
Sound and Partially-Complete Static Analysis of
Data-Races in GPU Programs

Dennis Liew, University of Massachusetts Boston, USA

Tiago Cogumbreiro, University of Massachusetts Boston, USA

Julien Lange, Royal Holloway, University of London, United Kingdom

Graphics processing units (GPUs) specialize in highly parallel computations.

● used in 3D graphics, machine learning, systems biology, etc.

GPU programs are run by a large number of concurrent threads on multiple layers of
shared memory. Failing to reason about correctness leads to concurrency errors, e.g.
data-races.

2

Background: GPUs and concurrency errors

Data-race: two or more threads access the same memory location, and at least one is writing.

Data-races cause:

● undesired non-deterministic behavior
● memory corruption
● program crashes

3

Background: data-races

array[0]

thread 1 thread 2

write read

Data-race Freedom Verifier Data-race Finder

4

Background: DRF verifiers and Data-race finders

Verifies the absence of data-races in a
program.

Detect the presence of data-races in a
program.

No data-race exists in all possible
program execution paths.

Finds and reports a program execution
that leads to a data-race.

Data-race Freedom Verifier Data-race Finder

5

Soundness: If the tool can prove DRF,
then the program must also be DRF.
(No False Negatives)

Soundness: If the tool can prove a
data-race, then the program must have
a data-race.
(No False Positives)

Completeness: If the program is DRF,
then the tool must be able to prove
DRF.
(No False Positives)

Completeness: If the program has a
data-race, then the tool must be able
to prove a data-race.
(No False Negatives)

Background: DRF verifiers and Data-race finders

Property: Data-race Freedom Property: Data-race

Completeness

Soundness

Data-race Freedom Verifier Data-race Finder

6

DRF verifier reports a DRF. ✔
(sound)

Data-race finder reports a data-race. ✔
(complete)

DRF verifier reports a data-race. ❓

Can report impossible data-races.
(false alarms, incomplete)

Data-race finder reports DRF. ❓

Can miss data-races.
(false negatives, unsound)

Background: DRF verifiers and Data-race finders

Data-race Freedom Verifier Data-race Finder

7

DRF checking tools are usually static,
without running the program
(over-approximates).

Data-race finding tools are usually
dynamic, while running the program
(under-approximation).

Faial [2], GPUVerify [3], PUG [4] HiRace [5], HAccRG [6], ScoRD [7]

Background: static DRF verifiers and dynamic data-race finders

building upon Faial. (Sound) DRF reports ✔
 (Partially-complete) data-race reports ✔❓

8

We present, FaialAA, a static data-race finder for GPU programs.
while maintaining the capabilities of a DRF verifier.

● Characterize a class of programs where our analysis produce only true alarms
(59.5% of programs).

● Formally establish the root causes of false alarms in FaialAA.
i.e, determine the sources of approximation.

Goal: Extend static analysis tools for bug finding

1. Empirical Results for FaialAA

○ Can FaialAA verify bug-fixes in open source projects?

○ Does FaialAA have fewer false alarms than the state-of-the-art?

2. Theoretical Results (mechanized 15,900 lines of Coq code)

○ Control-flow Independence & Data Independence

○ True Positives Theorem

9

10

Evaluation: Confirming Defects in Open Source Projects

Can FaialAA verify bug-fixes in open

source projects?

Data Selection:
- 6 bug-fixing commits.

- OpenMM, high performance library
used for molecular simulation

- Megatron-LM, library for training
transformer models in LLMs by
Nvidia

Experiment 1: Find bugs in buggy version

Experiment 2: Check DRF in fixed version

11

Evaluation: Confirming Defects in Open Source Projects

Only FaialAA is able to report confirm true data-race reports.

Racy (buggy) version

5

1

4

2

2

3

1

12

Evaluation: Confirming Defects in Open Source Projects

FaialAA confirms 5 out of 6 DRF
programs.

DRF (fixed) version

5

1

4

2

1

4

1

13

Evaluation: Comparing to the state of the art

Does FaialAA have fewer false alarms than the state-of-the-art?

Data Selection:

- 226 reportedly DRF programs
- NVIDIA GPU Computing SDK v2.0
- NVIDIA GPU Computing SDK v5.0
- Microsoft C++ AMP Sample Projects
- Gpgpu-sim benchmarks

- Reproduced experiment by Bardsley et al. CAV’14 [1].

Experiment: Verify programs and report on outcomes of tools.

14
FaialAA reports 1.9× fewer potential alarms.

Evaluation: Comparing to the state of the art

FaialAA was able to find 10 undocumented racy programs, 6 of
which are missed by both Faial and GPUVerify.

Formalizing sources of False Alarms

15

Inference

The only cause of approximation (false alarms) in our analysis.

16

Formalizing sources of false alarms

QuantificationCUDA SMTMemory Access Protocols

● Memory Access Protocols codify the behavior of threads over shared memory.

● For scalability, Memory Access Protocols abstracts away what is written to/read from arrays [4].

● Contents of arrays are lost in the inference from CUDA to MAPs.

__global__ void CIDIKernel(int* A) {

int j = A[thread_id];

A[thread_id] = random_int;

 }

CUDA

17

Control-flow Independent (CI) protocol &
Data Independent (DI) protocol.

The inference process is exact (no approximations). The
contents of array A, is independent to our analysis.

__global__ void CDKernel(int* A) {

int j = A[thread_id];

if (j > 0) {

A[thread_id] = random_int;

}

__global__ void DDKernel(int* A) {

int j = A[thread_id];

A[j] = random_int;

}

Control-flow Dependent (CD) protocol.

Write access may or may not execute. The reachability is
inexact.

Data Dependent (DD) protocol.

The reachability is exact, but the index location is
inexact.

Formalizing sources of false alarms

18

Evaluation: Occurrence of CIDI Kernels in the Wild

How common are CIDI programs?

We used approximation analysis to analyze 2770 programs from two datasets.

- CAV’14 (226 programs)

- GH’22 (2544 programs)

- CUDA programs retrieved from GitHub’s Search API

19

Evaluation: Occurrence of CIDI programs in the Wild

59.5% of the 2770 programs are
CIDI.

CIDI Control-flow Independent & Data Independent
CIDD Control-flow Independent & Data Dependent
CDDI Control-flow Dependent & Data Independent
CDDD Control-flow Dependent & Data Dependent

20

Approximation analysis: Control-flow Independence Judgements

Approximation analysis: Control-flow Independent (CI) protocols

states that the control-flow in protocol p is unaffected by symbolic variables.

21

Approximation analysis: Data Independent (DI) protocols

states that the indexing expressions in protocol p is unaffected by non-deterministic variable
declarations.

Approximation analysis: Data Independence Judgements

22

Results: Action-set Correspondence

(1) Any access in the program, is also in MAPs. (soundness)

(2) If MAPs is control-flow independent, we know that the accesses are reachable in the program, but the index is
imprecise.

(3) If MAPs is data independent, then the accesses have precise index, but may be unreachable in the program.

(4) If MAPs is both control-flow and data independent, then the accesses are exactly equal to the CUDA program.

True Positives Theorem

23

24

Results: True Positives Theorem

If MAPs is CIDI, then data-race emitted by MAPS, must also be emitted by the CUDA program.

CIDI programs are the class of programs where our analysis produce only true alarms.

Conclusion

25

Approximation analysis a static analysis technique to detect true data-races in GPU programs.

- Assigns two dimensions of preciseness (CI and DI) to memory access protocols.

True Positive Theorem identifies the class of programs where our analysis only reports true alarms.

Implemented in FaialAA, static sound DRF checker and partially-complete data-race finder.

Our evaluation showed that:

- Emits 1.9× fewer potential alarms
- Found 10 undocumented data-races in a well-studied DRF dataset
- Confirms 5 pairs of racy and fixed programs from open source project
- Has exact analysis on 59.5% of programs.

26

Conclusion

27

References

[1] Ethel Bardsley, Adam Betts, Nathan Chong, Peter Collingbourne, Pantazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Daniel Liew, and Shaz Qadeer. 2014. Engineering a Static
Verification Tool for GPU Kernels. In Proceedings of CAV, Vol. 8559. Springer, Berlin, Heidelberg, 226–242. https://doi.org/10.1007/978-3-319-08867-9_15

[2] Tiago Cogumbreiro, Julien Lange, Dennis Liew Zhen Rong, and Hannah Zicarelli. 2023. Memory Access Protocols: Certified Data-Race Freedom for GPU Kernels. FMSD (2023), 38 pages.
https://doi.org/10.1007/s10703-023-00415-0

[3] Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: a Verifier for GPU Kernels. In Proceedings of OOPSLA. ACM, New York, NY, USA,
113–132. https://doi.org/10.1145/2384616.2384625

[4] Guo dongLi and Ganesh Gopalakrishnan. 2010. Scalable SMT-based verification of GPU kernel functions. In Proceedings of FSE. ACM, New York, NY, USA, 187–196.
https://doi.org/10.1145/1882291.1882320

[5] John Jacobson, Martin Burtscher, and Ganesh Gopalakrishnan. 2024. HiRace: Accurate and Fast Data Race Checking for GPU Programs. In Proceedings of SC. IEEE, Piscataway, NJ, USA,
12 pages.

[6] Anup Holey, Vineeth Mekkat, and Antonia Zhai. 2013. HAccRG: Hardware-Accelerated Data Race Detection in GPUs. In Proceedings of ICPP. IEEE, Piscataway, NJ, USA, 60–69.
https://doi.org/10.1109/ICPP.2013.15

[7] Aditya K.Kamath,AlvinA.George,and Arkaprava Basu.2020. ScoRD:AScopedRaceDetectorforGPUs.InProceedings of ISCA. IEEE, Piscataway, NJ, USA, 1036–1049.
https://doi.org/10.1109/ISCA45697.2020.00088

https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ISCA45697.2020.00088

