = 2

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 17 / 53



for(x=0;x<=0;x++) for(x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)

  foo(A[0])   foo(A[0])   foo(A[0])   foo(A[0])

// x <= 0 is FALSE for(x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)

// inactive   foo(A[1])   foo(A[1])   foo(A[1])

// x <= 0 is FALSE // x <= 0 is FALSE for(x=0;x<=2;x++) for(x=0;x<=3;x++)

// inactive // inactive   foo(A[2])   foo(A[2])

Warp semantics example
x = 0

x = 1

x = 2

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 17 / 53



Counting active threads per memory access

for (int x = 0; x <= threadIdx.x; x++) {
    foo(A[x]); // How many threads are active?
}

Iteration (x) Thread 0 Thread 1 Thread 2 Thread 3 Active Count

0 🗹 🗹 🗹 🗹 4

1 ☐ 🗹 🗹 🗹 3

2 ☐ ☐ 🗹 🗹 2

3 ☐ ☐ ☐ 🗹 1

4 ☐ ☐ ☐ ☐ 0

cost = (W +2 W )/2 = 4 + 3 + 2 + 1 = 10

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 18 / 53



Why is counting threads important?
Thread-divergence is a core aspect of 2 major performance bottlenecks:

Bank conflicts

Uncoalesced accesses

Key takeaway: Precisely characterizing thread-divergence  precisely characterizing

performance bottlenecks

⟹

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 19 / 53



Relational-Cost Analysis

20 / 53



for (x=0; x<=threadIdx.x; x++) {   🠲   for x ∈ 0 .. W-1 {
 foo(A[x]);                        🠲     tick (W - x);
}                                  🠲   }

A sequential program
captures the control-flow
of the warp (group) of
threads.

tick consumes W - x resources

Off-the-shelf tools can reduce sequential program to symbolic expression

Our approach

Reduce problem to analyzing cost of sequential program

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 21 / 53



Our approach
Translate a concurrent-warp semantics into a sequential program, and build on the vast
literature of cost analysis of sequential programs!

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 22 / 53



Our approach
Translate a concurrent-warp semantics into a sequential program, and build on the vast
literature of cost analysis of sequential programs!

Step 1: Translate (A) CUDA kernel into (B) concurrent Intermediate Representation (IR)

Step 2: Translate (B) concurrent IR into (C) sequential cost program

Step 3: Given (C) sequential program calculate cost (D)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 22 / 53



(A)
for(x=0;x<=threadIdx.x;x++){
    foo(A[x]);               🠲
}

(B)
for x ∈ 0..tid{
 rd A[x];       🠲
}

(C)
for x ∈ 0..W-1{
  tick (W - x);
}

Our approach
Translate a concurrent-warp semantics into a sequential program, and build on the vast
literature of cost analysis of sequential programs!

Step 1: Translate (A) CUDA kernel into (B) concurrent Intermediate Representation (IR)

Step 2: Translate (B) concurrent IR into (C) sequential cost program

Step 3: Given (C) sequential program calculate cost (D)

(D)

🠲 ​ (W − x) =
x=0

∑
W−1

(W +2 W )/2

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 22 / 53



(A)
for(x=0;x<=threadIdx.x;x++){
    foo(A[x]);               🠲
}

(B)
for x ∈ 0..tid{
 rd A[x];       🠲
}

(C)
for x ∈ 0..W-1{
  tick (W - x);
}

Major Contribution: Prove correctness of Step 2 with a new Relational-Cost Analysis

Our approach
Translate a concurrent-warp semantics into a sequential program, and build on the vast
literature of cost analysis of sequential programs!

Step 1: Translate (A) CUDA kernel into (B) concurrent Intermediate Representation (IR)

Step 2: Translate (B) concurrent IR into (C) sequential cost program

Step 3: Given (C) sequential program calculate cost (D)

(D)

🠲 ​ (W − x) =
x=0

∑
W−1

(W +2 W )/2

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 22 / 53



Key Technical Contributions
Lower, upper, exact bounds can all be handled with the same formalism
Prior work: only upper-bounds bounds

CUDA semantics with support for thread-divergence
Prior work: ommission from the SOTA

A soundness result that shows that static costs are correct for all types of bounds
(fully mechanized in )

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 23 / 53



Concurrent IR to Sequential Program
Q: How can we guarantee that the sequential program captures the cost of the warp-
semantics?

Answer: A theoretical framework to relate the cost of the concurrent and sequential
programs, eg, show that two programs have the same cost.

Γ;Φ ⊢ p ∼ s

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 24 / 53



A proof system to derive the cost of a

protocol  in terms of a sequential

program  under relation 

 {  } among others

 - typing environment

 - active threads (b-exp)

 - warp protocol

 - cost relation

 - sequential cost

Relational-cost analysis

Γ;Φ ⊢ p ∼ s

p

s ∼
∼∈ =, ≤, ≥

Γ
Φ
p

∼
s

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 25 / 53



Example

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 26 / 53



Example

 - closed environment

 - all threads active (  = true boolean)

∅
t t

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 27 / 53



Example

 - closed environment

 - all threads active (  = true boolean)

LHS: warp protocol

∅
t t

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 28 / 53



Theory overview

 - closed environment

 - all threads active (  = true boolean)

LHS: warp protocol

RHS: sequential cost

∅
t t

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 29 / 53



Theory overview

 - closed environment

 - all threads active (  = true boolean)

LHS: warp protocol

RHS: sequential cost

 - same cost

∅
t t

=

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 30 / 53



Uniform conditionals

When a conditional has the same value
for all threads (U), then we preserve that
conditonal sequentially

Analysis at a glance: conditionals

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 31 / 53



Uniform conditionals

When a conditional has the same value
for all threads (U), then we preserve that
conditonal sequentially

Divergent conditionals

Otherwise (D), we capture the condition in

the expression of active threads .

Analysis at a glance: conditionals

Ψ ∧ c

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 31 / 53



Analysis at a glance: conditionals

Loop analysis: Relates a range  for warp with a range  for sequential

Lemma 5.4: If  is uniform, use !

Compare the loop body, while recording the original ranges of 

r r′

r r

x

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 32 / 53



Key contributions

1. A thread-divergent range  captured by a sequential range 

SOTA limitation: thread-divergent loops are unsupported

2. Analysis states exact costs ( )

SOTA limitaton: only upper-bounds (cost over approximations)

3. Symbolic costs per iteration 

SOTA limitation:only supports fixed costs, say 4

0..tid 0..W − 1

=

W − x

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 33 / 53



Proving loops have same cost

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 34 / 53



Proving loops have same cost

1. Prove that the iteration spaces have same number of iterations (≈)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 35 / 53



1. Prove that the iteration spaces have same
number of iterations (≈)

2. Prove that the loop bodies have the same cost

Typing context: 

The range of  in the scalar/vector contexts

The active threads

scalar active vector

0 [t,t,t,t] [0,0,0,0]

1 [f,t,t,t] [1,1,1,1]

2 [f,f,t,t] [2,2,2,2]

3 [f,f,f,t] [3,3,3,3]

Proving loops have same cost

∅,x : D ​(0..tid,0..W−1)

x

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 36 / 53



Key takeaways

Our theory is driven by two core ideas:

1. Loop analysis: relate iteration spaces (≈ same numer of iterations, ⪯ fewer iterations, ⪰
more iterations)

2. Metric analysis: relate a metric with a symbolic cost (a parameter of the theory)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 37 / 53



Main result
Corollary 4.3 (Soundness for closed terms). Let  be a metric and  a cost relation.

If , then .

If we can derive a cost statically for protocol  with program , then that cost holds

dynamically.

M ∼
∅; t ⊢ p ∼ s (t , ∅, ∅) ⊨W p ∼ s

p s

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 38 / 53



Pico
Cost-analysis of CUDA kernels

39 / 53



Pipeline

1. Extract concurrent IR:

CUDA 🠲【 Protocol Inference 】🠲 

2. Extract sequential IR:

 🠲【 Relational Cost Analysis 】🠲 

3. Extract numeric expression:

 🠲【 Sequential Cost Analysis 】🠲 

p

p s

s n

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 40 / 53



(A)
for(x=0;x<=threadIdx.x;x++){
    foo(A[x]);               🠲
}

(B)
for x ∈ 0..tid{
 rd A[x];
}

Step 1: Extract concurrent IR

Background: Faial static analysis framework

Concurrent IR is Memory Access Protocol

Preserves control flow constructs (includes analysis to find loop bounds)

Supports inter-procedural calls, C++ templates, CUDA memory spaces, atomics, array
aliasing, and barrier synchronization

OOPSLA24 discusses sources and impact of over-approximation in translation

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 41 / 53



(B)
for x ∈ 0..tid{
 rd A[x];       🠲
}

(C)
for x ∈ 0..W-1{ // <- range analysis
  tick (W - x); // <- metric analysis
}

Step 2: Extract sequential IR
Loop analysis: thread-divergent ranges converted as an optimizer (Z3):

 🠲 

Thread-divergent conditionals: capture thread-divergent constraints:

 are added to  (active threads)

Metric analysis: support for uncoalesced accesses and bank conflicts

We develop a exactness check to track when over-approximations are introduced (more
on this in the evaluation).

0..tid 0..W − 1

tid%2=0 Φ

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 42 / 53



(C)
for x ∈ 0..W-1{
  tick (W - x);
}

Step 3: Extract numeric expression
Support for off-the-shelf analysis: Absynth, KoAT, CoFloCo

Direct analysis with a Computer Algebra System (CAS):
we use Maxima; guaranteed correct cost

(D)

🠲 ​ (W − x) =
x=0

∑
W−1

(W +2 W )/2

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 43 / 53



Evaluation
RQ1: How Does Pico Compare to the State of the Art, RaCUDA?
Reproduce tevaluation of [POPL21] to compare the state-of-the-art tool RaCUDA

RQ2: How Frequently Does Control Flow Affect the Accuracy of Pico?
Find ratio of precisely analyzable loops and conditons in 226 kernels [CAV14]

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 44 / 53



RQ1: How Does Pico Compare to the State of the Art,
RaCUDA?

Expressiveness: Pico supports / RaCUDA lacks: thread-divergent loops, arbitrary loop
steps, bitwise operators, C+++ features (templates, array aliasing, inter-proc analysis)

Reproducibility: Costs of 25 programs (across 2 metrics):

Pico gave tighter bound in all 25 examples (vs 15 of RaCUDA)

We documented 4 unsound bounds (lower than should be) in RaCUDA

Tool Tightest bound Unsound

RaCUDA 15 4

Pico 25 0

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 45 / 53



RQ2: How Frequently Does Control Flow Affect the Accuracy
of Pico?

At a glance: 1812 array accesses, 471 structured loops, and 670 conditional expressions

At least 75.3% of conditionals can be precisely captured

At least 85.4% loops can be precisely captured

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 46 / 53



Conclusions
Relational-cost analysis for warp-parallelism
support for thread-divergence

Correctness for any cost relation
exact (=), over-, and under-approximations (≥).

Mechanized proofs of all results in Rocq

Pico achieves the lowest bound
outperforms RaCUDA in 10 kernels (1.7× better)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 47 / 53



Conclusions
Relational-cost analysis for warp-parallelism
support for thread-divergence

Correctness for any cost relation
exact (=), over-, and under-approximations (≥).

Mechanized proofs of all results in Rocq

Pico achieves the lowest bound
outperforms RaCUDA in 10 kernels (1.7× better)

Future work
Correctness of metrics
(tradeoff performance vs precision)

How to report helpful
performance bottlenecks?
(average costs, differential analysis)

Relational-cost between
protocols
(eg, for program repair)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 47 / 53



Extra slides

48 / 53



A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 49 / 53



Syntax

A protocol  is:

 no-op

 access index  and an array 

 sequential composition

 branching

 looping

Our contribution is the
semantics for Warps

We reuse the same
syntax of Memory
Access Protocols

Memory Access Protocol + Warp Semantics

Contribution 1: Concurrent IR

p

skip
A[n] n A

p; p

if(c) p

for x  ∈  r p

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 50 / 53



Rules Syntax

Vector of naturals: 

Vector store: 

Naturals: 

Numeric expressions: 

Booleans: 

Boolean expressions: 

Warp Semantics

A semantics of vectors

Judgment: ⟨n,σ⟩ ⇓ I

⟨i,σ⟩ ⇓ i (E-num)W

⟨tid,σ⟩ ⇓ (0, 1, … , W − 1) (E-tid)

I

σ

i ::= 0 ∣ 1 ∣ …

n ::= i ∣ x ∣ tid ∣ n ⋆ n

b ::= t ∣ f
c ::= b ∣ n ⋄ n ∣ b ∘ b

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 51 / 53



Examples of vectorized expressions
Example 1

Example 2

⟨2 × tid,σ⟩ ⇓ (0, 2, 4, 6)

since (2, 2, 2, 2) × (0, 1, 2, 3) = (2 × 0, 2 × 1, 2 × 2, 2 × 3) = (0, 2, 4, 6)

⟨1 ≤ tid,σ⟩ ⇓ (f, t, t, t)

since (1, 1, 1, 1) ≤ (0, 1, 2, 3) = (1 ≤ 0, 1 ≤ 1, 1 ≤ 2, 1 ≤ 3) = fttt

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 52 / 53



Protocol semantics

1. A protocol p to run

2. A vector of active threads 

3. A store of vectors 

4. A cost 

⟨p,B,σ⟩ ⇓ ​M i

B

σ

i

​

⟨if (c) p,σ⟩ ⇓ i

⟨c,σ⟩ ⇓ C C ​= f ⟨p, B ∧ C,σ⟩ ⇓ i W

A Modular Static Cost Analysis For GPU Warp-Level Parallelism  ☽  Tiago Cogumbreiro 53 / 53


