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Graphics processing units (GPUs) specialize in highly parallel computations.

● used in 3D graphics, machine learning, systems biology, etc.

GPU programs are run by a large number of concurrent threads on multiple layers of 
shared memory. Failing to reason about correctness leads to concurrency errors, e.g. 
data-races.
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Background: GPUs and concurrency errors



Data-race: two or more threads access the same memory location, and at least one is writing.

Data-races cause:

● undesired non-deterministic behavior 
● memory corruption
● program crashes
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Background: data-races
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Data-race Freedom Verifier Data-race Finder

4

Background: DRF verifiers and Data-race finders

Verifies the absence of data-races in a 
program. 

Detect the presence of data-races in a 
program.

No data-race exists in all possible 
program execution paths.

Finds and reports a program execution 
that leads to a data-race. 



Data-race Freedom Verifier Data-race Finder
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Soundness: If the tool can prove DRF, 
then the program must also be DRF.
(No False Negatives)

Soundness: If the tool can prove a 
data-race, then the program must have 
a data-race.
(No False Positives)

Completeness: If the program is DRF, 
then the tool must be able to prove 
DRF.
(No False Positives)

Completeness: If the program has a 
data-race, then the tool must be able 
to prove a data-race.
(No False Negatives)

Background: DRF verifiers and Data-race finders

Property: Data-race Freedom Property: Data-race

Completeness

Soundness



Data-race Freedom Verifier Data-race Finder
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DRF verifier reports a DRF. ✔
(sound)

Data-race finder reports a data-race. ✔
(complete)

DRF verifier reports a data-race. ❓

Can report impossible data-races. 
(false alarms, incomplete)

Data-race finder reports DRF. ❓

Can miss data-races.
(false negatives, unsound)

Background: DRF verifiers and Data-race finders



Data-race Freedom Verifier Data-race Finder
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DRF checking tools are usually static, 
without running the program 
(over-approximates).

Data-race finding tools are usually 
dynamic, while running the program 
(under-approximation).

Faial [2], GPUVerify [3], PUG [4] HiRace [5], HAccRG [6], ScoRD [7]

Background: static DRF verifiers and dynamic data-race finders

building upon Faial.   (Sound) DRF reports ✔
    (Partially-complete) data-race reports ✔❓ 
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We present, FaialAA, a static data-race finder for GPU programs. 
while maintaining the capabilities of a DRF verifier.

● Characterize a class of programs where our analysis produce only true alarms
(59.5% of programs).

● Formally establish the root causes of false alarms in FaialAA. 
i.e, determine the sources of approximation.

Goal: Extend static analysis tools for bug finding



1. Empirical Results for FaialAA

○ Can FaialAA verify bug-fixes in open source projects? 

○ Does FaialAA have fewer false alarms than the state-of-the-art?

2. Theoretical Results (mechanized 15,900 lines of Coq code      )

○ Control-flow Independence & Data Independence

○ True Positives Theorem

9



10

Evaluation: Confirming Defects in Open Source Projects

Can FaialAA verify bug-fixes in open 

source projects?

Data Selection:
- 6 bug-fixing commits.

- OpenMM, high performance library 
used for molecular simulation

- Megatron-LM, library for training 
transformer models in LLMs by 
Nvidia

Experiment 1: Find bugs in buggy version 

Experiment 2: Check DRF in fixed version
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Evaluation: Confirming Defects in Open Source Projects

Only FaialAA is able to report confirm true data-race reports.

Racy (buggy) version
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Evaluation: Confirming Defects in Open Source Projects

FaialAA confirms 5 out of 6 DRF 
programs.

DRF (fixed) version
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Evaluation: Comparing to the state of the art

Does FaialAA have fewer false alarms than the state-of-the-art?

Data Selection:

- 226 reportedly DRF programs
- NVIDIA GPU Computing SDK v2.0
- NVIDIA GPU Computing SDK v5.0
- Microsoft C++ AMP Sample Projects
- Gpgpu-sim benchmarks

- Reproduced experiment by Bardsley et al. CAV’14 [1].

Experiment: Verify programs and report on outcomes of tools.
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FaialAA reports 1.9× fewer potential alarms.

Evaluation: Comparing to the state of the art

FaialAA was able to find 10 undocumented racy programs, 6 of 
which are missed by both Faial and GPUVerify.



Formalizing sources of False Alarms
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Inference

The only cause of approximation (false alarms) in our analysis.
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Formalizing sources of false alarms

QuantificationCUDA SMTMemory Access Protocols

● Memory Access Protocols codify the behavior of threads over shared memory.

● For scalability, Memory Access Protocols abstracts away what is written to/read from arrays [4].

● Contents of arrays are lost in the inference from CUDA to MAPs.



__global__ void CIDIKernel(int* A) {

int j = A[thread_id]; 

A[thread_id] = random_int;

 }

CUDA 
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Control-flow Independent (CI) protocol &
Data Independent (DI) protocol.

The inference process is exact (no approximations). The 
contents of array A, is independent to our analysis.

__global__ void CDKernel(int* A) {

int j = A[thread_id]; 

if (j > 0) {

A[thread_id] = random_int;

}

 

__global__ void DDKernel(int* A) {

int j = A[thread_id]; 

A[j] = random_int;

}

 

Control-flow Dependent (CD) protocol.

Write access may or may not execute. The reachability is 
inexact.

Data Dependent (DD) protocol.

The reachability is exact, but the index location is 
inexact.

Formalizing sources of false alarms
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Evaluation: Occurrence of CIDI Kernels in the Wild

How common are CIDI programs?

We used approximation analysis to analyze 2770 programs from two datasets. 

- CAV’14 (226 programs)

- GH’22 (2544 programs)

- CUDA programs retrieved from GitHub’s Search API
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Evaluation: Occurrence of CIDI programs in the Wild

59.5% of the 2770 programs are 
CIDI.

CIDI Control-flow Independent & Data Independent
CIDD Control-flow Independent & Data Dependent
CDDI Control-flow Dependent & Data Independent
CDDD Control-flow Dependent & Data Dependent
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Approximation analysis: Control-flow Independence Judgements

Approximation analysis: Control-flow Independent (CI) protocols

states that the control-flow in protocol p is unaffected by symbolic variables.
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Approximation analysis: Data Independent (DI) protocols

states that the indexing expressions in protocol p is unaffected by non-deterministic variable 
declarations.

 

Approximation analysis: Data Independence Judgements
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Results: Action-set Correspondence

(1) Any access in the program, is also in MAPs. (soundness)

(2) If MAPs is control-flow independent, we know that the accesses are reachable in the program, but the index is 
imprecise.

(3) If MAPs is data independent, then the accesses have precise index, but may be unreachable in the program.

(4) If MAPs is both control-flow  and data independent, then the accesses are exactly equal to the CUDA program.



True Positives Theorem
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Results: True Positives Theorem

If MAPs is CIDI, then data-race emitted by MAPS, must also be emitted by the CUDA program.

CIDI programs are the class of programs where our analysis produce only true alarms.



Conclusion
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Approximation analysis a static analysis technique to detect true data-races in GPU programs.

- Assigns two dimensions of preciseness (CI and DI) to memory access protocols.

True Positive Theorem identifies the class of programs where our analysis only reports true alarms.

Implemented in FaialAA, static sound DRF checker and partially-complete data-race finder. 

Our evaluation showed that: 

- Emits 1.9× fewer potential alarms
- Found 10 undocumented data-races in a well-studied DRF dataset
- Confirms 5 pairs of racy and fixed programs from open source project
- Has exact analysis on 59.5% of programs.
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Conclusion
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