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Motivation

e Why do GPUs matter?
» What makes GPU-based data-races interesting?

Contributions

e A novel analysis of data-race freedom (DRF)
e A tool that can verify 41% more kernels than the state-of-the-art
e Fully formalized using a proof assistant

Our technique

 How behavioral types abstract GPU kernels
e How we encode behavioral types as SMT formula

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.
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Why do GPUs matter?

GPUs are a computing cornerstone

of scientific advancement



GPUs in High Performance Computing 7iF 1.
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Power 8 out of 10 of the Top 10 super computers
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Topical perspectives
GPU-accelerated molecular modeling coming of age
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ARTICLE INFO ABSTRACT
Article history: Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualiza-
Received 9 February 2010 tion of molecular structures and animation of trajectories resulting from molecular dynamics simulations.

Received in revised form 24 June 2010
Accepted 30 June 2010
Available online 8 July 2010

Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be
exploited to accelerate many scientific computations, typically providing about one order of magnitude
speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper
surveys the development of molecular modeling algorithms that leverage GPU computing, the advances
already made and remaining issues to be resolved, and the continuing evolution of GPU technology that
promises to become even more useful to molecular modeling. Hardware acceleration with commodity

Keywords:
GPU computing
Molecular modeling

Molecular dynamics GPUs is expected to benefit the overall computational biology community by bringing teraflops perfor-
Quantum chemistry mance to desktop workstations and in some cases potentially changing what were formerly batch-mode
Molecular graphics computational jobs into interactive tasks.

© 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j. jmgn.2010.06.010
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BRIEFINGS IN BIOINFORMATICS. VOL IIl. NO 3. 323-333 doi:10.1093/bib/bbq006
Advance Access published on 7 March 2010

GPU computing for systems biology

Lorenzo Dematté and Davide Prandi

Submitted: 20th November 2009; Received (in revised form): 30th January 2010

Abstract

The development of detailed, coherent, models of complex biological systems is recognized as a key requirement for
integrating the increasing amount of experimental data. In addition, in-silico simulation of bio-chemical models pro-
vides an easy way to test different experimental conditions, helping in the discovery of the dynamics that regulate
biological systems. However, the computational power required by these simulations often exceeds that available
on common desktop computers and thus expensive high performance computing solutions are required. An emer-
ging alternative is represented by general-purpose scientific computing on graphics processing units (GPGPU),
which offers the power of a small computer cluster at a cost of ~$400. Computing with a GPU requires the devel-
opment of specific algorithms, since the programming paradigm substantially differs from traditional CPU-based
computing. In this paper, we review some recent efforts in exploiting the processing power of GPUs for the simula-
tion of biological systems.

Keywords: systems biology; simulation; agent-based modelling; cellular automata; GPGPU; CUDA

doi:10.1093/bib/bbq@06
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Why do GPUs matter?

GPUs power the Al revolution



Autoware. Al m A

Autoware.Al is the world's first "All-in-One" open-source software for autonomous driving
technology.

22 code results in Autoware-Al/core perception Sort: Best match

ndt_gpu/src/MatrixDevice.cu
@ Cuda Lastindexed on Oct 15, 2020

ndt_gpu/src/SymmetricEigenSolver.cu
@ Cuda Lastindexed on Oct 15, 2020

vision_darknet_detect/darknet/src/dropout_layer_kernels.cu
@ Cuda Lastindexed on Oct 15, 2020

vision_darknet_detect/darknet/src/col2im_kernels.cu
@ Cuda Lastindexed on Oct 15, 2020
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Why we should care about

static verification of GPU programs?



GPU programming, a primer
@ High-level of parallelism at a reduced cost
(faster processing, lower cost, reduced power consumption)
@ Techniques designed for CPUs do not work for GPUs
(hardware assumptions differ: memory available, execution model)

® GPUs are difficult to program and debug



GPU programming is difficult 7iF .
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Programming challenges

e high degree of parallelism (up to tens of thousand of threads)
e high degree of concurrency (up to 1,024 threads accessing the same array)
e devices are memory constrained (affects debugging techniques)

Static analysis challenges

e unconstrained access to a shared memory (no locks)
e thousands of threads indexing disjoint portions of arrays

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.
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GPU program example

for (int r = 0; r <N; r++) {
for (int i = 0; i<TILE DIM; i+=BLOCK ROWS)

{ tile [tid .y+i ][ tid .x] = idata[index in+i*xwidth];}

___syncthreads();
for (int j = 0; j<TILE DIM; j+=BLOCK ROWS)

{odata[index_out+j*hei_ght] = tile [ tid x_][ tid .y+j];}}

Source:
e Optimizing matrix transpose in CUDA. NVIDIA CUDA SDK Application Note 18 (2009)

Also in:
» Padding free bank conflict resolution for CUDA-based matrix transpose algorithm.

DOI:10.1109/SNPD.2014.6888709
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GPU program example

for (int r = 0; r <N; r++) {

syncthreads();

{ odata[index out+jxheight] = tile [[Ed-X

Il

tid .y

for (int i = 0; i<TILE DIM; i+=BLOCK ROWS)
{ tile [[Eid J+i J[EId.Y] = idata[index in+ixwidth];}

for (int j = 0; j<TILE DIM; j+=BLOCK ROWS)

+ili}};
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for (int r = 0; r < N; r++) { thread (0,1)
for (int i = 0; i<TILE DIM; i+=BLOCK ROWS)
{ tile [0 J+i ][] = idata[index in+i*xwidth];}
syncthreads();

for (int j = 0; j<TILE DIM; j+=BLOCK ROWS)
{ odataindex out+jxheight] = tile [[0J][+i];}}

for (int r = 0; r <N; r++) { thread (1,0)
for (int i = 0; i<TILE DIM; i+=BLOCK ROWS)
{ tile [[1J+i ][[C0]] = idata[index in+i*xwidth];}
__syncthreads();
for (int j = 0; j<TILE DIM; j+=BLOCK ROWS)
{ odataindex out+jxheight] = tile [T ][0 J+i];}}

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.



m v‘ ROYAL
ata-races

BOSTON

Data-race

e Two threads accessing the same array index concurrently
o Atleast one thread writing

Data-Race Freedom (DRF) analysis

Show that for all possible inputs and executions a program is absent of data-races.

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.
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for (int r = 0; r <N; r++) {
for (int i = 0; i<TILE DIM; i+=BLOCK ROWS)
{ tile [ tid .y+i ][ tid .x] = idata[index in+i*xwidth];}
syncthreads();

for (int j = 0; j<TILE DIM; j+=BLOCK ROWS)
{ odata[index out+j*height] = tile [tid .x][ tid .y+j];}}

Exhibits a data-race: the code after __syncthreads() of iterationi + 1runs concurrently
with the code before __syncthreads() of iteration i.

e QOuterloops is used to measure the benefit of an optimization
o Data-race corrupts the data in the array and affects the time measurements

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.
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Contributions A 1.
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Practica

e Faial implements our analysis
e The largest comparative study of its kind (487 kernels, 5 tools compared)

Theoretical

e A novel analysis of data-race freedom
o A formalization of such analysis using a proof assistant

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.
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Experiment: Real-World Usability

DRF analysis on real-world kernels



L owest false-positive rate 7iF .
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o Dataset of 227 data-race free real-world kernels
e Can verify 41% more kernels than others

Faial (our tool) GPUVerity PUG
C: 95.6% (217) C: 68.3% (155) C: 35.2% (80)
F: 2.6% (6)
U: 0.4% (1) '
F: 4.0% (9) IF: 22.0% (50) T: 9.3% (21) U: 62.1% (141)
Correct (C) False Alarm (F) Unsupported (U) Timeout (T)

Largest correct is better (green)

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.



Better compromise time/memory

L]
L]
° ° L4
L]
o ..
. ° o ® [
o L]
o
° L]
o 1) o ° °
~—~ . o L [ ° [ o
wn 0 A4 .
° oo ° ° ° ® . o
®
() S e ° 1 %%e ¢ %% ° . ¢ ° . . ¢ o . ° o ® o* 0 . °
E o ° . ° o ® ° . ° e o . . ° ° °©
= o o . ° ° . o ° 4 ° ° . . . .
|_ . ® o, oo . . ° . ° O . 000’ .
100 4 L)
L] L]
. ung® us
* atln (Ll un - a 0 o s =
e o IR QT T S S A S P T ] e TR L L L L L S L LT m SSmguEg 5y agug a" e -
* * *
3 . 4 * 4 * ¢ ¢ *
. o 0% g0e 07 00000  t 0 o000 Ges s o LIPS A d % o o o e haad %000 00 * * ° * e
90 . L L]
80
— ©
m
="
N—r
L]
5
E 60 -
o . "
= . . o T
LR 4 - * o0 ° o .
*w® % oo 00 e * * LR * . ° *
50 1 * et M AR v R * LRI ® PO LIPS hat 94000 00 had e
L}
° (1] ©
[TTH ] [ . © -
[ [] "um,
.. U LI ] ] °n ¢ e . =_sm o a%a
. ° B g ngm oy L] sy, ® L] = P ] . o © o °° u
40 4 5° S.8%¢ © gou_gf By g By wa® ® o L) mz== & Zwogs = T T Tl T Y TR te— LT =" e
:: .=:|:=|:.n| e (LA ==: “‘ - a 0 %e0e =l -: : o8 M =- "~ e -. on : S HH LR T '====:= ll:.: H ..lnl..n' =y :::: : ..
[’l 2’0 4’0 6'0 8’(] 1[’]0 1‘;0 14’10 1(’%(] 15’30 2(’1[] 2%0
. . -
W faial ®  gpuverify ¢ e Lower and more frequentis better




Experiment: Scalability

Impact of varying a programming-primitive on the analysis



Highest scalability 71F 1.

BOSTON

e Vary the number of constructs from 1 to 50 (250 kernels in total)
e Out of 5tools, the only that scales linearly (time) (PUG, GPUVerify, GKlee, SESA)
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Limitations of our analysis

e Cannot handle more than 13 nested synchronized loops

e 3rd out of 5 tools

 We found a maximum nesting level of 3 in our experiments
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Our approach

Inference Well-formed Barrier Barrier Quantification \\ SMT backend
CUDA check aligning splitting

e A behavioral type (syntax+semantics)
e Results on the correctness of the analysis
e Mechanized proofs using the Coq proof assistant (18,000 LOC)




Simplified running example

o A CUDA example, which simplifies our initial example
e Exhibits the same root cause (data-race)

for (int r = 0; r < N; r++) {
for (int i = 0; i<M; i++)
{tile[tid] = ...;}
syncthreads();

for (int j = 0; j<M; j++)

{... = tile [tid+j];}}

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.
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Memory access protocols

e Behavioral types for SIMT/SPMD that capture memory accesses
e One type per array. Capture: accesses, synchronization, structured loops
e Distinguish between synchronized/unsynchronized loops

Inference W
CUDA

ell-formed
check

for

{

for

[

for (int r = 0; r < N; r++) {

(int i = 0; i<M; i++)
tile [tid] = ...;}
syncthreads();

(int j = 0; j<M; j++)

= tile [tid+j];}} @

for® r in 0..N {
for’ i in 0..M { wr[tid] }
sync;
for” j in 0..M { rd[tid + j] }

; (2

.
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for> r in 0..N {

for’ i in 0..M { wrftid] }
sync;

for’ j in 0..M { rd[tid + j] }
}
// r=20

for’ i in 0..M { wrftid] } (loop 1)

..............................................................................................

for” j in 0..M { rd[tid + j] } (loop 2)
/] =1
for” i in 0..M { wr[tid] } (loop 1)

..............................................................................................

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.
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Racy protocol

for” j in 0..M { rd[tid + j] } (loop 2)
for’” i in 0..M { wr[tid] } (loop 1)

Our approach

V71,81,72,72: 0< 1 < MAO< i1 < MANOL< o< MANO< i <M =
{rd[ty + 71]} U {wrlt1]} DRF with? {rd[ts + j2]} U {wr[ta]}

e Interpret unsynchronized loops as forall-binders:
o compare one iteration of each loop of each thread
o collapses all the iterations of a single loop into one
e One formula per thread
« Data-race conditions:t; = 0,t5 = 1,5; = 1, M > 1:rd[1]andwr[1]

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.



Aligning protocols 71 .

 We define a notion of aligned protocols, where accesses do not "leak” across iterations
 We show that all protocols can be alighed (modulo notion of well-formedness)
e Intuition: unfold loop and rearrange accesses

Barrier
aligning
©
for’” i in 0..M { wr[tid] }
for® r in 0..N { sync;
for’ i in 0..M { wr[tid] } for® r in 1..N{
sync; for’ j in 0..M { rd[tid + j] }
for’ j in 0..M { rd[tid + j] } for’ i in 0..M { wr[tid] }
} (2] sync; }
for” j in 0..M { rd[tid + j] 1©

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.
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Barrier
splitting

4

for’ i in 0..M { wr[tid] }

sync;

for r in 1..N {
for” j in 0..M { rd[tid + j] }
for’ i in 0..M { wr[tid] }
sync; }

for’ j in 0..M { rd[tid + j] 3

V11,01, 92,00: 1 <r<N AOS J1<MAO < 1 1<M N0 < go<M N0 < i9<M
= {rd[ty + 1]} U {wr[t:]} DRF with? {rd[ts+j2]} U {wr[t2]} @

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.



Conclusion

35/36



[ %fa
® | m e o
OnC US|On UMASS @‘g

BOSTON

e Behavioral types being used to enforce data-race freedom

e A compositional analysis, formally proved

e Large experimental evaluation (229 real-world + 258 synthetic =487 kernels)
e Used our tool to confirm data-races found in the wild

e Our approach is more scalable and more precise (fewer false-positives) than related
work

e Source code and proofs available in a free software license

Artifact: D0I:10.5281/zenodo.4711923

Tool: https://gitlab.com/umb-svl/faial
Proofs:  https://gitlab.com/umb-svl/faial-coq

Checking Data-Race Freedom of GPU Kernels, Compositionally. Cogumbreiro, Lange, Liew, Zicarelli.
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