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Abstract
GPUs offer parallelism as a commodity, but they are difficult to
program correctly. Static analyzers that guarantee data-race freedom
(DRF) are essential to help programmers establish the correctness
of their programs (kernels). However, existing approaches produce
too many false alarms and struggle to handle larger programs. To
address these limitations we formalize a novel compositional analysis for
DRF, based on memory access protocols. These protocols are behav-
ioral types that codify the way threads interact over shared memory.
Our work includes fully mechanized proofs of our theoretical results,
the first mechanized proofs in the field of DRF analysis for GPU
kernels. Our theory is implemented in Faial, a tool that outperforms
the state-of-the-art. Notably, it can correctly verify at least 1.42×
more real-world kernels, and it exhibits a linear growth in 4 out of
5 experiments, while others grow exponentially in all 5 experiments.
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1 Introduction
General purpose GPU programming has become more widespread in the last
few years as it finds many applications in bio-informatics, artificial intelligence,
computer vision, etc [1–4]. While GPUs promise a great return on investment,
thanks for their ability to run thousands of threads concurrently, this comes
at a cost: they are notoriously difficult to program. In GPU programming,
hundreds of lightweight threads share portions of arrays in parallel (with-
out locks) — very different from the programming model of multithreaded
programs written in C or Java with heavy-weight heterogeneous threads. Data-
race freedom analysis aims to guarantee that for all possible executions, every
array cell being written by one thread cannot be concurrently accessed by
another thread. Data-race freedom considers the interaction between every
pair of threads among a fixed number of threads. Guaranteeing the absence
of data-races is especially important when GPU programs are used in critical
software (e.g., self-driving cars [5] and medical imaging [6]). Indeed, in such
settings, bugs must be found before the code is executed by customers to avoid
potentially catastrophic consequences.

In the field of static analysis for detecting data-races in GPU programs,
there is a tension between efficiency and correctness (no missed data-races
and no false alarms) that thus far is unresolved. Bug finding tools [7–9]
favor correctness over efficiency: they provide correct results at small scales,
by simulating the program execution. Such tools are incapable of handling
certain parameters symbolically (e.g., array size) and can easily exhaust
users’ resources (e.g., loops with long iteration spaces or unknown bounds).
Approaches based on Hoare logic [10–12] can cope with medium-sized pro-
grams, do not miss data-races, and do not require array size information;
however, they suffer from a high-rate of false alarms and require code annota-
tions written by concurrency experts. Finally, tools that can cope with larger
programs and do not require array size information either miss data-races [13]
or overwhelm the user with false alarms [14].

We introduce a novel static data-race freedom analysis that can handle
larger programs and produce fewer false alarms than related work, without
missing data-races. Additionally our analysis does not require code annotations
or array size information. Our verification framework hinges on memory access
protocols, a new family of behavioral types [15] that codify the way threads
interact through shared memory. Our behavioral types also make evident two
aspects of the analysis that can be made separate: concurrency analysis (i.e.,
could these two expressions run in parallel?) and data-race conflict detection
(i.e., do these array indices match?).

Contributions and synopsis This paper includes the following contributions.
• In Section 3, we formalize the syntax, semantics, and well-formedness

conditions for memory access protocols, which are behavioral types for
GPU programs. This behavioral abstraction results in a simpler yet
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Fig. 1: Work-flow of the verification.

more expressive theory than previous works, e.g., it does not require
user-provided loop invariants.

• In Section 4, we show that our data-race freedom analysis of memory
access protocols can be soundly and completely reduced to the satisfi-
ability of an SMT formula, see Theorem 1. Our theory and results on
memory access protocols are fully mechanized in Coq. To the best of our
knowledge, this is the first mechanized proof of correctness of a data-race
freedom analysis for GPU programs.

• We show that our data-race freedom analysis of memory access protocols
is compositional when protocols satisfy a structural property, see Propo-
sition 1. Additionally, we show how to transform protocols when they do
not meet this property.

• In Section 5, we give the detailed proofs of Theorem 1 and Proposition 1.
Our discussion includes a novel proof technique that relates (inductively)
the syntactic structure of a protocol with the source of concurrent accesses
to shared memory.

• In Section 6 we present Faial, which infers memory access protocols from
CUDA kernels and implements our theory. Our experiments show that
Faial is more precise and scales better than existing tools.

• In Section 7, we present a thorough experimental evaluation of Faial
against related work [7, 8, 10, 13], the largest comparative study of GPU
verification (5 tools in 260 kernels, 3 tools compared in 487 kernels). Faial
verified 218 out of 227 real-world kernels (at least 1.42× more than other
tools) and correctly verified more handcrafted tests than other tools (4
out of 5). In a synthetic benchmark suite (250 kernels), Faial is the only
tool to exhibit linear growth in 4 out of 5 experiments, while others grow
exponentially in all 5 experiments.

Our paper is accompanied by an implementation (Faial), an evaluation frame-
work (including datasets), and proof scripts (in Coq) for each theorem. All of
these are available in our artifact [16].

Comparison with our CAV 2021 paper This article revises and extends an ear-
lier version of this work [17] with new material and full proof of results. First,
we include a new section with a comprehensive presentation of the results and
proofs, following closely our Coq formalism. Second, we revisit the core theory
of memory access protocols, first proposed in [17]. We add conditionals and
make significant changes to the presentation of the semantics and analysis. The
definitions of data-race freedom, well-formed protocols, and protocol splitting,



Listing 2.1: Examples of racy kernels, l.h.s. is from [19] and r.h.s. simplifies
l.h.s. for clarity, with one-dimensional array and thread identifier, and 1-stride
loops.

1 for ( int r = 0; r < N; r++) {
2 for ( int i = 0; i<TILE_DIM;

i+=BLOCK_ROWS)
3 { tile [ tid.y+i ][ tid.x] =

idata [index_in+i*width];}
4 __syncthreads();
5 for ( int j = 0; j<TILE_DIM;

j+=BLOCK_ROWS)
6 { odata[index_out+j*height] =

tile [ tid.x ][ tid.y+j ];}}

1 for ( int r = 0; r < N; r++) {
2 for ( int i = 0; i<M; i++)
3 { tile [ tid ] = ...;}
4 __syncthreads();
5 for ( int j = 0; j<M; j++)
6 {... = tile [ tid+j ];}}

are also revised technically, to match better with the Coq formalism. Third,
we have extended and updated the related work with recent publications.

2 Overview
This section gives an overview of our approach by examining a data-race we
found in published work [18] and [19]. We discuss the challenges that such
examples pose to the state-of-the-art of data-race freedom analysis. Then we
introduce a verification framework based on memory access protocols: behav-
ioral types [15] that codify the way threads interact via shared memory.
Figure 1 gives an overview of the verification pipeline. We start from a CUDA
kernel, from which we infer possibly several memory access protocols (one per
shared array). Protocols are then transformed in three steps into formulas that
are verified by an SMT solver.

2.1 Challenges of GPU Programming

2.1.1 GPU Programming Model

The key component of GPU programming is the kernel program, or just kernel,
that runs according to the Single-Instruction-Multiple-Thread (SIMT) execu-
tion model, where multiple threads run a single instruction concurrently. A
kernel is parameterized by a special variable that holds a thread identifier,
henceforth named tid. In parallel, each member of a group of threads runs
an instantiated copy of the kernel by supplying its identifier as an argument.
Threads communicate via shared memory (arrays) and mediate communica-
tion via barrier synchronization (an execution point where all threads must
wait for each other before advancing further). Writes are only guaranteed to
be visible to other threads after a barrier synchronization.

GPU programming platforms usually group threads hierarchically in multi-
ple levels, across which no inter-groups synchronization is possible. In both the
literature [13, 20] and this work, the focus is on intra-group communication.



2.1.2 Challenges

We motivate the difficulty of analyzing data-races by studying a programming
error found in the wild, reported in Listing 2.1 (left). This excerpt comes from
a tutorial [19] on optimizing numeric algorithms for GPUs. The code listing
transposes a matrix N-times with an outer loop indexed by variable r.

Remarkably, the tutorial [19] does not inform the readers that Listing 2.1
contains a subtle data-race: one transpose-operation starts (the writes to tile in
line 3) without awaiting the termination of the previous transpose-operation
(the reads from tile in line 6), thus corrupting the data over time and possibly
skewing the timing of the optimization to appear faster than it should be. We
found a related data-race in [18], which reuses code from [19].

Our tool, Faial, successfully identifies the program state that triggers the
data-race in Listing 2.1: when r=1 and N=2. However, state-of-the-art tools
struggle to accurately analyze Listing 2.1, as evaluated in Section 7 (Claim 1:
Test 1). Symbolic execution tools, such as [7, 8], timeout for N>1, and, in
general, cannot handle symbolic (unknown) bounds. GPUVerify [20], a tool
based on Hoare logic, reports a false alarm: a spurious data-race when r=0
and N=1. PUG [13] incorrectly identifies the example as data-race free, as its
analysis appears to ignore data-races originating from different iterations of a
loop.

2.2 Memory Access Protocols by Example
We now use a memory access protocol to investigate the data-race that stems
from the interaction between both loops manipulating array tile, c.f., List-
ing 2.1. The analysis discussed in this paper assumes that array aliasing has
been handled beforehand, thus every array is disjoint from another at this
point of the analysis. Such assumption allows us to analyze each array inde-
pendently, by generating one memory access protocol per array, e.g., our tool
yields three protocols from Listing 2.1 (l.h.s). For presentation purposes, we
focus our discussion on array tile in Listing 2.1 (r.h.s.), which simplifies the
l.h.s. whilst retaining the root cause of its data-race. We discuss how we sup-
port multi-dimensional arrays, multi-dimensional thread identifiers, arbitrary
loop strides, kernel parameters (e.g., N), and array aliasing in Section 6. In our
Coq formalism the notion of “accesses” (and their dimensions) is a parameter
of the theory, thus orthogonal to the theory presented here.

Consider the execution of the end of the first iteration (r=0) and the begin-
ning of the second (r=1) iteration of the outer-loop. In this case, the execution
of the j-loop when r=0 is not synchronized with the execution of the i-loop
when r=1 as there is no call to __syncthreads() in between.

The memory access protocol in Listing 2.2 captures this partial execution
from the viewpoint of array tile. By design, memory access protocols over-
approximate kernels by abstracting away what data is being written to/read
from an array, to focus on where data is being written. The protocol models
the two problematic loops of Listing 2.1, i.e., the j-loop when r=0 and the i-loop



Listing 2.2: Minimal representative example of a memory access protocol
highlighting the data-race in Listing 2.1.

1 // r = 0
2 forU j in 0..M // for ( int j = 0; j<M; j++)
3 {rd[ tid+j ]}; // _ = tile [ tid+ i ];
4 // r = 1
5 forU i in 0..M // for ( int i = 0; i<M; i++)
6 {wr[tid ]} // tile [ tid ] = _;

when r=1. The first loop reads (rd[tid+j]) from the array, while the second writes
(wr[tid]) to it. Note that the iteration range includes the lower bound 0 and
excludes the upper bound M. The evaluation of a protocol follows the SIMT
model: each thread evaluates wr[tid] by instantiating tid with their unique
identifier (hereafter, a non-negative integer), e.g., thread 0 yields wr[0] and
thread 1 yields wr[1].

2.2.1 Analysis of Unsynchronized Protocols

We say that two concurrent accesses are data-race free (DRF1) if both accesses
target distinct memory locations, or if both accesses are reading from memory.
We say that a protocol is DRF when all of its concurrent accesses are pair-
wise DRF. For instance the respective sets of concurrent accesses of threads 0
and 1 in Listing 2.2 is given below

tid = 0
{rd[j] | 0 ≤ j < M} ∪ {wr[0]} DRF with?

tid = 1
{rd[1+j] | 0 ≤ j < M} ∪ {wr[1]}

When M>1, thread 0 (l.h.s) accesses rd[1] and thread 1 (r.h.s) accesses wr[1].
Thus, there is a data-race on index 1 of the array.

A fundamental challenge of static data-race freedom verification is how
to handle loops. Symbolic execution approaches that unroll loops, e.g., [7,
8], cannot handle large or symbolic iteration spaces. Static approaches that
use Hoare logic, e.g., [10–12], require user-provided loop invariants. Another
approach is to reduce loops to verifying the satisfiability of a corresponding
universally quantified formula, e.g., [24, 25]. This has the advantage of being
fast and not requiring invariants. However, its previous application to GPU
programming, i.e., PUG, is unsound due to the interaction between barrier
synchronizations and loops, e.g., PUG misses the data-race in Listing 2.1. We
give more details in Section 7.

Our approach A key contribution of our work is to identify conditions
that allow a kernel to be reduced to a first-order logic formula, by precisely
characterizing the effect of barrier synchronization in loops. To this end, the

1The acronym DRF should not be confused with acronyms used in memory models, such as
DRF0 [21], DRF1 [22], or DRFX [23].



language of memory access protocols distinguishes syntactically between pro-
tocol fragments that synchronize from those that do not. For instance, the
protocol in Listing 2.2 is identified as unsynchronized, as it does not include
any synchronization.

In Section 4, we show that the data-race freedom analysis of unsynchro-
nized protocols can be precisely reduced to a first-order logic formula, where
universally quantified formulae represent loops, thus obviating the need to
unroll them explicitly. For instance, we reduce the verification of Listing 2.2
to asking whether for all M , t1, and t2, where t1 ̸= t2 are thread identifiers,
the following holds:

∀j1, i1, j2, i2 : 0 ≤ j1 < M ∧ 0 ≤ i1 < M ∧ 0 ≤ j2 < M ∧ 0 ≤ i2 < M =⇒
{rd[t1 + j1]} ∪ {wr[t1]} DRF with? {rd[t2 + j2]} ∪ {wr[t2]}

This formula is invalid since rd[t1 + j1] races with wr[t2] when, e.g., t1 = 0,
t2 = 1, j1 = 1, and M > 1. Hence, our technique flags Listing 2.2 as racy.

2.2.2 Analysis of Synchronized Protocols

The protocol in Listing 2.3 (left) models all the interactions over the shared
array tile from Listing 2.1. This protocol consists of one outer loop r that
contains two inner loops separated by a barrier synchronization (sync). The
first inner loop writes (wr[tid]) to the array, while the second reads (rd[tid+ j])
from the array.

This protocol illustrates how our language syntactically differentiates
between protocol fragments that synchronize from those that do not. Con-
cretely, our language precludes an unsynchronized loop (forU x ∈ n..m {u})
from calling sync anywhere in u, and it requires that a synchronized loop
(forS x ∈ n..m {p}) includes at least one occurrence of sync. The superscript S
(resp. U) stands for synchronized (resp. unsynchronized). This distinction can
be inferred automatically and yields a compositional analysis, as we explain
below.

In unsynchronized loops, accesses in an iteration always happen concur-
rently with accesses in any other iteration. In contrast, synchronized loops are
more challenging to analyze accurately because accesses in an iteration may,
or may not, run concurrently with accesses in adjacent iterations (depending
on where barriers are located). For instance an instruction of iteration r in
Listing 2.3 (left) may race with an instruction of iteration r+1, when N ≥ 1.

Our approach In this work we show that the data-race freedom analysis
of synchronized protocols can safely be reduced to a first-order logic formula
when such loops are aligned, i.e., when there is at least one synchronization
exactly before the loop and one at the end of its body. In Section 4.1 we show
how to transform an arbitrary memory access protocol into an aligned protocol
using a syntax-driven transformation technique called barrier aligning. Intu-
itively, barrier aligning normalizes loops so that they do not “leak” accesses



Listing 2.3: Memory access protocol (left) of array tile from Listing 2.1 and its
aligned version (right).

1 forS r in 0..N {
2 forU i in 0..M { wr[tid] }
3 sync;
4 forU j in 0..M { rd[tid + j ] }
5 }

aligns to

1 forU i in 0..M { wr[tid] }
2 sync;
3 forS r in 1..N {
4 forU j in 0..M { rd[tid + j ] }
5 forU i in 0..M { wr[tid] }
6 sync;
7 }
8 forU j in 0..M { rd[tid + j ] }

between iterations. The right-hand side of Listing 2.3 shows the result of apply-
ing barrier aligning on the protocol from Listing 2.3 (left). Observe that the
fragment before the aligned loop (line 1) corresponds to the unsynchronized
part of the original loop (before sync). The original loop itself is rearranged so
that the part succeeding sync is moved to the beginning of the aligned loop
(lines 3–6). The fragment following the aligned loop (line 7) corresponds to
the unsynchronized loop that appears after the sync in the original protocol.

In Section 4.1 we show that aligned protocols enable compositional verifica-
tion: protocol fragments between two barriers can be analyzed independently.
This compositional analysis is possible because (i) there is no causality between
instructions, except through sync and (ii) aligned protocols syntactically
delimit the causality induced by sync. For instance, the aligned protocol in
Listing 2.3 can be reduced to analyzing the following three protocol fragments
independently:

(1) forU i ∈ 0..M {wr[tid]}

(2) forS r ∈ 1..N {forU j ∈ 0..M {rd[tid+ j]}; forU i ∈ 0..M {wr[tid]}; sync}

(3) forU j ∈ 0..M {rd[tid+ j]}

Protocols (1) and (3) are handled like Listing 2.2 because they are unsyn-
chronized. Protocol (2) requires more care as it includes a synchronized loop.
Representing a synchronized loop as a formula becomes possible when the pro-
tocol is aligned : both threads must share the same value for r at each iteration.
Hence, we reduce the verification to asking whether for all N , M , t1, and t2
where t1 ̸= t2 and the following formula holds. We highlight the range of the
synchronized loop in green.

∀r, j1, i1, j2, i2 : 1 ≤ r<N ∧ 0 ≤ j1<M ∧ 0 ≤ i1<M ∧ 0 ≤ j2<M ∧ 0 ≤ i2<M

=⇒ {rd[t1 + j1]} ∪ {wr[t1]} DRF with? {rd[t2 + j2]} ∪ {wr[t2]}



Syntax of memory access protocols

N ∋ i ::= 0 | 1 | · · ·
n ::= x | i | n ⋆n

B ∋ d ::= true | false

b ::= d | n ⋄n | b ◦ b

o ::= wr | rd
A ∋ α ::= i:o[i]
P ∋ P ::= {α1, . . . , αn}

H ::= [] | P : :H

U ∋ u ::= skip | o[n] | u ; u | if b {u} else {u} | forU x ∈ n..m {u}
W ∋ p ::= u ; sync | p ; p | u ; forS x ∈ n..m {p ; u}

Fig. 2: Syntax of memory access protocols.

Our technique identifies Listing 2.3 as racy since this formula is invalid, i.e.,
rd[t1+j1] races with wr[t2] when r = 1, t1 = 0, t2 = 1, j1 = 1, N > 1 and
M > 1.

3 Memory Access Protocols
A memory access protocol describes the interaction between a group of threads
and a single shared-memory array. A protocol records where in memory
accesses take place, but abstracts away from what data is read from/written
to memory.

3.1 Syntax
The language of protocols distinguishes between an unsynchronized protocol
fragment u ∈ U , that disallows synchronization, from a synchronized fragment
p ∈ W that must include a synchronization. The syntax of memory access
protocols is given in Figure 2.

Hereafter, i, j, k are meta-variables over non-negative integers (natural
numbers) picked from the set N. An numeric expression n is either: a numeric
variable x, a natural number i, or a binary operation on natural numbers that
yields a natural number. A boolean expression b is either a boolean literal, an
arithmetic comparison ⋄, or a propositional logic connective ◦. Meta-variable α
ranges over access values, which hold the information necessary to identify
data-races at run-time. In access value i:o[j], i is the identifier of the thread
performing the access (aka. owner), j is the array location, and o is the mode
(read or write).

Memory access protocol An unsynchronized protocol u ∈ U either does
nothing (skip), accesses a shared memory location o[i] (reads from/writes to
index i), performs sequential composition, branches using an if-then-else con-
struct, or loops. Observe that accesses o[i] in (source) protocols do not specify
an owner, the association is only done in the semantics (see below). A syn-
chronized protocol p ∈ W either performs barrier synchronization sync, runs



Free variables of numeric expressions fv(n)

fv(i) = ∅ fv(x) = {x} fv(n ⋆m) = fv(n) ∪ fv(m)

Free variables of boolean expressions fv(b)

fv(d) = ∅ fv(n ⋄m) = fv(n) ∪ fv(m) fv(b ◦ b′) = fv(b) ∪ fv(b′)

Free variables of unsynchronized protocols fv(u)

fv(skip) = ∅ fv(o[n]) = fv(n) fv(u ; u′) = fv(u) ∪ fv(u′)

fv(if b {u} else {u′}) = fv(b) ∪ fv(u) ∪ fv(u′)

fv(forU x ∈ n..m {u}) = fv(n) ∪ fv(m) ∪ (fv(u) \ {x})

Free variables of synchronized protocols fv(p)

fv(u ; sync) = fv(u) fv(p ; p′) = fv(p) ∪ fv(p′)

fv(u ; forS x ∈ n..m {p ; u′}) = fv(u) ∪ fv(n) ∪ fv(m) ∪
(
(fv(p) ∪ fv(u′)) \ {x}

)
Fig. 3: Free variables.

unsynchronized code u, performs sequential composition, or loops. The syntax
of synchronized protocols groups each unsynchronized fragment to the clos-
est sync or synchronized loop that appears to their right. We sometimes use
parentheses for the sake of readability. For instance, we can write protocol

wr[0] ; rd[1] ; sync ; wr[2] ; forS x ∈ n..m {wr[3] ; sync ; wr[4]}

as(
wr[0] ; rd[1] ; sync

)
;
(
wr[2] ; forS x ∈ n..m {(wr[3] ; sync) ; wr[4]}

)
3.2 Semantics
Our operational semantics is inspired by the synchronous, delayed seman-
tics (SDV) from Betts et al. [20], where threads execute independently and
communicate upon reaching a barrier.

We begin with variable binding. The loop constructors are the only binders
in our language, and they respectively bind their loop variable in their loop
bodies.



Big-step semantics for numeric n and boolean b expressions n ↓ i b ↓ d

nat

i ↓ i

n-bin
n ↓ i n′ ↓ j ⋆(i, j) = k

n ⋆n′ ↓ k

bool

d ↓ d

n-rel
n ↓ i n′ ↓ j ⋄(i, j) = d

n ⋄n′ ↓ d

b-bin
b ↓ d b′ ↓ d′ ◦(d, d′) = d′′

b ◦ b′ ↓ d′′

Fig. 4: Semantics of expressions.

Definition 1 (Binding and Closed protocol). In forU x ∈ n..m {u} the dis-
played occurrence of x is binding with scope u. In u1 ; for

S x ∈ n..m {p ; u2}
the displayed occurrence of x is binding with scope p ; u2.

Consider the definition of fv(_) (free variables) in Figure 3, we say that a
boolean expression b is closed when fv(b) = ∅. We say that protocol p ∈ W is
closed when fv(p) ⊆ {tid}.

Figure 4 introduces the big-step operational semantics of numeric and
boolean expressions. We write n ↓ i when expression n evaluates to number i.
Evaluating n ⋆n′ yields the result of abstract function ⋆(i, j), when n evaluates
to i and m evaluates to j. Similarly, we write b ↓ d when expression b evaluates
to number d.

Observe that numeric and boolean expressions only evaluate when they are
closed (there is no evaluation rule for variables).

Lemma 1. For any numeric expression n, we have n ↓ i for some i if, and
only if, fv(n) = ∅. For any boolean expression b, we have b ↓ d for some d if,
and only if, fv(b) = ∅.

Proof. [Source: lemma n_step_iff_closed, file faial-coq/src/NExp.v] [Source:
lemma b_step_iff_closed, file faial-coq/src/BExp.v] The proof for each state-
ment follows by induction on the term (⇒), and on the derivation rules of the
assumption (⇐). □

Additionally, the evaluation of expressions is deterministic.

Lemma 2. If n ↓ i and n ↓ j, then i = j. If b ↓ d and b ↓ d′, then d = d′.

Proof. [Source: lemma n_step_fun, file faial-coq/src/NExp.v] [Source: lemma
b_step_fun, file faial-coq/src/BExp.v] To prove each statement, we show that
there is a Coq function that implements the operational semantics, which can
be proved by induction on the expression. □



Big-step semantics for U u ↓i P u ↓P

U-skip

skip ↓i ∅

U-acc
n ↓ j

o[n] ↓i{i:o[j]}

U-seq
u1 ↓i P1 u2 ↓i P2

u1 ; u2 ↓i P1 ∪ P2

U-if-t
b ↓ true ut ↓i P

if b {ut} else {uf} ↓i P

U-if-f
b ↓ false uf ↓i P
if b {ut} else {uf} ↓i P

U-for-1
(n ≥ m) ↓ true

forU x ∈ n..m {u} ↓i ∅

U-for-2
(n < m) ↓ true u[x := n] ↓i P1 forU x ∈ n+ 1..m {u} ↓i P2

forU x ∈ n..m {u} ↓i P1 ∪ P2

U-par
P =

⋃
{Pi | i ∈ T ∧ u[tid := i] ↓i Pi}

u ↓P

History concatenation and merging H ·H H ⊙H

[P1 . . . Pn]·[Pn+1 . . . Pn+k] = [P1 . . . Pn+k] (H·[P ])⊙([P ′]·H ′) = H·[P∪P ′]·H ′

Big-step semantics for W p ↓H

W-sync
u ↓P

u ; sync ↓ [P, ∅]

W-seq
p ↓H q ↓H ′

p ; q ↓H ⊙H ′

W-for-1
(n+ 1 = m) ↓ true u1 ↓P1 p[x := n] ↓H u2[x := n] ↓P2

u1 ; for
S x ∈ n..m {p ; u2} ↓[P1]⊙H ⊙ [P2]

W-for-2
(n+ 1 < m) ↓ true u1 ↓P1 p[x := n] ↓H1 u2[x := n] ↓P2

skip ; forS x ∈ n+ 1..m {p ; u2} ↓H2

u1 ; for
S x ∈ n..m {p ; u2} ↓[P1]⊙H1 ⊙ [P2]⊙H2

Fig. 5: Semantics of memory access protocols.

Unsynchronized fragment Figure 5 (top) gives the semantics of unsyn-
chronized protocols, which is parameterized by a set of thread identifiers
T ⊆ {0, 1, . . . , k}, where k ≥ 1. We enforce that there must exist at least two
threads, indeed if there is only one thread, there cannot be any data-race. We



start with the single-threaded evaluation of an unsynchronized protocol u by
a thread identifier i, written u ↓i P , yields a phase, i.e., a set P ∈ P of access
values α ∈ A.

Protocol skip produces no accesses. A memory access o[n] evaluates index n
down to j and yields a singleton with an access value produced by thread i.
Sequencing and branching are standard. Loop ranges include the lower bound
and exclude the upper bound, their semantics is otherwise standard.

Rule U-par defines the parallel execution of an unsynchronized protocol u,
with judgment u ↓P . The resulting phase is the union of the result of single-
threaded execution of u for each thread i, (u ↓i Pi for each i). The rule replaces
the unique free-variable tid in u by the thread identifier i; thus, term u[i := x]
is closed under evaluation.

Synchronized fragment Figure 5 (bottom) gives the semantics of a protocol,
notation p ↓H. Evaluation of a protocol p yields a history (ranged over by H),
i.e., a list of phases (P ) that records how memory was accessed. A history
groups and orders the accesses performed per barrier synchronization. The
first element of a history is the set of accesses issued until the first barrier
synchronization. The second element of a history holds the set of accesses
issued between the first and second barrier synchronizations, and so on. We
use : : as the list constructor and · for the usual list concatenation operator.
We capture the sequencing (or merging) of two histories with the special ⊙-
operator, which merges the last phase of the right-hand side with the first
phase of the left-hand side.

Example 1. For instance, by sequencing a history [P1, P2, P3] with a his-
tory [P ′

3, P4, P5] with the ⊙-operator, we observe that the third phase consists
of the union of P3 and P ′

3.

[P1, P2, P3]⊙ [P ′
3, P4, P5] = [P1, P2, P3 ∪ P ′

3, P4, P5]

A barrier synchronization creates two phases (Rule W-sync) correspond-
ing to the phases before (P ) and after synchronization (∅). Sequencing two
synchronized protocols p with q merges the last phase of the former with the
first phase of the latter, as these two phases run concurrently. Synchronized
loops are only defined for nonempty ranges. Variable tid cannot be present
in the bounds of the range, as the evaluation of boolean expressions expects
closed terms, c.f., Lemma 1. The base case of a synchronized loop corresponds
to running its last iteration. When the loop has at least two iterations left,
Rule W-for-2 sequences the history of the first iteration [P1]⊙H1⊙ [P2] with
the history H2 (that results from running the rest of the loop) by merging the
two histories.

Example 2. Protocols containing empty synchronized loops do not evaluate,
e.g., u1 ; for

S x ∈ 0..0 {p ; u2} ̸ ↓H for any H, p, u1, and u2. [Source: lemma
empty_loop, file faial-coq/src/Main.v]



Our semantics is only defined for closed terms. We discuss how we handle
kernel parameters and multiple thread identifiers in Section 6.

We formalize data-race freedom using the notion of safe phase/history in
Definition 2.

Definition 2. Racy access values, safe phases, and safe histories are defined
as follows.

wr ∈ {o, o′} i ̸= j

i:o[k] racy j:o′[k]

∀α, β ∈ P : α ���racy β

safe(P )

∀P ∈ H : safe(P )

safe(H)

Two accesses are in a data-race (or racy) when there exist two different
threads that access the same index k, and at least one of these accesses is
a write. Our definition of data-races includes benign ones, e.g., a data-race
in which both threads write the same value. Phase P is safe iff each pair of
accesses it contains is not racy. History P is safe, i.e., DRF, when all of its
phases are safe.

4 DRF-Preserving Transformations of Protocols
This section presents the main steps of the data-race freedom analysis sum-
marized in Figure 1: barrier aligning (Section 4.1) and splitting (Section 4.2).
This section also includes the presentation of our key theoretical results. We
establish that these steps preserve and reflect data-races (i.e., any and all
data-races are found), see Theorem 1. We make precise the notion of composi-
tionality that makes our approach scalable in Proposition 1. We postpone the
proofs of these results until Section 5.

4.1 Aligning Protocols
The first transformation step rewrites a protocol to facilitate its analysis.
Aligning is a history-preserving operation that produces protocols belonging
to language A, see top of Figure 6.

Barrier aligning (or just aligning) is carried out by function align, given
in the bottom half of Figure 6. The function returns a pair whose first ele-
ment is an aligned and synchronized protocol, and whose second element is an
unsynchronized protocol. Intuitively, a pair is a sequential composition that we
distinguish syntactically. The case for synchronization is simple, align returns
the input protocol as the first component of the pair and skip as the second
component (the input protocol is already fully aligned). The case for sequence
consists of the sequential composition of the pair aligned with unsynchro-
nized code using operator (o9). Sequencing two pairs (a, u) o

9 (a
′, u′) amounts to

sequencing u to the outer-most piece of unsynchronized code present in a′.
Dealing with synchronized loops is more involved. Given a loop u1 ; for

S x ∈
n..m {p ; u2}, we produce a protocol consisting of the fragment preceding the
loop and the synchronized part of its first iteration (a1), an aligned loop (a2)



Aligned protocols a ∈ A

A ∋ a ::= u ; sync | a ; a | a ; forS x ∈ n..m {a}

Sequencing o
9 : U → A → A o

9 : (A× U) → (A× U) → A× U

u o
9 (u

′ ; sync) = (u ; u′) ; sync u o
9 (a ; a

′) = (u o
9 a) ; a

′

u o
9 (a ; for

S x ∈ n..m {a′}) = (u o
9 a) ; for

S x ∈ n..m {a′}

(a, u) o
9 (a

′, u′) = (a ; (u o
9 a

′), u′)

Aligning protocols align : W → A× U

align(u ; sync) = (u ; sync, skip) align(p ; q) = align(p) o
9 align(q)

align(p) = (a, u) a1 = u1
o
9 a[x := n]

a2 = forS x ∈ n+1..m {(u ; u2)[x := x−1] o
9 a} u3 = (u ; u2)[x := m−1]

align(u1 ; for
S x ∈ n..m {p ; u2}) = (a1 ; a2, u3)

Fig. 6: Aligning protocols.

starting at n+1, and the unsynchronized part of its last iteration (u3). See
Listing 2.3 for an example of protocol aligning.

Function align can always unroll loops because the analysis only considers
synchronized loops with a nonempty range; we discuss how to enforce this
assumption in Section 6. Function align leads to an exponential blow up wrt.
nesting of synchronized loops, but this has not posed problems in practice,
c.f., Claim 2.

We now state a fundamental property of barrier aligning: it enables com-
positional verification. To state our compositionality result, we introduce a
language of contexts:

E ::= [_ ] | u ; sync | a ; E | E ; a
| E ; forS x ∈ n..m {a} | a ; forS x ∈ n..m {E}

The base cases correspond to a hole [_ ] or an unsynchronized protocol (fol-
lowed by sync). The remaining cases follow the structure of memory access
protocols.



We define the replacement of the hole with term a in context E as follows.

[_ ][a] = a (u ; sync)[a] = u ; sync

(a′ ; E)[a] = a′ ; (E [a]) (E ; a′)[a] = E [a] ; a′

(E ; forS x ∈ n..m {a′})[a] = (E [a] ; forS x ∈ n..m {a′})

(a′ ; forS x ∈ n..m {E})[a] = a′ ; forS x ∈ n..m {E [a]}

The proposition below relies on the definition of DRF for aligned protocols,
which we give in Definition 3 (see Section 5). Intuitively, a is DRF if a produces
DRF histories, and a ↓ holds if a can produce some history.

Proposition 1. Let E be a context, s.t. E [skip ; sync] is DRF, and
E [skip ; sync] ↓. For all a ∈ A, if a is DRF, a ↓, and fv(a) ⊆ {tid}, then E [a] is
also DRF.

Compositionality allows Faial to analyze each fragment of an aligned proto-
col independently, by splitting the given protocol into multiple symbolic traces.
These traces can be verified independently using an SMT solver.

4.2 Splitting Protocols into Symbolic Traces
The second verification step, splitting, consists in transforming an aligned pro-
tocol into symbolic traces, i.e., symbolic representations of sets of memory
accesses which occur between two synchronizations.

Symbolic traces Intuitively, symbolic traces are a thin abstraction over an
SMT formula. We describe how to translate a symbolic trace to a formula in
Section 6.

We give the syntax and semantics of symbolic traces in Figure 7. We keep
the syntax of symbolic traces close to that of protocols. A symbolic trace
consists of a sequence of memory accesses and the conditional is its only form
of control flow. We make explicit the thread that is issuing an access, as there
is no notion of multithreaded execution here. A variable declaration states that
a variable can take any value from a range of numbers. Evaluating a symbolic
trace then yields one phase per interpretation, which exhaustively instantiates
each variable declaration according to its range.

Expression skip represents an empty symbolic trace, so it yields a history
with a single empty phase. Expression n:o[m] defines a single access. We eval-
uate expression n, the thread responsible for the access, as i; we evaluate the
index n as j, and produce one phase with a single access value, where thread i
accesses index j with mode o.

Sequential composition h1 ; h2 uses ⊗ to distribute each phase that results
from evaluating h1 over every phase of evaluating h2, see Example 3.



Syntax

o ::= wr | rd A ∋ α ::= i:o[i] P ∋ P ::= {α1, . . . , αn}

H ::= [] | P : :H

L ∋ h ::= skip | n:o[m] | h ; h | if b {h} else {h} | var x in n..m; h

Product of histories H ⊗H

H1 ⊗H2 = [P1 ∪ P2 | P1 ∈ H1 , P2 ∈ H2]

Big-step semantics of symbolic traces h ⇓ H

skip ⇓ [∅]
n ↓ i m ↓ j

n:o[m] ⇓ [{i:o[j]}]
h1 ⇓ H1 h2 ⇓ H2

h1 ; h2 ⇓ H1 ⊗H2

b ↓ true h1 ⇓ H

if b {h1} else {h2} ⇓ H

b ↓ false h2 ⇓ H

if b {h1} else {h2} ⇓ H

(n ≥ m) ↓ true
var x in n..m; h ⇓ [∅]

(n < m) ↓ true h[x := n] ⇓ H1 var x in n+ 1..m; h ⇓ H2

var x in n..m; h ⇓ H1 ·H2

Big-step semantics of lists of symbolic traces l ⇓ H

[] ⇓ []
h ⇓ H1 l ⇓ H2

h : : l ⇓ H1 ·H2

Fig. 7: Syntax and semantics of symbolic traces (shaded parts are recalled
from Figure 2).

Example 3. For instance, if we use ⊗ to distribute 2 phases over a history
with 3 phases, we get a history with 6 phases:

[P1, P2]⊗[P3, P4, P5] = [P1 ∪ P3, P1 ∪ P4, P1 ∪ P5, P2 ∪ P3, P2 ∪ P4, P2 ∪ P5]

Expression var x in n..m; h binds variable x in h, where variable x is a
natural number in the range induced from n and m. A var construct evaluates h
for each natural in range n..m to variable x in p, concatenating all phases
together. When the range is empty, then var behaves like a skip. Otherwise,
when the range has at least one element, we evaluate the assignment of the
lower bound n to x in h down to H1, evaluate the var with the rest of the
range n+ 1..m down to H2, and yield the phases of both histories H1 ·H2.



Syntax

C ∋ c ::= u | var x in n..m ; c

Tracing trace : U → L

trace(skip) = skip trace(o[n]) = tid:o[n]

trace(u1 ; u2) = trace(u1) ; trace(u2)

trace(if b {u1} else {u2}) = if b {trace(u1)} else {trace(u2)}

trace(forU x ∈ n..m {u}) = var x in n..m; trace(u)

Sequentialization seq : C → L seq : [C] → [L]

t1, t2 fresh h1 = trace(u)[tid := t1] h2 = trace(u)[tid := t2]

seq(u) = var t1 in 1..|T|; var t2 in 0..t1; h1 ; h2

seq(var x in n..m; c) = var x in n..m; seq(c)

seq([c1, . . . , cn]) = [seq(c1), . . . , seq(cn)]

Splitting split : A → [C] split : A× U → [C]

split(u ; sync) = [u] split(a ; a′) = split(a) · split(a′)

split(a ; forS x ∈ n..m {a′}) = split(a) · [var x in n..m; c | c ∈ split(a′)]

split((a, u)) = split(a ; u ; sync)

Fig. 8: Tracing, sequentialization, and splitting of aligned protocols.

Figure 7 (bottom) gives the semantics of lists of symbolic of traces, which
is useful to state our main result (see Theorem 1). A list of traces simply
evaluates to a list of histories produced by the element of the list.

Barrier splitting is the transformation from aligned protocols to symbolic
traces, performed via functions split , trace, and seq , defined in Figure 8.

For convenience, we first introduce an intermediary language C (ranged over
by c) called the language of protocol closures, which combines an unsynchro-
nized protocol with the synchronizing loop variables that enclose that protocol.
A term in C is either an unsynchronized protocol fragment or a variable binder.



Function trace translates an unsynchronized protocol into a symbolic trace.
Memory accesses are tagged with i to signify that a single thread is issuing
this access. Later function seq uses trace and replaces tid by either t1 or t2
in the output of trace. Tracing sequences and conditionals is straightforward,
since sequence and conditionals also exist in L. The key element of function
trace is that it reinterprets the loop as a variable binder.

Function seq translates a protocol closure into a symbolic trace. The base
case u turns an unsynchronized protocol into sequencing the execution of two
symbolic threads, h1 and h2, respectively. Since variable tid is thread-local,
seq declares fresh variables t1 to represent the identifier (tid) of the first sym-
bolic thread, and t2 to represent the identifier of the second thread symbolic
thread. Recall that the semantics of L yields one phase per distinct valu-
ation of variables t1 and t2, guaranteeing that all thread-pairs are verified.
The ranges assigned to t1 and t2 guarantee that both values are distinct, as
each thread identifier is unique. Our theory assumes that there are at least
two threads, as otherwise the kernel is trivially DRF. No other assumptions
are made about the thread count |T|. Our tool can represent the number of
threads |T| symbolically, thus proving data-race freedom for any number of
threads.

Function split takes an aligned protocol and produces a list of protocol
closures. The base case is for u ; sync, which simply returns a singleton list
containing u. The case for a ; a′ simply concatenates the result of splitting
a and a′. The case for synchronized loops reinterprets the loop as a variable
binder for each closure found in the body of the loop. For convenience, we also
define a version of split that takes a pair of aligned protocol and unsynchronized
protocol, i.e., the return values of function align (see Figure 6).

Example 4. Let â = wr[tid+ 1]; rd[tid+ 2]; sync. We have that seq(split(â))
returns:

[var t1 in 1..|T|; var t2 in 0..t1; t1:wr[t1+1]; t1:rd[t1+2]; t2:wr[t2+1]; t2:rd[t2+2]]

Finally, we establish that aligning and splitting preserve and reflect data-
races, i.e., any and all data-races are found. Thus, the only source of
approximation in our analysis stems from the inference of protocols from
CUDA kernels, which we discuss in Section 6.

Theorem 1. If p ↓H1 and seq(split(align(p))) ⇓ H2, then safe(H1) if and
only if safe(H2).

5 Proofs of Theorem 1 and Proposition 1
In this section we explain in details the proof of Theorem 1 and Proposition 1.
Here we aim to give a high-level, yet precise, view of the Coq formalization of



ϕ ⊆W p ϕ ⊆A (a, u) ϕ ⊆C c ϕ ⊆H h

Lemma 10

Lemma 6

Lemma 11

Lemma 12

Lemma 18

Lemma 17

align(p) = (a, u)p split((a, u)) = c seq(c) = h

Fig. 9: Overview of the key lemmas used to establish Theorem 1.

our results. For each step in the proof, we give the key details and hide the more
tedious parts. The interested reader may refer to the Coq files directly [16].

The crux of our proof strategy is to establish a family of pair-inclusion
judgments that, for each intermediate language in our analysis, bridge the
notion of DRF with their respective semantics. The key is to observe that the
existence of a race is defined in terms of pairs of access values that appear in
a single phase. Hence, to show that our transformations preserve and reflect
DRF, it suffices to show that each pair of accesses within individual phases
is maintained by each transformation. Figure 9 gives an overview of the key
judgments that we use in the proof of Theorem 1, where ϕ ranges over pairs
of access values (α1, α2).

The simplest pair-inclusion judgment is the one defined for unsynchronized
protocols, i.e., (α1, α2) ⊆U u (not shown in Figure 9). This judgment says that
access values α1 and α2 both belong to the (single) phase produced by protocol
u. All other pair-inclusion judgments build on the one for unsynchronized
protocols. For instance, (α1, α2) ⊆W p holds if p includes an unsynchronized
fragment which contains both α1 and α2 (see Figure 11). Note that pair-
inclusion judgments are tightly related to the semantics of protocols and are
not meant to be computed statically, e.g., they rely on evaluating loop bounds,
instantiating loop indices, etc.

The rest of this section follows the structure of our transformation pipeline,
c.f., Figure 1. In Section 5.1, we describe the proof of correctness for function
align. In Section 5.2, we describe the proof of correctness for function split . In
Section 5.3, we describe the proof of correctness for function seq . Section 5.4
shows how these intermediate results fit together to produce our main theorem.
Finally, Section 5.5 gives an overview of the proof of Proposition 1.

5.1 Correctness of align

Our proof technique abstracts the operational semantics of Figure 5 in terms
of concurrent accesses contained in single phases. Recall that the semantics of
a protocol yields a history, i.e., a list of sets of accesses, one set for each phase
(between synchronizations). Since our goal is to show DRF preservation, it



Notation

ϕ ::= (α, α) owner(i:o[j]) = i

Phase membership / pair-inclusion (unsynchronized) α ∈U u ϕ ⊆U u

α ∈ {i:o[j] | i ∈ T ∧ n[tid := i] ↓ j}
α ∈U o[n]

α ∈U u1

α ∈U u1 ; u2

α ∈U u2

α ∈U u1 ; u2

b[tid := owner(α)] ↓ true α ∈U u1

α ∈U if b {u1} else {u2}
b[tid := owner(α)] ↓ false α ∈U u2

α ∈U if b {u1} else {u2}

n[tid := owner(α)] ↓ i m[tid := owner(α)] ↓ k
∃j : i ≤ j < k α ∈U u[x := j]

α ∈U forU x ∈ n..m {u}
α1 ∈U u α2 ∈U u

(α1, α2) ⊆U u

First-phase membership (well-formed): α ∈W fst(p)

α ∈U u

α ∈W fst(u ; sync)

α ∈W fst(p)

α ∈W fst(p ; q)

α ∈U u1

α ∈W fst(u1 ; for
S x ∈ n..m {p ; u2})

α ∈W fst(p[x := n])

α ∈W fst(u1 ; for
S x ∈ n..m {p ; u2})

First-phase membership (aligned) α ∈A fst(a)

α ∈U u

α ∈A fst(u ; sync)

α ∈A fst(a)

α ∈A fst(a ; a′)

α ∈A fst(a)

α ∈A fst(a ; forS x ∈ n..m {a′})

Last-phase membership (well-formed) α ∈W lst(p)

α ∈W lst(q)

α ∈W lst(p ; q)

α ∈W lst(p[x := m− 1])

α ∈W lst(u1 ; for
S x ∈ n..m {p ; u2})

α ∈W lst(u2[x := m− 1])

α ∈W lst(u1 ; for
S x ∈ n..m {p ; u2})

Fig. 10: Phase membership for memory access protocols.



suffices to show a stronger result: any pair of concurrent accesses originating
from a well-formed protocol is present in the aligned protocol, and vice versa.

Discussion In our experience the challenge of proving this result centered
around discovering the pair-inclusion judgments and defining them correctly.
The axiomatization of these judgments made the Coq proofs simpler, because
it allowed us to separate concerns and prove them independently: (Concern 1 )
abstract pair-inclusion from the semantics, (Concern 2 ) show that aligning
preserves pair-inclusion. A downside of our approach is that it required us
to restate a substitution lemma for each judgment. We do not present these
substitutions lemmas here. While their proofs are not the easiest, they are
mostly repetitive.

Phase membership, first and last phases. Our running example (Section 2.2)
highlights the main challenge of our analysis: when sequencing two protocols,
the only way for them to affect each other is when an access from the last
phase of the former protocol conflicts with an access from the first phase of
the latter protocol.

Figure 10 formalizes the phase membership judgment for unsynchronized
protocols, then defines first and last phase membership judgments. Phase mem-
bership judgments are the building blocks of pair-inclusion judgment, as they
evaluate whether a single access belong to a protocol. We use ϕ to range over
pairs of accesses (or access values). Intuitively ϕ ⊆U u holds when both ele-
ments of ϕ occur in u, i.e., α ∈U u for each α in pair ϕ. Observe that judgment
α ∈U u instantiates all free variables in u by replacing tid by the owner (thread
identifier) of α and by picking suitable loop indices.

Judgments α ∈W fst(p) and α ∈A fst(a) respectively formalize when an
access α belong to the first phase of a protocol and an aligned protocol. Observe
how the rules for a are simpler. Indeed aligned protocols always synchronize
at the end of loops, thus phases are easier to identify.

Judgment α ∈W lst(p) holds when α belongs to the last phase of p. Note
that this judgment only holds when p includes a loop, i.e., there is no case
when p = u ; sync since the last (second) phase of p is empty.

Pair-inclusion for well-formed protocols Figure 11 defines ϕ ⊆W p, i.e., the
pair-inclusion judgment for well-formed protocols. The base case of this judg-
ment boils down to the one for unsynchronized protocols (see Rule W-acc).
The other cases essentially enumerate all possible phases that p may produce,
then checks whether it includes the pair ϕ. Observe how Rule W-seq-b makes
use of the first-phase and last-phase membership judgments. Indeed as p ; q
is not aligned, p may not terminate with a synchronization. Similar situations
may arise in loops, which explains the number of rules dealing with loops.

Pair-inclusion for aligned protocols Figure 12 defines ϕ ⊆A a, i.e., the pair-
inclusion judgment for aligned protocols. This judgment follows similar lines to
judgment ϕ ⊆W p but it requires many fewer rules. For instance, in a ; a′ it must
be the case that a ends with a sync, thus a and a′ produce non-overlapping
phases. Therefore, the pair ϕ must occur in either a or a′.



Pair-inclusion (well-formed) ϕ ⊆W p

W-acc
ϕ ⊆U u

ϕ ⊆W u ; sync

W-seq-l
ϕ ⊆W p

ϕ ⊆W p ; q

W-seq-r
ϕ ⊆W q

ϕ ⊆W p ; q

W-seq-b
α1 ∈W lst(p) α2 ∈W fst(q)

(α1, α2) ⊆W p ; q

⊆W-for-1
ϕ ⊆U u1

ϕ ⊆W u1 ; for
S x ∈ n..m {p ; u2}

⊆W-for-2
α1 ∈U u1 α2 ∈W fst(p[x := n])

(α1, α2) ⊆W u1 ; for
S x ∈ n..m {p ; u2}

⊆W-for-3
n ↓ j m ↓ k ∃i : j ≤ i < k ϕ ⊆W p[x := i]

ϕ ⊆W u1 ; for
S x ∈ n..m {p ; u2}

⊆W-for-4
n ↓ j m ↓ k ∃i : j ≤ i < k ϕ ⊆W u2[x := i]

ϕ ⊆W u1 ; for
S x ∈ n..m {p ; u2}

⊆W-for-5
n ↓ j m ↓ k ∃i : j ≤ i < k α1 ∈W lst(p[x := i]) α2 ∈U u2[x := i]

(α1, α2) ⊆W u1 ; for
S x ∈ n..m {p ; u2}

⊆W-for-6
n ↓ j m ↓ k ∃i : j ≤ i < k α1 ∈U u2[x := i] α2 ∈W fst(q[x := i+ 1])

(α1, α2) ⊆W u1 ; for
S x ∈ n..m {p ; u2}

⊆W-for-7
n ↓ j m ↓ k ∃i : j ≤ i < k α1 ∈W lst(q[x := i]) α2 ∈W fst(q[x := i+ 1])

(α1, α2) ⊆W u1 ; for
S x ∈ n..m {p ; u2}

Fig. 11: Pair-inclusion (well-formed).

Results Now that we have formalized all the necessary judgments for this
section, we can state their properties formally. Our first lemma states that
function align preserves and reflects the set of accesses of the last phase.

Lemma 3. If p ↓H for some H, and align(p) = (a, u), then for any access α,
α ∈U u if, and only if, α ∈W lst(p).

Proof. [Source: lemma i_last_align, file faial-coq/src/Align.v] We prove
each direction of the equivalence independently. In each case the proof follows
by induction on the derivation of p ↓H. □



Pair-inclusion (aligned) ϕ ⊆A a ϕ ⊆A (a, u)

⊆A-acc
ϕ ⊆U u

ϕ ⊆A u ; sync

⊆A-seq-l
ϕ ⊆A a

ϕ ⊆A a ; a′

⊆A-seq-r
ϕ ⊆A a′

ϕ ⊆A a ; a′

⊆A-for-1
ϕ ⊆A a

ϕ ⊆A a ; forS x ∈ n..m {a′}

⊆A-for-2
ϕ ⊆A a′[x := i] (n ≤ i < m) ↓ true

ϕ ⊆A a ; forS x ∈ n..m {a′}

⊆A-def
ϕ ⊆A a ; u ; sync

ϕ ⊆A (a, u)

Fig. 12: Pair-inclusion (aligned).

The following lemma establishes that function align preserves and reflects
the set of accesses of the first phase.

Lemma 4. If p ↓H for some H, and align(p) = (a, u), then for any access α,
α ∈W fst(p) if, and only if α ∈A fst(a).

Proof. [Source: lemma i_first_align, file faial-coq/src/Align.v] We prove
each direction of the equivalence independently. In each case the proof follows
by induction on the derivation of p ↓H. □

We establish the source of an access over function _ o
9 _.

Lemma 5. Let ϕ = (α1, α2). If ϕ ⊆A u o
9 a, then either ϕ ⊆U u, or ϕ ⊆A a, or

α1 ∈U u and α2 ∈A fst(a), or α2 ∈U u and α1 ∈A fst(a).

Proof. [Source: lemma i_pair_in_inv_n_seq, file faial-coq/src/ALang.v]
The proof follows by induction on the derivation of ⊆A. □

Lemma 6. If p ↓H for some H, then for any pair ϕ, if ϕ ⊆A align(p), then
ϕ ⊆W p.

Proof. [Source: lemma in_1, file faial-coq/src/Align.v] The proof develops
by induction on the derivation of p ↓H, at each case we invert hypothesis (H1)
ϕ ⊆A align(p) so that we can range over all the origins of a pair of accesses ϕ
and get the necessary conditions to apply each constructor of ⊆W. We only
show the proof of Rule W-seq, as other cases are similar. We note that the
proof for the loop construct is quite laborious, yet unsurprising; the inversion
of (H1) in our Coq proof yields 18 different cases.

Our goal is to show ϕ ⊆W p ; q. Our assumptions are align(p ; q) =
(
a1 ; (u1

o
9

a2), u2

)
, align(p) = (a1, u1), align(q) = (a2, u2), (H1) ϕ ⊆A

(
a1 ; (u1

o
9 a2), u2

)
.

Our two induction hypotheses are: (IH.1) if ϕ ⊆A a1 or ϕ ⊆U u1, then ϕ ⊆W p;
and, (IH.2) if ϕ ⊆A a2 or ϕ ⊆U u2, then ϕ ⊆W q.



Performing case analysis on (H1) and using Lemma 5 yields three cases:
• Case 1: When accesses ϕ are in align(p), we show they are also in p.

That is, we have that (H1) ϕ ⊆A a1, or that (H1) ϕ ⊆U u1. Obtain (2)
ϕ ⊆W p from (H1) and (IH.1). Conclude applying W-seq-l and (2).

• Case 2: When access ϕ are in align(q), we show they are also in q. That
is, we have that (H1) ϕ ⊆A a2, or that (H1) ϕ ⊆U u2. Obtain (2) ϕ ⊆W q
from (H1) and (IH.2). Conclude applying W-seq-r and (2).

• Case 3: When α1 is in the last phase of align(p), α2 is in the last phase
of align(q), and ϕ = (α1, α2), then we conclude that α1 is in the last
phase of p and that α2 is in the first phase of q. That is, we have (H1)
α1 ∈U u1 and (H2) α2 ∈A fst(a2). We get (2) α1 ∈W lst(p) from (H1) and
Lemma 3. We get (3) α2 ∈W fst(q) from Lemma 4 and (H2). Conclude
with W-seq-b and (2) and (3).

□
Before we show the reverse direction, we establish three auxiliary lem-

mas to sequence an unsynchronized protocol with a synchronized one, which
together establish the reverse of Lemma 5. First, we show that pair-inclusion
is preserved on the right-hand side of sequence.

Lemma 7. If ϕ ⊆U u, then ϕ ⊆A u o
9 a for any a.

Proof. [Source: lemma i_pair_in_n_seq_l, file faial-coq/src/Align.v] The
proof follows by induction on the structure of a; on each case we use the
constructors of ⊆A. □

Second, we show that pair-inclusion is preserved on the left-hand side of
sequence.

Lemma 8. If ϕ ⊆A a, then ϕ ⊆A u o
9 a for any u.

Proof. [Source: lemma i_pair_in_n_seq_r, file faial-coq/src/Align.v] The
proof follows by induction on the derivation of ϕ ⊆A a; on each case we use
the constructors of ⊆A. □

Third, we show that if an access is in the left-hand side and an other access
is in the right-hand side, then the pair of accesses is in the sequence.

Lemma 9. If α1 ∈U u and α2 ∈A fst(a), then (α1, α2) ⊆A u o
9 a.

[Source: lemma i_pair_in_n_seq_2, file faial-coq/src/Align.v]
We are now ready to show the reverse direction.

Lemma 10. If p ↓H and ϕ ⊆W p, then ϕ ⊆A align(p).

Proof. [Source: lemma in_2, file faial-coq/src/Align.v] The proof follows
by induction on the derivation of ϕ ⊆W p. For each case we apply the construc-
tors of ⊆A. We show the cases related to sequencing. The remaining cases are



similar. The rules for loops must additionally distinguish between the first,
last, and middle (non-first and non-last) iterations. In the following three cases
we have: ϕ ⊆W p, align(p) = (a1, u1), and align(q) = (a2, u2). Our goal is
to prove ϕ ⊆A align(p ; q), but as we can show below, it is enough to show
ϕ ⊆A a1 ; (u1

o
9 a2) ; (u2 ; sync).

=⇒ ϕ ⊆Aa1 ; (u1
o
9 a2) ; (u2 ; sync) By ⊆A-def

=⇒ ϕ ⊆A
(
a1 ; (u1

o
9 a2), u2

)
By definition of align

=⇒ ϕ ⊆Aalign(p ; q)

Case ⊆W-seq-L. We have ϕ ⊆W p, align(p) = (a1, u1), align(q) = (a2, u2).
Our induction hypothesis is that ϕ ⊆A align(p), thus (IH) ϕ ⊆A a1 or (IH)
ϕ ⊆U u1. As we show below, we only need to show that either ϕ ⊆A a1 holds
or ϕ ⊆A u1

o
9 a2 holds, which is easy to conclude from our induction hypothesis

and Lemma 7.

ϕ ⊆Aa1 ∨ ϕ ⊆A u1
o
9 a2 By ⊆A-seq-l or ⊆A-seq-r

=⇒ ϕ ⊆Aa1 ; (u1
o
9 a2) By ⊆A-seq-l

=⇒ ϕ ⊆Aa1 ; (u1
o
9 a2) ; (u2 ; sync)

Case ⊆W-seq-R. Our induction hypothesis is that ϕ ⊆A align(q), thus
(IH) ϕ ⊆A a2 or (IH) ϕ ⊆U u2. As we show below, we only need to show that
either ϕ ⊆A u1

o
9 a2 holds or ϕ ⊆U u2 holds, which is easy to conclude from our

induction hypothesis and Lemma 8.

ϕ ⊆Au1
o
9 a2 ∨ ϕ ⊆U u2 By ⊆A-seq-r and ⊆A-sync, resp.

=⇒ ϕ ⊆Aa1 ; (u1
o
9 a2) ∨ ϕ ⊆A u2 ; sync By ⊆A-seq-l or ⊆A-seq-r, resp.

=⇒ ϕ ⊆Aa1 ; (u1
o
9 a2) ; (u2 ; sync)

Case ⊆W-seq-B. We have that ϕ = (α1, α2), (Ha) α1 ∈W lst(p), and (Hb)
α2 ∈W fst(q). The proof of this case is simple.

α1 ∈W lst(p) ∧ α2 ∈W fst(q) By Lemma 3 and Lemma 4, resp.
=⇒ α1 ∈U u1 ∧ α2 ∈A fst(a2) By Lemma 9
=⇒ ϕ ⊆A a1 ; (u1

o
9 a2) By ⊆A-seq-l

=⇒ ϕ ⊆A a1 ; (u1
o
9 a2) ; (u2 ; sync)

□

5.2 Correctness of split

First Figure 13 (top) formalizes an intermediary pair-inclusion judgment for
protocol closures, following similar lines to the judgment for symbolic traces in
Figure 14. Next we show that if a pair-inclusion holds for an aligned protocol,



Pair-inclusion (protocol closures) ϕ ⊆C c

ϕ ⊆U u

ϕ ⊆C u

n ↓ i n ↓ k ∃i : i ≤ j < k ϕ ⊆C c[x := j]

ϕ ⊆C var x in n..m ; c

Induction principle for aligned protocols a ↓

u ; sync ↓
a ↓ a′ ↓
a ; a′ ↓

a ↓ ∀i, k : n ↓ i =⇒ m ↓ k =⇒ ∀j : i ≤ j < k =⇒ a′[j := x] ↓
a ; forS x ∈ n..m {a′} ↓

Fig. 13: Auxiliary judgments for protocol closures and aligned protocols.

then there must be a protocol closure produced by split that also contains that
pair (using the judgment in Figure 13).

Lemma 11. If ϕ ⊆A (a, u), then ∃c, c ∈ split((a, u)) and ϕ ⊆C c.

Proof. [Source: lemma in_phases_1, file faial-coq/src/PhaseSplit.v] The
proof is trivial once we prove the following: we can show that if ϕ ⊆A a, then
∃c, c ∈ split(a) and ϕ ⊆C c, which follows by induction on the derivation of
assumption ϕ ⊆A a. □

Finally, Figure 13 (bottom) introduces another intermediate judgment,
which we use as a basis for a specialized induction principle in Lemma 12.
This lemma is key to formalize the transformation from C to A. Essentially, a ↓
formalizes the big step semantics of an aligned protocol a without producing
histories.

Lemma 12. If a ↓, c ∈ split((a, u)), and ϕ ⊆C c, then ϕ ⊆A (a, u).

Proof. [Source: lemma i_pair_in_ph, file faial-coq/src/PhaseSplit.v] The
interesting part is to show that if a ↓, c ∈ split(a), and ϕ ⊆C c, then ϕ ⊆A a,
which follows by induction on the derivation of a ↓. □

5.3 Correctness of sequentialization (seq)
We define the phase membership and pair inclusion judgments for symbolic
traces in Figure 14. Phase membership is straightforward and resembles that
of unsynchronized protocols.

Pair inclusion is more interesting, for two reasons. Firstly, since symbolic
traces have no notion of parallelism, pairs cannot be split in a conditional, both



Phase membership (symbolic traces) α ∈H h

n ↓ i m ↓ j
i:o[j] ∈H n:o[m]

α ∈H h

α ∈H h ; h′
α ∈H h′

α ∈H h ; h′
b ↓ true α ∈H h

α ∈H if b {h} else {h′}

b ↓ false α ∈H h′

α ∈H if b {h} else {h′}
n ↓ i m ↓ k ∃j : i ≤ j < k α ∈H h[x := j]

α ∈H var x in n..m; h

Pair-inclusion (symbolic traces) ϕ ⊆H h

ϕ ⊆H h

ϕ ⊆H h ; h′
ϕ ⊆H h′

ϕ ⊆H h ; h′
α1 ∈H h α2 ∈H h′

(α1, α2) ⊆H h ; h′

b ↓ true ϕ ⊆H h

ϕ ⊆H if b {h} else {h′}
b ↓ false ϕ ⊆H h′

ϕ ⊆H if b {h} else {h′}

n ↓ i m ↓ k ∃j : i ≤ j < k ϕ ⊆H h[x := j]

ϕ ⊆H var x in n..m; h

Fig. 14: Phase membership and pair inclusion (symbolic traces).

accesses of a pair ϕ must originate from the same branch. Secondly, there is
no rule for a single access because splitting preserves concurrent accesses that
originate from distinct threads. Note that splitting does not encode concurrent
accesses from a same thread, e.g., any two accesses from different iterations
of the same loop and of the same thread. We are therefore only able to prove
that (α1, α2) ⊆U u implies (α1, α2) ⊆H seq(u) when owner(α1) ̸= owner(α2).
We do not need a pair-inclusion rule for accesses as the only way for a pair
to originate from a memory access is when the same access appears in both
elements of the pair (that case that is irrelevant for correctness).

We first relate phase memberships of unsynchronized protocols and sym-
bolic traces with Lemma 13 (whose proof is omitted here).

Lemma 13. If 0 ≤ i < |T|, then α ∈H trace(u)[tid := i] if, and only if, α ∈U u.

[Source: lemma s_in_p_in_iff, file faial-coq/src/Sequentialization.v]
Next, we show that the accesses in the sequentialization of u are those in u.

Recall that seq uses trace to instantiate two symbolic threads (see Figure 8).

Lemma 14. If α ∈H seq(u), then α ∈U u.



Proof. [Source: lemma i_in_sequentialize_to_t_in, file faial-coq/src/-
Sequentialization.v] We have h1 = trace(u)[tid := t1], h2 = trace(u)[tid := t2],
and seq(u) = var t1 in 1..|T|; var t2 in 0..t1; h1 ; h2, and (1) α ∈H seq(u). We
have to show α ∈U u. From (1), we obtain there exist i and j such that 0 ≤ i < j
and 1 ≤ j < |T|, and (2) α ∈H (trace(u)[tid := t1]) ; (trace(u)[tid := t2]) By
inverting (2) we get that α ∈H trace(u)[tid := t1] or α ∈H trace(u)[tid := t2],
and we can conclude each by applying Lemma 13. □

We build on Lemma 14 to obtain the result for pair-inclusions.

Lemma 15. If ϕ ⊆H seq(u), then ϕ ⊆U u.

Proof. [Source: lemma i_pair_in_1, file faial-coq/src/Sequentialization.v]
Let ϕ = (α1, α2). We get (1) α1 ∈H seq(u) and (2) α2 ∈H seq(u) from our
hypothesis. We get (3) α1 ∈U u and (4) α2 ∈U u from Lemma 14 applied to (1)
and to (2). We conclude using the definition of pair-inclusion. □

The other direction exposes the subtlety we anticipated, pair-inclusion is
only preserved when the accesses in the pair have different owners.

Lemma 16. Let ϕ = (α1, α2). If ϕ ⊆U u and owner(α1) ̸= owner(α2), then
ϕ ⊆H seq(u).

Proof. [Source: lemma i_pair_in_2, file faial-coq/src/Sequentialization.v]
We have h1 = trace(u)[tid := t1], h2 = trace(u)[tid := t2], and seq(u) =
var t1 in 1..|T|; var t2 in 0..t1; h1 ; h2, and (1) α ∈U u. We have to show
α ∈H seq(u). We know that either owner(α) = 0 or owner(α) > 0.

Case owner(α) = 0. The only thread that could have emitted α is
thread t2, as t1 > 0. Thus, let t1 be 1 and t2 be 0. It is enough to show,

α ∈H (trace(u)[tid := 1]) ; (trace(u)[tid := 0])

=⇒ α ∈H trace(u)[tid := 0]

which holds from Lemma 13.
Case owner(α) > 0. Let t1 be owner(α) and t2 be 0. We must show

α ∈H (trace(u)[tid := owner(α)]) ; (trace(u)[tid := 0])

=⇒ α ∈H trace(u)[tid := owner(α)]

which also holds from Lemma 13. □

5.4 Main Result
We first show that sequentialization reflects pair-inclusion.

Lemma 17. If ϕ ⊆H seq(c), then ϕ ⊆C c.



Proof. [Source: lemma in_1, file faial-coq/src/Main.v] The proof follows by
induction on the derivation of assumption ϕ ⊆H seq(c). To prove the base case
we need Lemma 15; the inductive case follows easily. □

Next, we show that sequentialization preserves pair-inclusion.

Lemma 18. Let ϕ = (α1, α2). If owner(α1) ̸= owner(α2) and ϕ ⊆C c, then
ϕ ⊆H seq(c).

Proof. [Source: lemma in_2, file faial-coq/src/Main.v] The proof follows by
induction on the derivation of assumption ϕ ⊆C c. To prove the base case we
use Lemma 16 and the inductive case follows easily. □

Finally, we restate and prove our main result. We depict graphically the
key elements of the proof below.

ϕ ⊆W p ϕ ⊆A align(p) ϕ ⊆C split(align(p)) ϕ ⊆H seq(split(align(p)))

Lemma 10

Lemma 6

Lemma 11

Lemma 12

Lemma 18

Lemma 17

Theorem 1. If p ↓H1 and seq(split(align(p))) ⇓ H2, then safe(H1) if and
only if safe(H2).

Proof. Case ( =⇒ ). [Source: lemma drf_2, file faial-coq/src/Main.v] In
order to show safe(H2), we must show that for any ϕ = (α1, α2) where
owner(α1) ̸= owner(α2) and ϕ ∈ P ∈ H2 for some P , then α1 ���racy α2. By
applying safe(H1), we have that there is a phase P2 such that ϕ ∈ P2 ∈ H2,
and we are left with showing that there exists a phase P1 where ϕ ∈ P1 ∈ H1.
Thus, we need to show ϕ ⊆H p.

From seq(split(align(p))) ↓H2 and ϕ ∈ P2 ∈ H2, we have that there exist
a symbolic history h and a history Hh such that h ∈ seq(split(align(p))) and
ϕ ∈ P2 ∈ Hh. Thus, there exists c such that (1) ϕ ⊆H seq(c) and (2) seq(c) ∈
split(align(p)). Applying Lemma 17 to ϕ ⊆H seq(c) yields (3) ϕ ⊆C c. We can
obtain (4) align(p) ↓ from p ↓H1. By applying Lemma 12 to (2), (3), and (4),
we obtain ϕ ⊆A align(p). Finally, we use Lemma 6 to conclude.

Case ( ⇐= ). [Source: lemma drf_1, file faial-coq/src/Main.v] In order to
show safe(H1), we must show that for any ϕ = (α1, α2) where owner(α1) ̸=
owner(α2) and ϕ ∈ P ∈ H1 for some P , then α1 ���racy α2. By applying
safe(H2), we have that there is a phase P1 such that ϕ ∈ P1 ∈ H2, and we
are left with showing that there exists a phase P2 where ϕ ∈ P2 ∈ H2. Thus,
we need to show that there exists a c such that ϕ ⊆H seq(c) and seq(c) ∈
split(align(p)).

From p ↓H1 and ϕ ∈ P1 ∈ H1, we have that (1) ϕ ⊆W p. Applying Lemma 10
to (1) yields (2) ϕ ⊆A align(p). Applying Lemma 11 to (2) yields that there



exists c such that (3) c ∈ split(align(p)) and (4) ϕ ⊆C c. We apply Lemma 18
to (4) and obtain (5) ϕ ⊆W seq(c). □

5.5 Proof of compositionality
We first give the formal definition of DRF for aligned protocols, then re-state
Proposition 1 which establishes the compositionality of our approach.

Definition 3. We say that a is DRF if, and only if, for all (α1, α2), if ϕ ⊆A a
then α1 ���racy α2.

Proposition 1. Let E be a context, s.t. E [skip ; sync] is DRF, and
E [skip ; sync] ↓. For all a ∈ A, if a is DRF, a ↓, and fv(a) ⊆ {tid}, then E [a] is
also DRF.

Proof. [Source: lemma compositionality, file faial-coq/src/Compositio-
nality.v] The proof follows by induction on the derivation of a ↓. □

6 Implementation
In this section we present our tool, Faial, that implements the steps described
in Figure 1. Faial takes a CUDA kernel as input and produces results that
either identify the kernel as DRF or list specific data-races. In this section, we
describe the implementation of the protocol inference, well-formedness checks,
and transformation to SMT.

Inference This step transforms a CUDA kernel into memory access protocols
(one for each shared array). We use libclang [26] to parse the kernel, a stan-
dard single static assignment (SSA) transformation to simplify the analysis of
indices and arrays, and a form of code slicing to only retain code related to
shared array accesses. We note that Faial supports constructs of the CUDA
programming model that are not directly modeled by memory access protocols,
e.g., unstructured loops, function calls, and multi-dimensional arrays.

Well-formedness This step ensures that kernels Faial analyzes meet the
restrictions induced by the semantics of W, e.g., synchronized loops iterate
at least once. First, Faial annotates loops with a synchronized/unsynchronized
tag according to the presence of sync in the loop body, then adjusts the prece-
dence of sequencing to group all unsynchronized code preceding a sync or a
synchronized loops. Synchronized loops of well-formed protocols cannot manip-
ulate thread-local variables (i.e., tid), an assumption shared by the CUDA
programming model. Hence, Faial flags such kernels as erroneous. Next, Faial
adds assertions before/after synchronized loops to check that the loop range
is non-empty, i.e., loops execute at least once. Similarly to loops, conditionals
are tagged as synchronized when at least one branch has a barrier synchroniza-
tion. Then, Faial inlines synchronized conditionals, i.e., when a synchronized
conditional is found, two copies of the input program are created and each copy



is prefixed by a global assertion corresponding to the condition. Faial does not
support synchronized conditionals that appear within synchronized loops. We
have not found real-world kernels that include such a construction.

Quantification This step transforms each symbolic trace (Figure 7) into
an SMT formula that proves the existence of a data-race, c.f., Figure 5. The
generated formula tests whether any two threads access the same location of
the array and at least one them is writing. A kernel is DRF when the formula
is not satisfiable. For multi-dimensional arrays, we generate one pair of indices
per dimension, and check that at least one pair is distinct. We illustrate this
straightforward transformation with Example 5.

Example 5. The formula generated from the trace in Example 4 is given
below:

∀t1, t2 : 1 ≤ t1 < |T| ∧ 0 ≤ t2 < t1 ∧ (m1 = wr ∨m2 = wr) =⇒(
(idx1 = t1 + 1 ∧m1 = wr) ∨ (idx1 = t1 + 2 ∧m1 = rd)

)
∧
(
(idx2 = t2 + 1 ∧m2 = wr) ∨ (idx2 = t2 + 2 ∧m2 = rd)

)
∧ idx1 ̸= idx2

where each symbolic access is translated to a conjunction representing its index
(idx) and access mode (m). Observe that the formula enforces that indices idx1
and idx2 (executed by distinct threads) are different.

Faial uses Z3 [27] to check the satisfiability of the generated formulas. Our
theory makes little assumptions about the expression language, which in turn
lets users of Faial to pick any logic that Z3 supports. Faial generates formulas
without existential quantifiers and pulls out the forall-binders to the beginning
of the formula. Hence, Faial can use unquantified logics. The version of Faial
included in the artifact [16] uses QF_LIA. Users can change the logic parameter
to handle more intricate kernels.

Multi-dimensional thread identifiers and kernel parameters We extend mem-
ory access protocol with thread-local parameters to support multi thread
identifiers, and with thread-global parameters to support kernel parameters.
We handle thread-local parameters similarly to tid: declare two variables
per thread-local parameter when invoking function seq . We handle thread-
global parameters as a synchronized loop variable: declare one variable per
thread-global parameter. For instance, say that N, an unsigned C-integer,
is a parameter of some kernel p, then we encode the parameter essentially
as forS N ∈ 0..MAX_INT {p}, where MAX_INT is the maximum C-integer.

Forms of synchronization CUDA supports multiple levels of synchroniza-
tion. Within a single accelerator card, threads are divided into grids, grids are
divided into groups, and groups are divided into warps. CUDA enables all-
to-all barrier synchronization between elements of: devices, grids, groups, and
warps. CUDA further supports: a low-level form of message-passing (i.e., data-
exchange) synchronization for warps, dynamic parallelism (creating new ways



to group threads), graph based concurrency, cooperative scheduling, atomics,
and overlapping kernel calls. Presently, we have only implemented support for
group synchronization, as this is the most common form of synchronization
in use, e.g., in [28], out of 389 kernels, only 7 (1.7%) use warp synchroniza-
tion, and 22 (5.7%) use atomics. Adding support for atomics and barrier
synchronization at other levels appears to be mostly an engineering effort with
little impact on our theory. For instance, in [10, 28] adding support for grid-
synchronization, warp-synchronization, and atomics only affects the definition
of data-race marginally. We discuss which new CUDA features we plan to
support in Section 9.

Loops Whenever possible loops are transformed to loops with a stride of 1
following ideas from loop normalization [13] and abstraction [25]. For instance,
in for(int i=lb;i<ub;i+=s){S} we change the stride from s into 1 by execut-
ing the loop body S when the loop variable i is divisible by stride, i.e., the
loop becomes for(int i=lb;i<ub;i++) if((i+lb)%s==0){S}. Similarly, a loop rang-
ing over powers of n, e.g., for(int i=lb;i<ub;i*=s), becomes for(int i=lb;i<ub;i++)
if(powerof(i,s)){S}, where function powerof(i,s) tests whether i is a power of
base s. We approximate whiles as a structured loop with an unknown upper
bound.

Arrays in global and shared memory Threads can issue shared access in CUDA
via global memory and via shared memory. Faial supports arrays declared in
both kinds of memory. Any array either in the kernel parameters, or marked
with a __device__ modifier is in the global memory. Any variable declared
with a __share__ modifier is in the shared memory. Note that even scalar
variables with a __shared__ modifier can be subject to data-races, so our
tool represents scalars in the shared memory as arrays of length 1.

Array aliasing Our tool assumes that all arrays (kernel parameters and
__share__ arrays) and are disjoint. Faial has some support for aliasing
inside the kernel, e.g., a programmer could write the statement float*y =x +
threadIdx.x; and then use y[0] as an alias to x[threadIdx.x]. Our tool does not
support alias in loops and has limited support for array aliasing in conditional
branches.

Function calls Function calls that manipulate shared memory are uncom-
mon in GPU programming. Additionally auxiliary functions that manipulate
shared memory have a compiler annotation to inline their bodies, hence we
can inline such calls easily. Faial cannot handle recursive functions, but these
rarely occur in practice. Function calls that do not access shared memory are
simply discarded.

7 Experimental Evaluation
We evaluate Faial over several datasets and show how it fares against existing
approaches. We structure this evaluation in three claims.



Claim 1: Correctness. We claim that our approach finds more bugs and raises
fewer false alarms than existing tools. To evaluate this claim, we compare Faial
against four state-of-the-art kernel verification tools over 10 kernels that are
known to be tricky to analyze.
Claim 2: Scalability. We claim that our approach scales better to larger pro-
grams. To evaluate this claim, we compare Faial against other tools over a set
of synthetic benchmarks designed to test the limits of each tool, in terms of
run time and memory usage.
Claim 3: Real-world usability. We claim that our approach is more usable than
existing static verification tools on real-world CUDA programs. To evaluate
this claim, we use a varied dataset of real-world data-race free kernels and
measure the false alarm rate, run time, and memory usage of Faial, GPUVerify,
and PUG.

Benchmarking environment To make our evaluation reproducible, we devel-
oped a benchmarking framework to automate our experiments over the
different tools and datasets. For Claim 1 and Claim 3, we designed a
tool-agnostic file format for kernel functions and associated metadata (e.g.,
expected result of DRF analysis, grid and block dimensions, and include direc-
tives). For Claim 2, we created a tool that generates kernels according to given
templates, e.g., see Figure 17.

We evaluate Faial against the following verification tools: GPUVerify [10]
v2018-03-222, PUG [13] v0.23, GKLEE [7] v3.04, and SESA [8] v3.05. We picked
the last release of each tool as of March of 2021. The binaries, source code,
and URL of each tool included in our artifact [16]. Experiments for Claim 1
use an Intel i5-6500 CPU, 7.7GiB RAM, and Fedora 33 OS, while Claim 2 and
Claim 3 use an Intel i7-10510U CPU, 16GiB RAM, and Pop! OS.

Excluded tools We excluded ESBMC-GPU [9] and Simulee [14] from the eval-
uation because we were unable to get them to run satisfactorily. Both tools
have rudimentary support for verifying arbitrary CUDA kernels. ESBMC-GPU
did not find a single data-race in our benchmarks, while Simulee produced false
alarms for every DRF-kernel given.

Claim 1: Correctness
We have selected a set of tricky kernels to expose false alarms and missed data-
races in Faial, GPUVerify, PUG, GKLEE, and SESA. Our results are reported
in Table 1. The dataset consists of 5 tests, each consisting of two variations
of the same kernel: one racy and one DRF. The racy version of Test 1 (c.f.,
Listing 2.1) contains an inter-iteration data-races. The DRF version adds a sync
after the second inner loop. Tests 2 to 4 expose various loop-related data-races.
Their protocols are given in Figure 15. In the racy version of Test 2, wr[tid+ 1]
conflicts with wr[tid] of the first iteration. Similarly, in the racy version of

2https://github.com/mc-imperial/gpuverify/releases/tag/2018-03-22
3http://formalverification.cs.utah.edu/PUG/distributions/pug-v0.2_x64.tar.gz
4https://github.com/Geof23/Gklee/tree/77214669c83ac2f20802299df61940f2dd91360c
5https://github.com/Geof23/Gklee/tree/77214669c83ac2f20802299df61940f2dd91360c

https://github.com/mc-imperial/gpuverify/releases/tag/2018-03-22
http://formalverification.cs.utah.edu/PUG/distributions/pug-v0.2_x64.tar.gz
https://github.com/Geof23/Gklee/tree/77214669c83ac2f20802299df61940f2dd91360c
https://github.com/Geof23/Gklee/tree/77214669c83ac2f20802299df61940f2dd91360c


Table 1: Results for Claim 1. DRF indicates that a (static analysis) tool
reported a test case as DRF. NRR indicates that a (symbolic execution) tool
did not report any data-race. Label x/y indicates that the tool reported y
data-races, x of which are actual races. Label timeout indicates that the tool
did not terminate within 90s. A test passes if the tool returns the expected
result and all reported races are valid.

Test Expected Faial GPUVerify PUG GKLEE SESA

1 transposeDiagonal Racy 1/1 0/2 DRF timeout timeout
DRF DRF 0/1 DRF timeout timeout

2 first-iter Racy 1/1 0/1 1/1 timeout timeout
DRF DRF 0/1 0/1 timeout timeout

3 last-iter Racy 1/1 1/1 0/1 timeout timeout
DRF DRF 0/1 DRF timeout timeout

4 last-iter-first-iter Racy 1/1 0/1 0/1 timeout timeout
DRF DRF 0/1 0/1 timeout timeout

5 read-index Racy 0/1 1/1 0/1 NRR NRR
DRF 0/1 DRF 0/1 NRR NRR

Number of tests passed (of 5): 4 1 0 0 0

// first-iter
wr[ tid+1];
forS x in 0..N {

if (x > 0)

{wr[ tid ] } ;
sync}

// last-iter
forS x in 0..N {

sync;
if (tid < T-1)

{wr[ tid+1] } };
wr[ tid + |T|]

// last-iter-first-iter
forS x in 1..N+1 {

forS y in 1..x+1 {
sync; wr[ tid+x+y]}};

forS z in N*2..N*3 {
wr[ tid+z+1 ]; sync}

Fig. 15: Protocols for Tests 2 to 4, c.f., Claim 1, where N is a free thread-global
variable. Yellow shaded code only appears in the DRF version of first-iter and
last-iter. Red shaded code only appears in the racy version of last-iter-first-iter.

// Racy kernel
A[tid ] = tid ;
int x = A[tid ];
A[x+1] = 0;

// Protocol A
wr[ tid ];
rd [ tid ];
wr[x+1]

// DRF kernel
A[tid ] = tid ;
int x = A[tid ];
A[x] = 0;

// Protocol A
wr[ tid ];
rd [ tid ];
wr[x]

Fig. 16: Kernels and protocols for Test 5 (read-index), c.f., Claim 1. Note that x
becomes a free thread-local variable as protocols do not model array elements.

Test 3, wr[tid+ 1] of the last iteration races with wr[tid]. In the racy version
of Test 4 the last iteration of a nested loop races with the first iteration of the
following loop. Test 5 exposes the abstraction gap between kernel and memory
access protocols (which abstract away array elements), see Figure 16.

Faial passes more tests than any other tool. Failed Test 5 is caused by
memory access protocols abstracting away from what data is being read



// accesses
rd [ tid + n1*|T |];
wr[ tid + 1*|T |];
rd [ tid + n2*|T |];
wr[ tid + 2*|T |];
// ...

// barriers
wr[ tid ];
sync;
wr[ tid ];
sync;
// ...

// conditionals
if tid==0

{wr[tid ]};
if tid==1

{wr[tid ]};
// ...

// unsynchronized loops
forU i1 in 0..N {

wr[ tid ];
forU i2 in 0..N {

wr[ tid ];
// ... }}

// synchronized loops
forS i1 in 0..N {

wr[ tid ]; sync;
forS i2 in 0..N {

wr[ tid ]; sync;
// ... }}

Fig. 17: Synthetic protocols generated for Claim 2. N is a free thread-global
variable, and n1, n2. . . are positive integer literals.

from/written to arrays, i.e., array elements. In each case, Faial reports one
spurious data race (0/1). We report on performance trade-offs wrt. tracking
array elements in Claim 2.

GPUVerify passes Test 5 because it tracks array elements, but fails the
remaining 4 tests. Some reported false alarms are ill-formed, e.g., on the racy
component of Test 2, the report (0 : wr[tid]; 16 : wr[tid]) has disjoint indices.

PUG obtains the worst score amongst static tools. Notably, the tool misses
a data-race in Test 1, demonstrating its unsoundness, c.f., Section 2.1.

GKLEE and SESA timeout for tests that include loops, as the loop bounds
are unknown. Both tools miss the data-race in Test 5. Symbolic tools may
be able to report data-races when the bound is known, e.g., timeouts start
in Test 1 when the bound is at least 2, in Test 2 when the bound is at least
23, 000.

Claim 2: Scalability
We evaluate how different kernel constructs affect run time and memory usage
of Faial, GKLEE, GPUVerify, PUG, and SESA with a synthetic dataset. This
experiment tries to push the limits of each tool to measure their asymptotic
behavior. Our dataset is divided into five categories, one per syntactical
construct in the language of memory access protocols. Figure 17 shows the
protocols of the kernel patterns we generate in each category: (i) repeated
accesses (read then write), (ii) repeated barrier synchronizations separated
by writes, (iii) repeated conditionals, (iv) increasingly nested unsynchronized
loops, and (v) increasingly nested synchronized loops. In each category, we
vary the problem size by repeating a pattern from 1 to 50 times. Note that all
kernels generated this way are DRF.

Figure 18 shows the average run time and memory usage over five runs on
logarithmic and linear scales, respectively. For each run, we set a timeout of
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Fig. 18: Results for Claim 2. Run time (left plots) are given on a logarithmic
scale, and memory (right plots) are given on a linear scale. Flatter and lower
curve is better. Tools annotated with a triangle are excluded due to timeouts
or errors.

90s and we exclude any run that times out or reports a false alarm. Cutoffs in
the memory plots are determined by the cutoffs in the run time plots.

Overall Faial is the most scalable tool. In 4 out of 5 categories, Faial has the
slowest growth for all experiments, and verifies all tests within 0.46s. In the
largest problem sizes, our tool is the fastest in 3 categories (access, conditional,



unsynchronized loop), 2nd for barriers, and 3rd for synchronized loops. Overall,
the memory usage of Faial is competitive with other tools. Faial is the only tool
with a near constant time/memory for up to 50 unsynchronized loops, indicat-
ing the scalability of reducing unsynchronized loops to universally quantified
formulas. Faial only times out for kernels which consists of >17 nested syn-
chronized loops. However such kernels are uncommon, e.g., the levels of nested
synchronized loops in the real-word kernels studied in Claim 3 are at most 3.

GPUVerify remains stable in the barrier and conditional categories but is
affected negatively by loops and accesses. Loops are a known bottleneck in
GPUVerify [29]. In the access category there is an exponential slowdown due
to GPUVerify keeping track of what data is being written to/read from array.

PUG tool remains stable with the number of barrier synchronizations but is
affected negatively by the number of conditionals and loops. PUG is the fastest
tool with smaller inputs, but it raises false alarms in the access category, hence
these measurements are omitted from the corresponding plots.

We discuss GKLEE and SESA together since SESA processes GKLEE’s
NVCC byte code output by concretizing variables, before passing it to GKLEE
itself. There are two main factors that affect negatively these symbolic execu-
tion tools: (i) the number of loops, since they unroll each loop; and (ii) the
amount of bookkeeping required to keep track of what is read from/written to
memory. Figure 18 shows clear exponential curves for the access and barrier
synchronization categories. Observe that these tools timeout immediately in
the loop categories.

Claim 3: Real-World Usability
We evaluate the usability of our approach by comparing Faial with other static
verification tools (GPUVerify and PUG) on real-world kernels wrt. rate of false
alarm, run time and memory. We curated a set of CUDA kernels from [29],
which consists of 3 benchmark suites (totaling 227 CUDA kernels): NVIDIA
GPU Computing SDK v2.0 (8 CUDA kernels); NVIDIA GPU Computing
SDK v5.0 (166 CUDA kernels); Microsoft C++ AMP Sample Projects (20
kernels); gpgpu-sim benchmarks (33 kernels). The gpgpu-sim benchmarks is
detailed in [30], and includes kernels from weather simulation [31], sequence
alignment [32], AES cryptography [33], among others. All kernels are DRF
and have been pre-processed by the authors of [29] to facilitate verification.
Each kernel is in a distinct file, all dependencies are available, and kernels
are annotated with minimal pre-conditions to allow for automatic analysis
(e.g., thread count is given). The authors of [29] do not document how these
pre-conditions were obtained.

As we aim to evaluate fully-automatic verification, we removed any code
annotation specific to GPUVerify, which included 64 loop invariants. For a
detailed discussion on the challenges of generating the invariants included in
the original dataset see [29]. The code annotations that remain in the dataset
are 251 constraints on parameters, e.g., dx ==512 or index_in < width. Addi-
tionally, we made minor changes to some kernels to meet the limitations of the
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Fig. 19: Results for Claim 3, on a set of 227 DRF CUDA kernels.

front-end of Faial and PUG. For instance we converted nested array lookups
to use temporary variables and inlined functions calls that operate on arrays
in 22 kernels. Another 8 kernels were modified to simplify their control flows.
Our curated dataset is included in our artifact [16].

Figures 19a, 19b, and 19c give the correctness results of Faial, GPUVerify,
and PUG, respectively. Correct refers to the true-positive rate, i.e., when the
tool correctly identifies the kernel as DRF. False Alarm refers to the false alarm
rate, i.e., when the tool incorrectly identifies the kernel as racy. A kernel is
Unsupported if it makes the tool crash. A Timeout occurs when the tool exceeds
the limit of 60s to verify a kernel. The values shown are an average calculated
over five runs. Figure 19d shows the average run time and memory usage of
every true-positive report (we omit invalid reports) across the three tools.



Overall Faial has the highest rate of true-positives at 96%. Our tool is
second in terms of run time and memory usage, showing a good compromise
w.r.t. time and space. Faial verifies most kernels within 1s, and all kernels that
need more time are only verified by Faial. GPUVerify shows lower memory usage
at the cost of a higher verification run time. PUG verifies the lowest number
of kernels (34.8%), as most kernels are unsupported (62.6%).

8 Related Work

SMT-based data-race freedom analyses Li and Gopalakrishnan propose a
direct encoding of data-race freedom analysis of GPU programs in SMT, with
PUG [13, 24]. Both PUG and Faial follow a similar approach of barrier splitting:
having a symbolic representation of a canonical interleaving, and dividing up
the analysis over barrier intervals. The two major distinctions are that (1) PUG
misses inter-iteration data-races in synchronized loops, e.g., Listing 2.1, and
(2) the algorithms of PUG are unspecified and lack soundness proofs. In [13,
Section 6.3] the authors identify the challenge of detecting inter-iteration data-
races, but do not elaborate a solution. Ma et al. [25] present a similar technique
to detect data-races and deadlocks in OpenMP programs (CPU-based paral-
lelism). However, their work does not guarantee data-race freedom, and they
do not formalize their algorithms. In [34], Prasanth et al. propose a poly-
hedral encoding of DRF for OpenMP programs, which is only applicable to
programs with affine array accesses. However the prevalence of linearized array
expressions in GPU kernels is known to stump polyhedral analysis [35].

Hoare-logic-based data-race freedom analyses The main drawback of Hoare-
logic based tools is their high rate of false alarms. They also require code
annotations from a concurrency expert to handle loops. GPUVerify [10, 20, 29,
36, 37] can verify CUDA and OpenCL kernels using Boogie [38] as a backend.
GPUVerify also relies on a two-thread abstraction (pen and paper proof) —
in this paper, we present the first machine-checked proof of the two-thread
abstraction idea. VeriCUDA [39, 40] focuses on reasoning about the functional
correctness of GPU programs using Hoare-logic. In [11] the authors extend
VeriCUDA to guarantee data-race freedom. In a similar vein, VerCors [12] uses
separation logic to prove the functional correctness and data-race freedom of
GPU kernels. Both VeriCUDA and VerCors expect a tool-specific language,
hence cannot handle real-world kernels directly.

Data-race finders We use the term data-race finder to refer to tools that
rely on dynamic data-race detection, symbolic-execution, or model-checking.
Such techniques are better suited for highly detailed analysis in smaller ker-
nels, and typically are unable to prove data-race freedom. Dynamic data-race
detection executes a kernel to find data-races on a fixed input, e.g., [41–47].
This technique only reports real data-races, but suffers from a slowdown of at
least 10× compared to the non-instrumented program, and requires the kernel
input data, which might be unavailable or unknown. Symbolic execution and



model checking have been extended to detect data-races [7, 9, 14, 48, 49]. These
techniques do without the kernel input data and can detect more data-races
than dynamic data-race detection.

Verification of GPU kernels Ferrel et al. introduce a machine-checked for-
malism to reason about the semantics of CUDA assembly [50]. Muller and
Hoffmann present a logic to reason about the evaluation cost of CUDA ker-
nels [51]. Alur et al. introduce a formalism to detect uncoalesced accesses in
GPU kernels [52, 53].

Miscellaneous Dabrowski et al. mechanize the data-race freedom analysis of
multithreaded programs [54]. Other behavioral types-based techniques have
been used to verify parallel and multithreaded systems that communicate via
message-passing [55–57]. However these do not capture shared memory (only
message-passing), thus cannot address data-races.

9 Conclusion
We tackle the problem of statically checking data-race freedom in GPU ker-
nels, with a new family of behavioral types, i.e., memory access protocols.
We provide a novel compositional analysis of memory access protocols, along
with fully mechanized proofs and an implementation. Our evaluation explores
challenging and diverse benchmarks (229 real-world and 258 synthetic ker-
nels) to demonstrate that our approach is more precise (false alarms and
missed alarms), scalable (time/memory growth), and usable (real-world kernels
correctly verified) than other tools.

Future works includes adding support for more synchronization constructs,
proposing techniques to prove that some data-race alarms are sound, and
surveying GPU programs in the wild. We want to expand our definitions
to support atomics, group synchronization (also known as inter-block syn-
chronization), and device synchronization. We anticipate a low impact in the
project, as such features appear to only be instantiations of our theory, c.f.,
[28]. In [58], we have started laying foundations to prove that certain alarms
are truthful; our next steps in the theory-front is to continue this line of work.
Finally, we want to survey a large dataset of CUDA programs so that we can
have more experimental data to justify future research directions.
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