A Modular Static Cost Analysis
For GPU Warp-Level Parallelism

Gregory BlikeT, Hannah ZicarelliT, Udaya Sathiyamoorthyt

Julien Lange™, Tiago Cogumbreiro®

T UMass Boston / * Royal Holloway, University of London

POPL, 2026

1. Motivation: Why GPUs matter and challenges of analyzing performance bottlenecks

2. Problem statement: Cost analysis of GPU kernels

3. Theory: Relational-Cost Analysis
4. Practice: Pico, a tool to analyze performance bottlenecks of CUDA kernel & Evaluation

5. Conclusion

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 2/53

Motivation
- Why GPUs matter

- Challenges of analyzing performance bottlenecks

Why do GPUs matter?

GPUs are everywhere

The LLM revolution is powered by GPUs
GPT-5 was trained using 200k GPUs

Source: www. linkedin.com/feed/update/urn:li:activity:73592791651219708176/

https://www.linkedin.com/feed/update/urn:li:activity:7359279165121970176/

Scientific advancement is powered by GPUS

Power 9 out of 10 of the Top 10 super computers

c

Name
El Capitan

Frontier

Aurora
JUPITER
Eagle

HPC6
Fugaku

Alps
LUMI

Leonardo

Credit: asc.linl.gov

ERB B 0 &8 @ I v
R ERDRERE R E|D

10
top568.org/lists/top500/1ist/20825/86/

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro

https://top500.org/lists/top500/list/2025/06/
https://asc.llnl.gov/exascale/el-capitan

Performance

The raison détre of GPU programming

e Maximize parallelism
e Optimize memory access
e Minimize divergent behavior (more on this later)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 8/53

Analyzing performance bottlenecks

Dynamic approaches

e Nvidia’s nSight (fixed run, requires input); no worst-case analysis
o Symbolic-execution tools only presence, not frequency/cost

This kernel |'|'-I" uncoalesced shared accesses resulting in a total of 115927 excessive wavefronts (12%
[2 refronts). Check the L1 Wavefronts Shared Exi e table for the primary

A\ Uncoalesced Shared Accesses -
has an example on optimizing shared memory

dCCesses

A Uncoalesced Global Accesses [Warning] Uncoalesced global access, expected 4352000 sectors, got 4760032 (1.09x) at PC at /fhome/aashisht/dropbox_sym_link/Research/0.LIGO/PowerFlux_GPU/experiment/coalesce.cu:53

A Uncoalesced Global Accesses [Warning] Uncoalesced global access, expected 4300 sectors, got 4800 (1.12x) at PC at jusrflocal/cuda-11.3/targets/x86_64-linux/include/sm_32_intrinsics.hpp:112

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro

Static approaches

o PUG [FSEIOIPDPSWIZl 5nd GPUDranolCAVI/FMSD21] gy detect location, but not how frequent

e State-of-the-art RaCUDAIPOPL2LTOPC24] hag [imited support:

o GPU-specific semantics, leading to over approximations
o cannot reason about the precision of the analysis (no exact costs)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 10/53

Problem statement:

Cost analysis of GPU kernels

How to analyze the cost of a performance
vottleneck statically”?

Cost analysis: statically analyzing the amount of resources
needed to run a program.

Problem: count active threads per memory access

for (int x = 8; x <= threadIdx.x; x++) {
read(array[x]);
3

Solution:
cost = (W? 4+ W)/2 where W is the number of threads
Thus, when W = 4:

(42 +4)/2 =20/2 = 10

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 13/53

But, why is the cost (W?* + W) /27?

Understanding Warp-Semantics

for (int x = 0; x <= threadIdx.x; x++) {

foo(A[x]);
}

e Warp: a group of W -threads that execute the kernel lockstep

e threadIdx.xis a unique thread-identifier

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

At runtime: per-thread view for W = 4

for(x=0;x<=0;x++){ for(x=0;x<=1;x++){ for(x=0;x<=2;x++){ for(x=0;x<=3;x++){
foo(A[x]); foo(A[x]); foo(A[x]); foo(A[x]);
} 3 } ¥

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

x=0

for (x=0;x<=0;x++) for (x=0;x<=1;x++) for (x=0;x<=2;x++) for (x=0;x<=3;x++)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

x=0
for (x=0;x<=0;x++) for (x=0;x<=1;x++) for (x=0;x<=2;x++) for (x=0;x<=3;x++)

foo(A[B]) foo(A[B]) foo(A[0]) foo(A[0])

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

x=0

for (x=0;x<=0;x++) for (x=0;x<=1;x++) for(x=0;x<=2;x++) for(x=0;x<=3;x++)
foo(A[B]) foo(A[B]) foo(A[0]) foo(A[0])
x=1
for (x=0;x<=1;x++) for (x=0;x<=2;x++) for (x=0;x<=3;x++)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

x=0

for (x=0;x<=0;x++) for (x=0;x<=1;x++) for (x=0;x<=2;x++) for (x=0;x<=3;x++)
foo(A[B]) foo(A[B]) foo(A[0]) foo(A[0])
x =1
for (x=0;x<=1;x++) for (x=0;x<=2;x++) for (x=0;x<=3;x++)
foo(A[1]) foo(A[1]) foo(A[1])

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

x=0
for (x=0;x<=0;x++)

foo(A[B])

for (x=0;x<=1;x++)

foo(A[B])

for (x=0;x<=1;x++)

foo(A[1])

for(x=0;x<=2;x++)

foo(A[0])

for (x=0;x<=2;x++)

foo(A[1])

for(x=0;x<=2;x++)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

for(x=0;x<=3;x++)

foo(A[0])

for (x=0;x<=3;x++)

foo(A[1])

for(x=0;x<=3;x++)

x=0
for (x=0;x<=0;x++)

foo(A[B])

for (x=0;x<=1;x++)

foo(A[B])

for (x=0;x<=1;x++)

foo(A[1])

for(x=0;x<=2;x++)

foo(A[0])

for (x=0;x<=2;x++)

foo(A[1])

for(x=0;x<=2;x++)

foo(A[2])

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

for(x=0;x<=3;x++)

foo(A[0])

for (x=0;x<=3;x++)

foo(A[1])

for(x=0;x<=3;x++)

foo(A[2])

for (int x = 8; x <= threadIdx.x; x++) {

foo(A[x]);
}
Iteration(x) ThreadO Threadl Thread2 Thread3 Active Count
0 f 4f | 4l 4
1 O 4f 4l 4l 3
2]] o o 2
3]]] o 1
4]]]] 0]

cost=(W? +W)/2=4+3+2+1=10

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

Thread-divergence is a core aspect of 2 major performance bottlenecks:

e Bank conflicts
e Uncoalesced accesses

Key takeaway: Precisely characterizing thread-divergence == precisely characterizing
performance bottlenecks

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 19/53

Relational-Cost Analysis

Reduce problem to analyzing cost of sequential program

for (x=0; x<=threadIdx.x; x++) { =» forxe 0 .. W-1 { A sequential program

foo(A[x]); -> tick (W - x); captures the control-flow
} -} of the warp (group) of
threads.

e tickconsumesW - xresources
o Off-the-shelf tools can reduce sequential program to symbolic expression

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro PAWASE!

Translate a concurrent-warp semantics into a sequential program, and build on the vast
literature of cost analysis of sequential programs!

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 22/53

Translate a concurrent-warp semantics into a sequential program, and build on the vast
literature of cost analysis of sequential programs!

o Step 1: Translate (A) CUDA kernel into (B) concurrent Intermediate Representation (IR)
e Step 2: Translate (B) concurrent IR into (C) sequential cost program
o Step 3: Given (C) sequential program calculate cost (D)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 22/53

Translate a concurrent-warp semantics into a sequential program, and build on the vast
literature of cost analysis of sequential programs!

o Step 1: Translate (A) CUDA kernel into (B) concurrent Intermediate Representation (IR)
e Step 2: Translate (B) concurrent IR into (C) sequential cost program
o Step 3: Given (C) sequential program calculate cost (D)

(a) (8) (©) o)
for (x=0;x<=threadIdx.x;x++){ for x € 0..tid{ for x € 0..W-1{ W-1

foo(A[x]); - rd A[x]; - tick (W - x); =Y W-z)=W>+W)/2
} } } =0

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 22/53

Translate a concurrent-warp semantics into a sequential program, and build on the vast
literature of cost analysis of sequential programs!

o Step 1: Translate (A) CUDA kernel into (B) concurrent Intermediate Representation (IR)
e Step 2: Translate (B) concurrent IR into (C) sequential cost program
o Step 3: Given (C) sequential program calculate cost (D)

(a) (8) (©) o)
for (x=0;x<=threadIdx.x;x++){ for x € 0..tid{ for x € 0..W-1{ W-1

foo(A[x]); - rd A[x]; - tick (W - x); =Y W-z)=W>+W)/2
} } } =0

Major Contribution: Prove correctness of Step 2 with a new Relational-Cost Analysis

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 22/53

e Lower, upper, exact bounds can all be handled with the same formalism
Prior work: only upper-bounds bounds

 CUDA semantics with support for thread-divergence
Prior work: ommission from the SOTA

e A soundness result that shows that static costs are correct for all types of bounds
(fully mechanized in ®ROCQ)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 23/53

e Q: How can we guarantee that the sequential program captures the cost of the warp-
semantics?

e Answer: A theoretical framework to relate the cost of the concurrent and sequential
programs, eg, show that two programs have the same cost.

I''®F-p~s

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 24/53

I''®F-p~s

o A proof system to derive the cost of a e I' - typing environment
protocol p in terms of a sequential

® - active threads (b-exp)
program s under relation ~

P - warp protocol

o« nCl{— <. > th
c{=, <, = }among others ~ - cost relation

S - sequential cost

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro

0;t+ forx € 0..tid {A[0]} = forx € 0.W —1 {tick(W —x)}

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

0;t|F for x € 0..tid {A[0]} = forx € 0.W —1 {tick(W —x)}

e () - closed environment

e t-allthreads active (t = true boolean)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 27/53

0;t +| for x € 0..tid {A[0]}| = forx € 0.W —1 {tick(W — x)}

e () - closed environment

e t-allthreads active (t = true boolean)
e LHS: warp protocol

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

0;t + for x € 0..tid {A[0]} = |forx € 0.W —1 {tick(W —x)}

0 - closed environment

t - all threads active (t = true boolean)

LHS: warp protocol
RHS: sequential cost

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 29/53

0;t + for x € 0..tid {A[0]} [=| for x € 0.W —1 {tick(W — x)}

0 - closed environment

t - all threads active (t = true boolean)

LHS: warp protocol
RHS: sequential cost

— - same cost

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 30/53

Uniform conditionals
IF-U
I'kFc: U IiOrp~s

[kif (c) {p} ~ if (¢) {s}

When a conditional has the same value
for all threads (U), then we preserve that
conditonal sequentially

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 31/53

Uniform conditionals Divergent conditionals

IF-U IF-D
I'tec:U I'sOFp ~s I'tec:D sOAckp ~s

[0 Fif (¢) {p} ~if (¢) {s} [0 if (¢) {p} ~s
When a conditional has the same value Otherwise (D), we capture the condition in
for all threads (U), then we preserve that the expression of active threads ¥ A c.

conditonal sequentially

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 31/53

FOR

L;®r.rlr:t L,x: 70 @ Fp ~s

[P+ forx er{p}~forxer {s}

« Loop analysis: Relates a range r for warp with a range 7’ for sequential
Lemma 5.4: If r is uniform, use 7!

« Compare the loop body, while recording the original ranges of x

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 32/53

0;t+ forx € 0..tid {A[0]} = forx € 0.W —1 {tick(W —x)}

1. A thread-divergent range 0..tid captured by a sequential range 0..WW — 1
SOTA limitation: thread-divergent loops are unsupported

2. Analysis states exact costs (=)
SOTA limitaton: only upper-bounds (cost over approximations)

3. Symbolic costs per iteration W — x
SOTA limitation:only supports fixed costs, say 4

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 33/53

@;t F— 0..tid~0.W—-1:D @, X: D(O..tid,O..W—l); tF A[O] = thk(W — X)
0;t+ for x € 0..tid {A[0]} = forx € 0.W —1 {tick(W —x)}

FOR

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 34/53

@;t F— 0..tid~0.W—-1:D Q), X: D(O..tid,O..W—l); tF A[O] = thk(W — X)
0;t+ for x € 0..tid {A[0]} = forx € 0.W —1 {tick(W —x)}

FOR

1. Prove that the iteration spaces have same number of iterations (=)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 35/53

@;t F- 0..tid~0.W —1:D @, X: D(O..tid,O..W—l); tFr A[O] = thk(W — X)
0;t+ for x € 0..tid {A[0]} = forx € 0.W —1 {tick(W —x)}

FOR

scalar active vector

1. Prove that the iteration spaces have same 0 [tttt] [0,0,0,0]

number of iterations (=) 1 [f.t,t,1] [1,1,1,1]
2. Prove that the loop bodies have the same cost - it [22,22]
3 [ffft] [3,3,3,3]

Typing context: 0, : D(g_tiq.0..w—1)
e Therange of x in the scalar/vector contexts

e The active threads

36/53

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro

@;t F- 0..tid~0.W —1:D Q), X: D(O..tid,O..W—l); tF A[O] = thk(W — X)
0;t+ for x € 0..tid {A[0]} = forx € 0.W —1 {tick(W —x)}

FOR

Our theory is driven by two core ideas:

1. Loop analysis: relate iteration spaces (= same numer of iterations, < fewer iterations, =
more iterations)

2. Metric analysis: relate a metric with a symbolic cost (a parameter of the theory)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 37/53

Corollary 4.3 (Soundness for closed terms). Let M be a metric and ~ a cost relation.
IfQ;t = p ~ s,then (tV,0,0) = p ~ s.

If we can derive a cost statically for protocol p with program s, then that cost holds
dynamically.

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 38/53

C1CO

Cost-analysis of CUDA kernels

s A 4) 4)
Protocol , Sequential
[CUDA]—» Inference 2 | Relational Cost =] S - Cost —»
\ (Faial)) £Optimizatiorg L (CAS) J

1. Extract concurrent IR:
CUDA = [Protocol Inference] = p

2. Extract sequential IR:
p=» [Relational Cost Analysis] = s

3. Extract numeric expression:
s = [Sequential Cost Analysis] = n

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 40/53

Background: Faial static analysis framework

e Concurrent IR is Memory Access Protocol
e Preserves control flow constructs (includes analysis to find loop bounds)

e Supports inter-procedural calls, C++ templates, CUDA memory spaces, atomics, array
aliasing, and barrier synchronization

e OOPSLA24 discusses sources and impact of over-approximation in translation

(4) (B)

for (x=0;x<=threadIdx.x;x++){ for x € 0..tid{
foo(A[x]); = }l‘d Alx];

}

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 41/53

e Loop analysis: thread-divergent ranges converted as an optimizer (Z3):

0..tid=0.W —1

 Thread-divergent conditionals: capture thread-divergent constraints:
tid%2=0 are added to ® (active threads)

e Metric analysis: support for uncoalesced accesses and bank conflicts

o We develop a exactness check to track when over-approximations are introduced (more
on this in the evaluation).

(B) (C)

for x € 0..tid{ for x € 0..W-1§
rd A[x]; - tick (W - x);
} 3

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro

o Support for off-the-shelf analysis: Absynth, KoAT, CoFloCo

e Direct analysis with a Computer Algebra System (CAS):
we use Maxima; guaranteed correct cost

(© (D)
for x € 0..W-1{ W1

tick (W - x); =Y (W—z)=(W2+W)/2
} =0

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 43/53

e RQ1: How Does Pico Compare to the State of the Art, RaCUDA?
Reproduce tevaluation of [POPL21] to compare the state-of-the-art tool RaCUDA

e RQ2: How Frequently Does Control Flow Affect the Accuracy of Pico?
Find ratio of precisely analyzable loops and conditons in 226 kernels [CAV14]

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 44 /53

RQ1: How Does Pico Compare to the State of the Art,
RaCUDA?

Expressiveness: Pico supports / RaCUDA lacks: thread-divergent loops, arbitrary loop
steps, bitwise operators, C+++ features (templates, array aliasing, inter-proc analysis)

Reproducibility: Costs of 25 programs (across 2 metrics):
e Pico gave tighter bound in all 25 examples (vs 15 of RaCUDA)
e We documented 4 unsound bounds (lower than should be) in RaCUDA

Tool Tightestbound Unsound

RaCUDA 15 4
Pico 25 0

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro

RQ2Z: How Frequently Does Control Flow Affect the Accuracy
of Pico?

At a glance: 1812 array accesses, 471 structured loops, and 670 conditional expressions

conditional 346 57 conditional 324 106
loop 216 37 loop 255 43
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

(a) Uncoalesced Access (b) Bank Conflict

E Exact [Approximated

o Atleast 75.3% of conditionals can be precisely captured
o Atleast 85.4% loops can be precisely captured

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro

o Relational-cost analysis for warp-parallelism
support for thread-divergence

e Correctness for any cost relation
exact (=), over-, and under-approximations ().

e Mechanized proofs of all results in Rocq

e Pico achieves the lowest bound
outperforms RaCUDA in 10 kernels (1.7x better)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro

o Relational-cost analysis for warp-parallelism e Correctness of metrics

support for thread-divergence (tradeoff performance vs precision)
e Correctness for any cost relation e How to report helpful

exact (=), over-, and under-approximations (). performance bottlenecks?
e Mechanized proofs of all results in Rocq (average costs, differential analysis)
e Pico achieves the lowest bound * Relational-cost between

outperforms RaCUDA in 10 kernels (1.7x better) protocols

(eg, for program repair)

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro

EXxtra slides

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 49/53

Contribution 1: Concurrent IR
Syntax

e QOur contribution is the
semantics for Warps

e skip no-op e We reuse the same

e Aln|accessindexnandanarray A syntax of Memory
Access Protocols

A protocol pis:

e p; psequential composition

o if(c) p branching

e forx € r plooping

A Modular Static Cost Analysis For GPU Warp-Level Parallelism) Tiago Cogumbreiro 50/53

A semantics of vectors

Rules Syntax

Judgment: (n,o) | I e Vector of naturals: I

Vector store: o

(i,0) 4 ¢V (E-num)

Naturals: ¢:=0 | 1 | ...

(tid,o) | (0,1,...,W —1) (E-tid) e Numericexpressions: nm =14 | ¢ | tid | nxn
e Booleans: b:u=t | f
e Booleanexpressions: c:=b | non | bob

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro 51/53

Example 1
(2 x tid, o) | (0,2,4,6)
since (2,2,2,2) x (0,1,2,3) =(2x0,2x1,2x2,2x 3)=(0,2,4,6)
Example 2
(1 <tid,o) | (f,t,t,t)

since (1,1,1,1) < (0,1,2,3) = (1< 0,1 <1,1<2,1< 3) = fitt

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro

<p,B,0> UMZ

1. A protocol p to run
2. A vector of active threads B

3. A store of vectors o
4. A cost

(o) 4 C C#Y (p,BAC,0) |i
(if (c) p,o) I i

A Modular Static Cost Analysis For GPU Warp-Level Parallelism > Tiago Cogumbreiro SEYASE!

