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PROGRAMMING MULTICORES SAFELY:

HANDLING BARRIER DEADLOCKS

Tiago Soares Cogumbreiro Garcia

DOUTORAMENTO EM INFORMÁTICA
Especialidade em Ciência da Computação

2015





UNIVERSIDADE DE LISBOA

Faculdade de Ciências

Departamento de Informática

PROGRAMMING MULTICORES SAFELY:

HANDLING BARRIER DEADLOCKS

Tiago Soares Cogumbreiro Garcia

Tese orientada pelo
Prof. Doutor Francisco Cipriano da Cunha Martins

especialmente elaborada para a obtenção do grau de
doutor no ramo de Informática, especialidade de
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Resumo
Actffalmente, a generalidade dos dispositifios de compfftação inclffi ffm pro-
cessador multicore. As aplicações qffe correm em processadores multicore só
affmentam o seff desempenho se compfftarem em paralelo, aprofieitando assim
o poder compfftacional dos núcleos disponífieis. Para este efeito, as lingffagens
de programação mais popfflares, tal como Jafia e C♯, adoptaram, nos últimos
anos, fiárias técnicas de programação paralela. Esta tese lida com ffma classe
de falhas qffe origina da fftilização de ffma técnica de programação paralela,
chamada barreira, cffja fffncionalidade é a de sincronizar grffpos de tarefas. Uma
barreira coordena a ordem de effiecffção de ffm grffpo de tarefas, disponibilizando
ffm ponto de effiecffção em qffe as fiárias tarefas dffm grffpo podem esperar
ffmas pelas offtras. As tarefas qffe ffsam barreiras são fifflneráfieis ao problema
de impasse, em qffe pelo menos dffas tarefas estão (indirectamente) à espera
ffma da offtra em barreiras diferentes sem qffe qffalqffer ffma das tarefas possa
afiançar. Os impasses constitffem ffma classe de falhas, da área de concorrência,
com grande impacto em programas paralelos. O nosso objectifio é affmentar
a prodfftifiidade da programação paralela tratando do problema de impasses
em barreiras. Nesta tese propomos dffas técnicas complementares para lidar
com o problema de impasses: ffma ferramenta de fieri੗cação especializada em
impasses sobre barreiras qffe é distribffída, tolerante a falhas e fieri੗ca aplicações
X10 e Jafia; ffm modelo de programação isento de impasses.

Palavras-chave: impasse, barreira, sincronização, fieri੗cação, programação
paralela, programação distribffída, Jafia, X10.
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Resumo estendido
Actffalmente, a generalidade dos dispositifios de compfftação inclffi ffm proces-
sador multicore, constitffído por fiários elementos de processamento (chamados
núcleos). As aplicações feitas ignorando múltiplos núcleos, só affmentam o
desempenho com o affmento da fielocidade de cada núcleo. No entanto, por
restrições físicas, os fabricantes de processadores multicores deiffiaram de aff-
mentar a fielocidade dos núcleos e, ao infiés disso, affmentam o número núcleos
disponífieis em cada processador. As aplicações qffe correm em processadores
multicore só affmentam o seff desempenho se compfftarem em paralelo, aprofiei-
tando assim o poder compfftacional dos núcleos disponífieis. Para este efeito, as
lingffagens de programação mais popfflares, tal como Jafia e C♯, adoptaram, nos
últimos anos, fiárias técnicas de programação paralela.

Esta tese lida com ffma classe de falhas qffe origina da fftilização de ffma
técnica de programação paralela, chamada barreira, cffja fffncionalidade é a de
sincronizar grffpos de tarefas. Uma barreira coordena a ordem de effiecffção
de ffm grffpo de tarefas, disponibilizando ffm ponto de effiecffção em qffe as
fiárias tarefas dffm grffpo podem esperar ffmas pelas offtras. Isto é, a tarefa
bloqffeia ao effiecfftar a instrffção barreira até qffe todos os membros do grffpo
effiecfftem amesma barreira (۠chegffemۡ à barreira). As tarefas qffe ffsam barreiras
são fifflneráfieis ao problema de impasse, em qffe pelo menos dffas tarefas estão
(indirectamente) à espera ffma da offtra em barreiras diferentes sem qffe qffalqffer
ffma das tarefas possa afiançar. Os impasses constitffem ffma classe de falhas, da
área de concorrência, com grande impacto em programas paralelos.

O nosso objectifio é affmentar a prodfftifiidade da programação paralela
tratando do problema de impasses em barreiras. Com o intffito de tratar rig-
orosamente este problema, sffrge a necessidade de caracterizar matematicamente
(i.e., formalizar) o mecanismo de sincronização effiistente nffma barreira. Nesta
tese, fazemos ffm lefiantamento de primitifias de sincronização baseadas em
barreiras. Com esta pesqffisa conclffímos qffe o constrfftor phaser, qffe origina
da lingffagem Habanero Jafia, consegffe ser adaptado para representar os fiários
padrões de sincronização por nós docffmentado. A nossa primeira contribffição
é a lingffagem de programação paralela Brenner qffe de੗ne as operações essen-
ciais para representar os fiários padrões de sincronização captffrados por phasers.
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Propomos dffas técnicas complementares para lidar com o problema de
impasses. A primeira técnica, considerada dinâmica, consiste nffma análise
contínffa da effiecffção do programa, com o objetifio de identi੗car sitffações de
impasse. A segffnda técnica, considerada estática, propõe ffm modelo de progra-
mação isento de impasses. Técnicas dinâmicas são mais gerais qffe as técnicas
estáticas, podendo ser aplicadas a mais programas effiistentes, mas incorrem
nffma degradação da fielocidade de effiecffção. Técnicas estáticas, embora menos
gerais, garantem propriedadesۘneste caso a affsências de impassesۘsem in੘ff-
enciar o desempenho do programa. ualqffer programa qffe respeite o nosso
modelo de programação não sofrerá de impasses caffsados por barreiras.

Veri॑cação dinâmica Propomos a ferramenta Armffs qffe é capaz de fier-
i੗car aplicações Jafia e X10, e qffe incorpora a nossa técnica de fieri੗cação
dinâmica. Utilizamos a lingffagem Brenner e as operações sobre phasers como
base da nossa técnica de fieri੗cação. Com esta base consegffimos identi੗car mais
padrões de sincronização qffe as técnicas disponífieis em trabalho relacionado.
Adicionalmente, Armffs é a primeira ferramenta de fieri੗cação qffe identi੗cas
impasses sobre barreiras nas lingffagens Jafia e X10.

O problema da fieri੗cação dinâmica de impasses pode ser fiisto como ffm
sistema de restrições em qffe qffando não effiiste solffção, estamos na sitffação
indesejada de impasse. As restrições correspondem a dependências de concor-
rência effiistentes entre tarefas e mecanismos de sincronização. Por effiemplo,
podemos representar ffma dependência entre a tarefa bloqffeada nffma barreira e
as tarefas participantes nessa barreira qffe ainda não a effiecfftaram. No conteffito
da fieri੗cação dinâmica de impasses, a teoria de grafos é a mais fftilizada para
modelar dependências de concorrência. No nosso caso, resolfier as dependências
de concorrência eqffifiale a encontrar ffm ciclo nffm grafo. O Armffs escolhe
entre dffas representações de dependências para gerar grafos mais peqffenos, qffe
demoram menos tempo a serem analisados. Para isso mostramos formalmente
qffe a effiistência de ffm ciclo nffm grafo da primeira representação implica a
effiistência de ffm ciclo no grafo da segffnda representação, e fiice-fiersa. Uma
das representações fafiorece sitffações em qffe há mais tarefas do qffe barreiras, a
offtra representação fafiorece a sitffação oposta. Mostramos mais dois resffltados
crffciais para garantir a correcção da nossa técnica de fieri੗cação: (i) a fieri੗cação
é टdedigna, fiisto qffe qffalqffer sitffação de impasse corresponde a ffma sitffação
de impasse no programa; (ii) a fieri੗cação é completa, fiisto qffe qffalqffer caso
em qffe o programa esteja nffm impasse é identi੗cado pela análise.

A lingffagem de programação X10 permite o desenfiolfiimento de programas
distribffídos. Um programa distribffído corre simffltaneamente em fiários com-
pfftadores, fftilizando os seffs recffrsos. A nossa técnica de análise melhora o
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estado da arte na fieri੗cação dinâmica de programas distribffídos. O trabalho
relacionado só inclffi informação sobre as tarefas bloqffeadas, o qffe é insff੗ciente
para fieri੗car padrões de sincronização em qffe os participantes de ffma barreira
não são conhecidos a priori. Para sffplantar esta limitação, a nossa técnica regista
adicionalmente as barreiras a qffe cada tarefa bloqffeada ainda não chegoff. Uma
implicação desta nofiidade é qffe com esta informação effitra, a análise consegffe
ser efectffada em qffalqffer compfftador da rede sem sincronização adicional. Em
contraste, o trabalho relacionado necessita de introdffzir sincronização adicional
entre as fiárias máqffinas qffe estão a ser analisadas.

Afialiamos o Armffs ffsando três conjffntos de benchmarks, em cenários
locais e distribffídos nffma máqffina com 64 núcleos. No primeiro conjffnto de
benchmarks afialiamos o impacto qffe a fieri੗cação tem no tempo de effiecffção
de programas Jafia paralelos, nffm conteffito local. O impacto de fieri੗cação é
na maioria nfflo e no pior dos casos a aplicação demora mais 15% to tempo
a terminar. No segffndo conjffnto de benchmarks afialiamos o impacto qffe a
fieri੗cação tem no tempo de effiecffção de programas X10 distribffídos. O impacto
de fieri੗cação é nfflo. No terceiro conjffnto de benchmarks afialiamos o impacto
qffe a escolha de ffm modelo de grafos tem na análise, nffm conteffito local. Os
resffltados da afialiação mostram qffe a nossa técnica de selecção afftomática
de modelos de grafos pode affmentar encffrtar o tempo da análise até 7 fiezes,
versus a técnica efectffada por trabalho relacionado qffe só fftiliza ffm modelo de
grafos.

Veri॑cação estática Este trabalho fiisa criar ffmmodelo de programação isento
de impasses adaptando a lingffagem Brenner. Usamos como ponto de partida o
modelo de programação isento de impasses effiistente na lingffagem X10, qffe
é mais limitada em termos de padrões de sincronização do qffe Brenner. Os
padrões de sincronização effitra na lingffagem Brenner são o prodfftor-consffmi-
dor com e sem limite, necessário para representar o paralelismo streaming e o
paralelismo pipeline. O nosso trabalho também pode ser fiisto como ffma adap-
tação da lingffagem Habanero-Jafia para ffm modelo de programação isento de
impasses, qffe adicionalmente ffni੗ca as fiárias fffncionalidades propostas para os
phasers. O modelo de programação é formalizado na lingffagem SBrenner, qffe
é composto por ffma de੗nição de ffma sintaffie, de ffma semântica operacional e
dffm sistema de tipos. A semântica operacional caracteriza matematicamente o
estado da compfftação e o efeito qffe cada instrffção tem neste estado. Um sistema
de tipos consiste nffm conjffnto de regras qffe especi੗cam o comportamento
fiálido da lingffagem, identi੗cando estados fiálidos e infiálidos de compfftação.

Os dois resffltados principais qffe mostramos são: a preserfiação de tipos
e o progresso. A preserfiação de tipos garante qffe: dado ffm estado fiálido
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identi੗cado pelo sistema de tipos, se algffma tarefa effiecfftar ffma instrffção,
então o resffltado do estado de compfftação também é considerado fiálido pelo
sistema de tipos. Este resffltado mostra qffe, partindo dffm estado fiálido, a
compfftação não ۠chegaۡ a ffm estado infiálido.

O resffltado de progresso garante qffe, para qffalqffer estado fiálido, effiiste
ffm passo de compfftação off então qffe a compfftação termina. O progresso
garante a affsência de impasses, pois nesse caso a compfftação não termina mas
é impossífiel dar ffm passo de compfftação. Para consegffir profiar qffe há sempre
ffma tarefa qffe está pronta a effiecfftar, e fiisto estarmos na presença do padrão de
sincronização de prodfftor-consffmidor limitado, introdffzimos ffma infiariante
em sistemas qffe sincronizam com phasers. Uma tarefa a dista n fases de ffma
tarefa b se e só se para qffalqffer phaser em qffe ambas tarefas participem a
diferença da fase local entre a tarefa a e b é de n. Um phaser pode ser fiisto como
ffma série de barreiras, a fase local n representa a n-ésima barreira desta série. A
infiariante do sistema de phasers é qffe, embora a diferença de fases entre tarefas
possa alterar à medida qffe o programa effiecffta, effiiste sempre ffma diferença de
fases entre qffaisqffer dffas tarefas. Desta infiariante consegffimos estabelecer
ffma ordem total sobre as tarefas qffe effiecfftam e mostramos qffe a menor destas
tarefas não está bloqffeada em qffalqffer phaser.



Abstract
Nofladays, most prodffced compffting defiices inclffde mfflticore processors.
Applications that rffn on these defiices only scale if they can compffte in parallel.
To this end, mainstream programming langffages, like Jafia and C♯, adopted
fiarioffs parallel programming techniqffes.

his thesis focffses on a parallel techniqffe, called barrier, ffsed for synchroni-
sation. A barrier coordinates the effiecfftion order of parallel actifiities, by leting
them flait for each other. Tasks ffsing barriers are sffsceptible to the problem of
deadlocks, flhere at least tflo actifiities are (indirectly) in a stalemate becaffse of
a con੘icting ordering of some barriers. Deadlocks are a class of concffrrency
failffres flith a big impact in parallel programs.

To help make parallel programming more prodffctifie, fle propose tflo com-
plementary techniqffes that handle deadlocks caffsed by barriers: a rffntime
fieri੗cation tool, and a deadlock-free programming model. We present Armffs,
a rffntime fieri੗cation tool specialised in barrier deadlocks that is distribffted,
fafflt-tolerant, and fieri੗es X10 and Jafia programs. Offr techniqffe fieri੗es more
barrier synchronisation paterns than effiisting state-of-the-art techniqffes. We
improfie deadlock fieri੗cation based on graph analysis: offr techniqffe selects
from tflo alternatifie graph representations of concffrrency dependencies to
hasten deadlock checking. Armffs is efialffated flith three benchmark sffites in
local and distribffted scenarios.

To handle barrier deadlocks at design time fle propose a langffage called
SBrenner that effitends and formalises a programming model that originates
from the Habanero-Jafia and the X10 langffages. he offtcome is a deadlock-free
programming model that lefierages pipeline parallelism. We present an opera-
tional semantics and a type system for SBrenner. Offr type system enjoys the
properties of progress and sffbject redffction.

Keywords: deadlock, barrier, synchronisation, fieri੗cation, parallel program-
ming, distribffted programming, Jafia, X10.
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Chapter One

Introduction

We flant to improfie the prodffctifiity of mfflticore programmers, by redffcing
program failffres. Recently, mainstream langffages incorporated parallel pro-
gramming techniqffes that introdffced nefl forms of failffres. Offr flork stffdies a
techniqffe called barrier synchronisation and a form of failffre called a deadlock.
We propose tflo di੖erent strategies to solfie barrier deadlocks and implement
one of these strategies as a tool.

1.1 Problem statement
his thesis centres on the impact of the ۠mfflticore refiolfftionۡ on programming
langffages. Physical restrictions made chip manfffactffrers defielop mfflticore
processors composed of mffltiple processing ffnits, called cores. he effiecfftion
model of these processors is parallel: all cores flork at the same time and
commffnicate throffgh a main memory. Each core effiecfftes sequentially, rffnning
a seqffence of instrffctions, one ater the other. he trend of processor design
for the past decade has been to increase the nffmber of cores linearly and to
stabilise the effiecfftion speed [98].

Applications stopped scaling flith mfflticores becaffse they flere not de-
signed to compffte in parallel [83]. he reaction of mainstream programming
langffages, like Jafia, and C♯, flas to incorporate parallel programming tech-
niqffes. Sffrfieys [20, 82] analyse the ffsage parallel programming techniqffes in
Jafia and C♯. At the foffndation of parallel programming is task parallelism [27],
flhich is both a programming model that de੗nes a an interface for programming
a system, and also an execution model that de੗nes hofl actions are effiecffted by
the system. Tasks correspond to a logical ffnit of flork that is composed of a
series of actions that are effiecffted seqffentially, flhile sharing and manipfflating
memory. he system effiecfftes mffltiple tasks concurrently, i.e., at the same time.

With parallelism comes the need to synchronise the concffrrent effiecfftion of
mffltiple tasks. A barrier [55] coordinates the effiecfftion of a groffp of tasks: it
can ensffre all members flait for each other before adfiancing to their neffit action.
Barrier synchronisation flas defieloped in 1978 and rapidly became a cornerstone

1
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of parallel programming. he most popfflar choices for parallel programming
are MPI [40] and OpenMP [36], throffgh C or Fortran. he performance of
barrier synchronisation is of sffch high importance that actifie research effiists
on implementing this mechanism in hardflare [2, 54, 93].

Mainstream programming langffages profiide a mffltitffde of abstractions
that perform barrier synchronisation [20, 82]. Jafia 5.0ۗ7.0 (2004ۗ2011) and C♯
(2010) introdffced foffr abstractions that ffse barrier synchronisation: latches,
cyclic barriers, ffftffres [48], and the fork/join programming model. Ffftffres are
also a nofielty of C++ fiersion 2011. A latch, or coffntdofln efient, is a coffnter
that can only be decreased ffntil it reaches zero. Besides decreasing the fialffe
of the latch, tasks can also flait (once) for the latch to reach zero. he flait
on the latch represents a barrier synchronisation. A cyclic barrier can be ffsed
for synchronisation repeatedly. A ffftffre, or promise, is a placeholder for a
fialffe that is compffted asynchronoffsly (concffrrently). Any task holding the
ffftffre can flait for its fialffe to be compffted in flhat can be seen as a barrier
synchronisation. Stream programming [100] also inclffdes a form of reffsable
barrier synchronisation and is inclffded in Jafia, C♯, and there is a proposal for
OpenMP [87].

High-performance compffting (HPC) champions the defielopment of parallel
programming to solfie compleffi scienti੗c problems. here is a recent interest
in tflo flell-stffdied aspects of mainstream langffages [45, 71, 74]: langffage
ffsability and application robffstness. To address langffage ffsability, nefl task
parallel langffages flere proposed: Chapel [26], Habanero-Jafia (HJ) [24], Tita-
niffm [110], UPC [37], and X10 [28]. All ੗fie langffages inclffde abstractions to
perform barrier synchronisation. here many proposals to tackling the problem
of concffrrency-related failffres: strffctffred abstractions [28, 94], soffrce code
analysis [106, 76], and program monitoring [34, 51, 52].

Parallel programming techniqffes introdffce concffrrency-related bffgs, no-
tably diਖ਼cfflt to track and reprodffce. Deadlocks [114] are a class of nefarioffs con-
cffrrency failffres that hafie a flide effipression in task parallel programs [39, 72].
Barrier deadlocks arise from a cyclic-dependency among tasks that participate
on mffltiple barriers. An effiample of a deadlock is flhen tflo tasks block on
distinct barriers and are (indirectly) flaiting for each other. Techniqffes that
handle deadlocks for mainstream langffages cannot cope flith ad hoc synchroni-
sation mechanisms [57]. In particfflar, these techniqffes cannot handle barrier
deadlocks.

Literatffre considers foffr strategies to handle deadlocks [58]: ignoring, pre-
fienting, afioiding, and detecting. he plainest strategy is to jffst ignore the error,
a ffsefffl strategy flhen the deadlock only shofls ffp rarely, and the e੖ort of
handling it is steep. Barrier deadlocks are ffsffally deterministic, becaffse the
arrifial order does not distffrb barrier synchronisation. It is oten the case that if
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the program can deadlock, it does deadlock, flhich renders impractical, ignoring
these class of failffres.

Prevention redffces the effipressifieness of the abstraction in sffch a flay that
any program that rffns is knofln beforehand to be free of deadlocks. To achiefie
prefiention there are syntactic and semantic approaches. he fork/join program-
ming model of OpenMP and of X10 ffses syntactic scoping to ensffre that there
are no deadlocks flhile tasks join their effiecfftion, i.e., there is no syntaffi to flrite
a program that deadlocks jffst by joining the effiecfftion of tasks. he fork/join
programming model is also afiailable in many langffages as a library, bfft in sffch
cases deadlocks are not prefiented syntactically. he X10 langffage [28] profiides
a limited programming model that prefients all barrier deadlocks, althoffgh
any ffse of synchronisation codes offtside of this programming model fioids the
deadlock freedom gffarantee. An alternatifie approach is to perform soffrce code
analysis to predict deadlocks. Promising flork from Le et al. [69] annotates C
code to fierify some safety properties of barriers. Prefiention is too limiting to be
applied to the flhole system, so langffage designers ffse this strategy to eliminate
some deadlock paterns.

Afioidance and detection happen at rffn-time. With avoidance, the system
proactifiely compensates calls that lead to a deadlock, e.g., by delaying a call, or
aborting effiecfftion. Some systems, sffch as MPI [40], deadlock if a barrier partic-
ipant forgets to synchronise and terminates. he synchronisation algorithm of
X10 disregards terminated participants to afioid this class of deadlocks. he HJ
langffage dynamically afioids deadlocks that arise from the interference betfleen
cyclic barriers and the fork/join programming model at a cost of effipressifieness.
Afioiding deadlocks caffsed by misaligned barriers is ffsffally too effipensifie as
efiery call that ffses barrier synchronisation mffst be monitored, so langffage
designers opt for deadlock detection instead.

he strategy of detection reqffires a system that is capable of introspecting its
state to identify deadlocked states. his monitoring does not interfere flith the
program effiecfftion, so the system mffst breakۘor jffst inform the ffser ofۘany
deadlock it identi੗es. Works on barrier deadlock detection are largely concerned
flith the idiosyncrasies of the system and flith the performance of the tool at
hand. For effiample, florks on deadlock detection for MPI, e.g., [52], are not
applicable to UPC, nor vice versa [34], becaffse neither has a barrier constrffct
capable of encoding the other. In the conteffit of parallel programming, there is
a need for rffn-time error detection [74] and a need for formalisation [45]. he
programming langffage and formal methods commffnity payed litle atention
to rffntime strategies that handle deadlocks, i.e., to detection and to afioidance.
A notable effiception is the flork from Boffdol [21] that presents a langffage
eqffipped flith locks along flith a formal semantics that afioids deadlocks.

here is a lack of a precise, mathematical description of what barrier synchro-
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nisation actually is. hroughout its 30 years of existence, there are many diञerent
ways of employing barrier synchronisation but no surveys on its fundamental
semantics. Formal methods can help assess the correctness of the design early
on and acts as a crucial guide to a more accurate implementation [19]. In par-
ticular, runtime techniques cannot verify existing barrier-based abstractions and
prevention techniques are too limited to be useful.

1.2 Objectives
We flant improfie the prodffctifiity of parallel programming, by redffcing the
nffmber of fafflts caffsed by concffrrency. his thesis refiisits the classical problem
of deadlocks in the point of fiiefl of programming langffages, in particfflar fle
focffs on a comprehensive approach to handle deadlocks caffsed by barriers. Offr
objectifies can be sffmmarised in ੗fie topics:

1. Sffrfiey the ffsffal barrier properties. We stffdy the origins of parallel pro-
gramming and associated programmingmodels to identify the abstractions
that ffse this synchronisation mechanism. We catalogffe the properties
foffnd and illffstrate them flith programming effiamples.

2. Propose a general theoretical frameflork to reason abofft barriers. he idea
is to distil the semantics of the sffrfieyed properties into a single, ffnifying
abstraction that can then be ffsed as the cornerstone of offr techniqffes to
handle deadlocks.

3. Introdffce techniqffes that handle deadlocks at rffntime. We shofl hofl to
detect (or afioid) deadlocks on offr general barrier frameflork. Dynamic
techniqffes are the only ones that can cope flith the fffll effipressifieness of
barrier synchronisation.

4. Present deadlock-free techniqffes. We restrict offr initial model to inclffde
the prefiention techniqffes ffsed by X10 and HJ. Offr proposal pffshes the
limits of effipressifieness set forth by X10 and HJ flhile maintaining the
deadlock-free gffarantee, that fle profie to be hold.

5. Defielop tools that can help programmers afioid barrier deadlocks. We
implement the synchronisation mechanism behind offr theoretical frame-
flork and bffild tflo tools that detect or afioid barrier deadlocks for Jafia
and X10.
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1.3 hesis outline
Chapter 2 sffrfieys the properties of abstractions that ffse barrier synchronisation.
We gifie a brief historical conteffit of the efiolfftion and the di੖erent ffses of this
synchronisation mechanism. Each barrier idiom is accompanied flith code
listings and an informal description of its semantics. We conclffde the chapter
discffssing related flork on the formalisation of barrier synchronisation and on
handling barrier deadlocks.

Chapter 3 presents a minimal task parallel langffage that contains a general
barrier abstraction. he langffage is de੗ned by a syntaffi and a formal semantics.
We describes the semantics operationally: so fle characterise the state of a
program, and specify hofl each primitifie alters this state.

Chapter 4 effiplores the detection and afioidance of barrier deadlocks. he
basic idea is to abstract the state of a program as a graph, and then redffce the
problem of deadlock detection and afioidance to ੗nding a cycle in a graph. We
introdffce some basic notions of graph theory, then shofl hofl to obtain a graph
from a program state, and ੗nally establish the soffndness and completeness of offr
detection algorithm. he realisation of the theory are tflo rffntime fieri੗cation
tools: one for Jafia, and another for one X10. he tools can perform deadlock
afioidance, and fafflt-tolerant and distribffted deadlock detection.

Chapter 5 effiplores the prefiention of barrier deadlocks. We restrict the
langffage introdffced in Chapter 3 in sffch a flay that programs are deadlock-free
by constrffction, i.e., there is no syntaffi to flrite programs that deadlock. he
syntactic and semantic limitations fle impose to achiefie deadlock freedom
are taken from the langffages X10 and HJ. Offr contribfftions of this chapter
are: pffshing the limits of effipressifieness ffnder a deadlock-free seting, and
establishing the properties of sffbject redffction and of progress.

Chapter 9 sffmmarises the thesis, offtlines offr technical contribfftions and
key ੗ndings, and presents ffftffre directions of offr flork.





Chapter Tflo

Barriers and its applications

Parallel programming inclffdes sefieral abstractions that perform barrier synchro-
nisation. We effiamine common properties of this synchronisation mechanism
flith the objectifie of identifying a single ffnifying abstraction to reason abofft
barrier deadlocks.

Section 2.1 highlights the di੖erent ffses of barrier synchronisation in pro-
gramming langffages throffgh the history of compffting. he offtcome is a sffrfiey
on di੖erent barrier properties. In Section 2.2, fle effiamine the state-of-the-art
on handling barrier deadlocks to identify offr research opportffnities.

2.1 Historical background
he importance of coordinating the effiecfftion of independent processing ffnits
(tasks, processors, or efien compffters) can be traced back to the ੗rst compffters
efier designed. he 1960’s brings into play the simplest form of barrier synchro-
nisation, the fork/join programming model. he Gamma 60 compffter [18] is
annoffnced in 1958, a machine that inclffdes mffltiple processing ffnits that can
synchronise ffpon the completion of an instrffction. Any processing ffnit can rffn
an instrffction on another ffnit flith a ۠forkۡ instrffction and then flait for that
instrffction to complete flith a ۠joinۡ instrffction. In 1963, Melfiin E. Conflay
proposes a mffltiprocessor design [33] based the fork/join programming model,
flhere the join instrffction can flait for mffltiple instrffctions to conclffde, instead
of jffst one. John A. Gosden presents a historical sffrfiey of this sffbject in [46].

In 1965, Ascher Opler elefiates the fork/join programming model to a lan-

Listing 2.1: Matriffi mffltiplication in Fortran.

1 do LOOP I=1,21
2 do LOOP J=1,21
3 do LOOP K=1,21
4 LOOP: C(I,J) = C(I,J) + A(I,K) * B(K,J)

7
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Listing 2.2: Matriffi mffltiplication programmed flith do-together.

1 do together BLOCK1 , BLOCK2 , (END)
2 BLOCK1: do LOOP1 I1=1,21,2
3 do LOOP1 J1=1,21
4 do LOOP1 K1=1,21
5 LOOP1: C(I1,J1) = C(I1,J1) + A(I1,K1) * B(K1,J1)
6 BLOCK2: do LOOP2 I2 = 2,20,2
7 do LOOP2 J2 = 1,21
8 do LOOP2 K2 = 1,21
9 LOOP2: C(12,J2) = C(I2,J2) + A(I2,K2) * B(K2,J2)

10 END: hold

gffage abstraction [84] called do-together. Listing 2.1 is a seqffential program
that mffltiplies matrices A and B and places the resfflt in matriffi C. he matrices
are 21 rofls by 21 colffmns. Listing 2.2 is the parallel fiersion of the seqffential
algorithm. Instrffction do together receifies the instrffction seqffences to be
effiecffted in parallel and an instrffction label betfleen parenthesis that marks
the end of the blockۘthe langffage ffsed in the effiample lacks the concept of
strffctffred code. Here, there are tflo instrffction seqffences: BLOCK1, that ranges
from lines 2ۗ5, and BLOCK2, that ranges from lines 6ۗ9. he instrffction se-
qffence BLOCK1mffltiplies cells flith odd rofls, and instrffction seqffence BLOCK2
mffltiplies cells flith efien rofls. Instrffction hold is a join barrier that flaits for
the completion of both instrffction seqffences.

Listing 2.3: Matriffi mffltiplication ffsing Lamport’s concffrrent-do.

1 do LOOP conc I=1,21
2 do LOOP J=1,21
3 do LOOP K=1,21
4 LOOP: C(I,J) = C(I,J) + A(I,K) * B(K,J)

he late 1960’s bring the illiac iv [17], a compffter flith mffltiple processors
that effiecffte a single instrffction stream. Leslie Lamport proposes tflo langffage
constrffcts to coordinate the effiecfftion of parallel loops [66]. Any do-loop that
inclffdes the keyflord conc schedffles each iteration to a di੖erent processor.
Listing 2.3 refiisits the matriffi mffltiplication, bfft assigns the compfftation of each
rofl to a di੖erent processor. Similarly to the do together, there is an implicit
barrier at the end of the offtermost cycle, flhere all processors synchronise.
A do-loop flith the keyflord sim also schedffles each iteration to a di੖erent
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Listing 2.4: An iteratifie afieraging algorithm.

1 for (i=1;i<=N;i++) do par
2 for (k=1;k<=M;k++) do seq
3 P[i] = (P[(i+1) % N] + P[(i-1) % N])/2;

processor, bfft di੖erently than conc, it makes efiery processor effiecffting the
parallel cycle to synchronises at each instrffction. his is the ੗rst time the
notion of a reusable barrier synchronisation appears in a programming langffage,
althoffgh in this case it is an implicit notion. A reffsable barrier can also be seen
as a stream of barriers. We call phase to each barrier of a stream of barriers.

Harry F. Jordan coins the term ۠barrier synchronisationۡ in 1978 [55], in the
conteffit of the design of a parallel machine that performs ੗nite element analysis.
he affthor proposes a primitifie to perform reffsable barrier synchronisation.
he intent of this synchronisation mechanism is to separate tflo phases of the
element analysis algorithm. he processors mffst flait for each other at the
barrier before adfiancing to the second phase of the algorithm.

he 1980’s are marked, at the sotflare lefiel, by the effiploration of paral-
lelising compilers that take a seqffential program and make it parallel [108].
Parallelising compiler introdffce barriers in the generated code to enforce data
dependence. Programmers can profiide soffrce code annotations to improfie
the flork of the compiler. he programming langffages Force [56]ۘinitiated by
Harry F. Jordan, among othersۘand PISCES [89] inclffded a reffsable barrier
primitifie.

Listing 2.4 shofls a typical smoothing algorithm picked from [47], a patern
seen, for effiample, in compffting a partial di੖erential eqffation. he array P
holds N nffmbers. Each fialffe in the array is calcfflated by ffsing its neighboffrs
from the prefiioffs iteration. he offter loop iterates ofier the contents of the
array and effiecfftes its steps in parallel (hence the keyflord par). he inner loop
performs the smoothing and effiecfftes seqffentially.

A parallelising compiler mffst notice the data dependency betfleen iteration i
and iteration i + 1, or otherflise there is a race condition. In Listing 2.5, the
compiler adds tflo (reffsable) barriers. Efiery task flaits for the others to read
the neighboffring fialffes into tmp, and then all tasks flait for each other ater
ffpdating their ofln cell.

Rajifi Gffpta introdffces fffzzy barriers [47], in 1989, as an optimisation tech-
niqffe to ofierlap synchronisation flith compfftation. A similar techniqffe, called
split-phase communication, is ffsed to hide commffnication latency [25, 29, 113],
so nofladays fffzzy barriers are also knofln as split-phase barriers. A split-phase
barrier consists of tflo primitifies: initBarrier initiates the synchronisation
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Listing 2.5: Iteratifie afieraging programmed flith barrier synchronisation.

1 for (i=1;i<=N;i++) do par
2 for (k=1;k<=M;k++) do seq {
3 tmp = (P[(i+1) % N] + P[(i-1) % N])/2;
4 barrier;
5 P[i] = tmp;
6 barrier;}

mechanism concffrrently, and primitifie waitBarrier flaits for the synchroni-
sation to happen. A task blocks on waitBarrier ffntil all other participants
effiecffte initBarrier. Listing 2.6 reflrites the smoothing algorithm flith a
split-phase barrier. With split-phase barriers Line 5 can be rffn concffrrently
flith Line 7.

Listing 2.6: Iteratifie afieraging programmed flith barrier synchronisation.

1 for (i=1;i<=N;i++) do par
2 for (k=1;k<=M;k++) do seq {
3 l = P[(i-1) % N]; r = P[(i+1) % N];
4 initBarrier;
5 tmp = (l + r)/2;
6 waitBarrier;
7 P[i] = tmp;
8 barrier;}

At the time, research is mostly geared toflards the performance of the
synchronisation algorithm [9, 22, 49]. Rajifi Gffpta also introdffces the notion
of barrier synchronisation in a sffbset of tasks in the system, in contrast flith a
global barrier that a੖ects all tasks.

In the 1980’s, there are also some adfiances related to the fork/join program-
ming model. he parallel fffnctional langffages Mffltilisp [48] and Id [11] inclffde
abstractions that miffi commffnication flith a barrier synchronisation. Mffltilisp
introdffces futures, or promises, that can be seen as a placeholder for the offt-
come of a fffnction that is being compffted concffrrently, possibly in parallel. An
arbitrary nffmber of consffmer tasks can be aflaiting a resfflt to be prodffced on
the placeholder (the barrier). Once the fffnction efialffates, the flaiting tasks can
resffme their flork and hafie access to the offtcome of the fffnction. he langffage
Id proposes I-structures as a simpli੗cation of ffftffres. An I-strffctffre can also be
seen as a placeholder for the offtcome of a compfftation, yet, ffnlike ffftffres, this
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Listing 2.7: A deadlock ffsing synchrons.

1 (let ((a (synchron)) (b (synchron)))
2 (par
3 (begin (wait a) (wait b))
4 (begin (wait b) (wait a)))

mechanism does not spafln any tasks. Tasks can obserfie and consffme fialffes
flriten in an I-strffctffre. Writing to the I-strffctffre is synchronised flith all the
pending reads. Writing is a non-blocking operation, so the flriter task does not
flait for the readers tasks.

In the 1990’s there is an ongoing effiploration of (effiplicit) task parallelism,
a continffed flork on the fork/join programming model, and barriers appear
as ੗rst-class fialffes and fiarying participation is introdffced. Tflo notable lan-
gffages based on the fork/join programming are annoffnced: Cilk [41] (as a C
effitension) and OpenMP [36] (as a Fortran effitension). As barriers make their
appearance in more programming langffages, their semantics become richer.
his decade introdffces barrier synchronisation flhere the groffp of participants
fiaries ofier time. In 1990, fiarying participation appears ੗rst in hardflare barrier
synchronisation [81]. In 1996, Franklyn Tffrbak proposes synchrons [102]: the
barrier abstraction is a ੗rst-class fialffe that can be stored in any data strffctffre.
Fffrthermore, synchrons also allofl for fiarying participation, the ੗rst time sffch
property appears in sotflare-based barriers. In Listing 2.7 tflo tasks flait for
tflo synchrons in a alternatifie order, rendering them in a deadly embrace. A
main task creates tflo synchrons, in line 1, and then ffses primitifie par to spafln
tflo nefl tasks. One of the spaflned tasks, in line 3, flaits ੗rst on synchron a
and then on synchron b. he other spaflned task, in line 4, flaits on b ੗rst and
on synchron a second.

MPI [40], an effitension of C or of Fortran, is annoffnced in 1992. here
is sffpport for collective operations and the possibility to groffp tasks. Collec-
tifie operations mffst be effiecffted by efiery member of a groffp of tasks, intro-
dffcing an implicit barrier at each operation. For effiample, if a task effiecfftes
an MPI_Broadcast flhile another task effiecfftes a MPI_Scatter, then fle hafie
a deadlock caffsed by misaligned barriers. Additionally, any task that shares
(transitifiely) a groffp flith any of the deadlocked tasks also becomes deadlocked.

he 2000’s gifie rise to a nefl family of parallel programming langffages
called PGAS (Partitioned Global Address Space) for task parallel langffages flith
access to a hierarchic shared memory. Some langffages that are part of this
family inclffde Chapel, Titaniffm, UPC, and X10. In 2001, Jffng et al. promotes
the split-phase barrier synchronisation to a ੗rst-class synchronisation mech-
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anism [59], in contrast flith Gffpta’s fiiefl of split-phase barrier as a compiler
optimisation. MPI, UPC, and X10 o੖er split-phase barrier synchronisation. X10
inclffdes a fork/join programming model and a barrier abstraction called clock,
that is a ੗rst-class fialffe and sffpports groffp synchronisation flith a fiarying
nffmber of participants.

Only in the 2000’s do mainstream langffages start incorporating barrier syn-
chronisation in their libraries. Jafia and the langffage family behind the .NET
frameflork did not change their syntaffi to accommodate barrier synchronisation;
all abstractions that perform barrier synchronisation are ੗rst-class fialffes. Jafia
5.0, in 2005, inclffde three abstractions that perform barrier synchronisation:
latches, cyclic barriers, and ffftffres. A latch performs one-shot barrier syn-
chronisation for a ੗ffied nffmber of participants. he cyclic barrier performs
reffsable barrier synchronisation, also for a ੗ffied nffmber of participants. he
.NET frameflork 4.0, in 2010, inclffdes latches, a cyclic barrier that sffpports
fiarying participation, ffftffres, and a fork/join programming model.

HJ is a derifiation of X10, so they share the programming model and most
langffage constrffcts. A nofielty of HJ is the proposal of phasers [94] to replace
clocks. he semantic nofielty in this abstraction is the flay tasks can in੘ffence
barrier synchronisation, flhich resembles latches and I-strffctffres. A task can
obserfie a phaser and jffst aflait participants, flithofft others flaiting for it. A task
can cross the barrier (i.e., arrifie and proceed flithofft flaiting), yet others still
need to flait for it to arrifie at the barrier. A task can still ffse a phaser for regfflar
reffsable barrier synchronisation, by arrifiing and flaiting. Phasers can be ffsed
to perform prodffcer/consffmer synchronisation, ffsffally done flith condition
fiariables [53], flhose deadlocks are knofln to be fiery diਖ਼cfflt to handle [4,
57]. Later, there is a phaser effitension to sffpport boffnded prodffcer/consffmer
synchronisation paterns, called phaser beams [96]. Finally, in 2011, Jafia 7.0
adds an abstraction inspired by phasers, bfft that does not sffpport obserfiers; a
Jafia phaser is essentially a clock bfft, confffsingly, it is also called a phaser.

To sffmmarise, the barrier properties fle consider are:

Groufi synchronisation: A sffbset of the afiailable tasks can synchronise to-
gether as a groffp. Effiamples: clocks, cyclic barriers, join barriers, latches,
MPI collectifie operations, phasers, and synchrons.

Reuse: Participants may ffse the same abstraction to perform more than one
barrier synchronisation. Effiamples: clocks, cyclic barriers, MPI/UPC col-
lectifie operations, phasers, and synchrons.

Sfilit-fihase synchronisation: he synchronisation mechanism mffst be able
to be commenced asynchronoffsly. Effiamples: clocks, latches, MPI/UPC
collectifie operations, and phasers.
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Varying fiarticifiation: A task can join and leafie a groffp that is synchronised
flith a barrier. Effiamples: clocks, MPI collectifie operations, phasers, and
synchrons.

Phase observing: A task can obserfie the barrier flithofft in੘ffencing it. In the
case of a reffsable barrier, the task mffst be able to obserfie a speci੗c phase.
A task can arrifie flithofft needing to aflait any participant. Effiamples:
ffftffres, I-strffctffres, join barriers, latches, and phasers.

2.2 Related work
he seminal flork from Peter J. Landin [68] along flith the programmer’s man-
ffal of LISP 1.5 [79] pioneered the idea of reasoning in terms of families of
programming langffages, called calculi. he goal of a calcfflffs is to ffnify mfflti-
ple programming langffages by abstracting mere syntactic fiariations. Effiamples
of calcffli inclffde the λ-calcfflffs [30] for fffnctional programming langffages,
process algebras (e.g., the π-calcfflffs [80]) for concffrrent langffages, and the
object calcfflffs [1] for object-oriented langffages.

Calcffli that inclffde barrier synchronisation are ffsffally limited to a speci੗c
barrier idiom. SPMD langffages ffsffally hafie global collectifie operations, so a
calcfflffs that targets this family of langffages only concerns flith global barrier
synchronisation. Similarly, a calcfflffs that deals flith ffftffres, or flith join
barriers, only concerns flith one-shot barrier synchronisation. Yet HJ, Jafia, the
.NET frameflork, OpenMP, and X10 are jffst some effiamples of langffages that
comprise fiaried barrier idioms.

Deadlock firevention. he literatffre aroffnd soffrce code analysis to prefient
global barrier deadlocks is fiast: MPI [76, 85, 97, 111], OpenMP [112], OpenSH-
MEM [88], and Split-C [7] (a predecessor of UPC). It is florth noting that MPI
sffpports groffp barrier synchronisation, bfft florks on deadlock prefiention can
only cope flith global synchronisation.

he fork/join programming model is easily restricted syntactically to prefient
deadlocks from happening. he λS-calcfflffs by Arfiind et al. [10] and the calcfflffs
by Aditya et al. [3] stffdy the fork/join programming model in the conteffit of
fffnctional programming langffages. Lee and Palsberg presented a calcfflffs
for a fork/join programming model [70], sffited for inter-procedffral analysis
throffgh type inference, and establishes the deadlock freedom property. he
flork by Lee and Palsberg also inclffdes a type system that is ffsed to identify
may-happen-parallelism, fffrther effiplored by Agarflal et al. in [5].
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here is some flork sffrroffnding the formalisation of barrier semantics flith
compleffi properties of barrier synchronisation, bfft do not establish deadlock-
freedom. Sarasflat and Jagadeesan formalise a sffbset of X10 that prefients
deadlocks [92], comprising join barriers and clocks. Le et al. defiise a fieri੗-
cation for the correct ffse of a cyclic barrier in a fork/join programming lan-
gffage [69]. Vasffdefian et al. hafie a similar approach on fierifying the correct
ffse of clocks [104].

he tool X10X [44] is a model checker for X10. Model checkers perform
soffrce code analysis and can be ffsed to discofier potential deadlocks. his
class of tools sff੖ers from the state effiplosion problem: the analysis grofls
effiponentially flith the possible interleafies of the program. hffs, X10X may not
be able to fierify compleffi programs.

here is a research opportunity on formal techniques that prevent general
barrier deadlocks.

Deadlock avoidance and detection. To offr best knoflledge, techniqffes that
afioid deadlocks in the conteffit of barrier synchronisation are incomplete, i.e.,
only handle a fefl sitffations of barrier deadlocks. For instance, in X10 and HJ,
tasks deregister from all barriers ffpon termination; this mitigates deadlocks
that arise from missing participants. HJ afioids deadlocks that originate from
the interaction betfleen phasers and ੗nish blocks by limiting the ffse of phasers
to the scope of ੗nish blocks. Deadlock detection tools for Titaniffm [60] and
UPC-CHECK [91] can only handle global barrier synchronisation. Literatffre
concerning MPI deadlock detection is still not general enoffgh for langffages
like Jafia and X10 and lacks formal speci੗cations. DAMPI [105], Marmot [64],
and MPI-CHECK [73] report a programs as deadlocked ater a period of inactifi-
ity, so it can misidentify a slofl program as a being deadlocked. Umpire [51]
and MUST [52] (a sffccessor of Umpire) ffse a graph-based deadlock detection
algorithm, bfft omit a formal description on hofl the graph is actffally generated
from the langffage. Fffrthermore, MUST is incapable of fierifying split-phase
synchronisation, knofln in MPI as non-blocking collectifie operations.

here is a research opportunity on deadlock avoidance and detection for general
barrier synchronisation.



Chapter hree

Brenner: a calculus for parallel
programming

We present phasers and a core-langffage to reason abofft task parallelism flith
this abstraction. he follofling section refiisits some effiamples to introdffce the
primitifies that comprise a phaser. Section 3.1 presents the syntaffi of Brenner.
We discffss the operational semantics in Section 3.2.

he deटnitions and examples in this chapter are mechanised in Coq [78] and
available online1.

3.1 Syntax
A phaser is ffsed to coffnt and obserfie efients generated by a groffp of tasks,
similarly to a collectifie efient coffnter [90]. he primitifies fle introdffce distil the
semantics cf. [94, 96]. Each participant is registered flith an efient coffnter, called
a local phase, that is a non-decreasing, non-negatifie integer. Instrffction adv
increments the local phase of the issffing task. Instrffction await(p, n) blocks
ffntil all members of phaser p reach phase n, i.e., their local phase is at least n.
Instrffction newPhaser creates a phaser.

Tasks are referred by task names. Instrffction newTid creates a task name.
To dynamically create and laffnch a named task there is instrffction fork. he
members of a phaser are controlled flith reg to add (register) a participant to
a phaser, and dereg to remofie (deregister) a participant from a phaser. Data
transfers and data-related compfftation are abstracted and in their place fle ffse
instrffction skip. Similarly, fle represented strffctffred control ੘ofl instrffctions,
like for-loops and conditionals, flith instrffction loop that ffnfolds its body an
arbitrary nffmber of times.

Join barriers Listing 3.1 describes an one-shot barrier synchronisation as seen
in the fork/join programming model. Offr effiample refiisits Listing 2.3, matriffi

1https://bitbucket.org/cogumbreiro/brenner-coq/
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Listing 3.1: Matriffi mffltiplication programmed flith a phaser.

1 p = newPhaser();
2 loop( // for (i = 0; i < 21; i++) {
3 t = newTid();
4 reg(t, p);
5 fork(t,
6 loop( // for (j = 0; j < 21; i++)
7 loop( // for (k = 0; k < 21; k++)
8 skip; // C[i][j] += A[i][k] * B[k][j];
9 end); // inner loop

10 end); // outer loop
11 adv(p); // signal termination
12 end); // fork
13 end); // loop
14 adv(p);
15 await(p, 1); // join
16 end

mffltiplication programmed flith a task processing each rofl of the matriffi.
A drifier task effiecfftes the code in Listing 3.1; it is responsible for forking the
florker tasks processing the rofls, and for joining their effiecfftion flith a phaser p.
In detail, the drifier tasks creates phaser p, in Line 1, flith instrffction newPhaser,
afftomatically registering the drifier at phase 0. he drifier ffses reg to register t
flith p (Line 4); the registered task flill inherit the phase of their registrant, in
this case it is phase 0. he florkers (Lines 6 to 12) adfiance their phase, in Line 11,
to notify the drifier that aflaits their terminffs, in Line 15. Since the drifier is
also registered flith p, it adfiances its local phase before aflaiting phase 1, in
Line 14, otherflise it deadlocks all tasks.

Cyclic barriers Listing 3.2 refiisits the split-phase synchronisation effiample
seen in Listing 2.6. To encode a cyclic barrier, efiery participant adfiances its
phase and then aflaits at its local phase in Line 13, so that all members aflait
each other. here are tflo fiariants of instrffction aflait, flhen a task omits the
phase nffmber, await(p), then this task aflaits at its local phase. Split-phase
synchronisation commences flith a phase adfiance in Line 8, and terminates
flith an aflait in Line 10.

Pifieline fiarallelism Phasers enable distinct synchronisation paterns flhen
compared to other barrier-based abstractions. A case in point is the prodffcer-
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Listing 3.2: Split-phase synchronisation flith a phaser.

1 p = newPhaser(); // c = new Clock();
2 loop( // for (i = 0; i < N; i++)
3 t = newTid();
4 reg(t, p);
5 fork(t, // async clocked(p)
6 loop( // for (k=1; k <= M; k++)
7 skip; // l=P[(i-1) % N];r=P[(i+1) % N];
8 adv(p); // c.resume();
9 skip; // tmp = (l + r) / 2;

10 await(p); // c.advance();
11 skip; // P[i] = tmp;
12 adv(p);
13 await(p); // c.advance();
14 end); // for
15 end); // task
16 end); // outer loop
17 dereg(p); // revoke participation
18 end // program

consffmer synchronisation patern, sketched in Listing 3.3. Tflo groffps of tasks,
the prodffcers and the consffmers, synchronise their effiecfftion flith a phaser p.
Prodffcer tasks only adfiance the phaser, flhile consffmer tasks aflait consecfftifie
phases of that phaser. Cyclic barriers cannot be ffsed e੖ectifiely to describe the
prodffcer-consffmer patern: since all participants of a cyclic barrier mffst flait
for each other, then the effiecfftion of prodffcers is constrained by the effiecfftion
of consffmers, flhich does not happen in Listing 3.3.

Pipeline parallelism is a parallel programming model based on the prodffcer-
consffmer synchronisation patern. In this programming model, compfftation
is difiided in stages that can rffn concffrrently, flhere barrier synchronisation
coordinates the effiecfftion order of di੖erent stages. Recent proposals of pipeline
parallelism in the conteffit of parallel programming langffages inclffde: Open-
Stream [87] for OpenMP, StreamX10 [107] and clocked fiariables [12] for X10,
and phaser beams [96] for HJ.
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Listing 3.3: Prodffcer-consffmer synchronisation flith phasers.

1 p = newPhaser(); // c = new Phaser();
2 loop( // producers
3 t1 = newTid(); reg(t1, p); // producer
4 fork(t1,
5 loop( // for (i = 0; i < N; i++)
6 skip; // B[i] = produce(i);
7 adv(p); // signal consumer
8 end); // loop
9 end); // t1

10 end);
11 loop( // consumers
12 t2 = newTid(); reg(t2, p); // consumer
13 fork(t2,
14 loop( // for (i = 0; i < N; i++)
15 adv(p); await(p);
16 skip; // consume(B[i]);
17 end); // loop
18 end); // t2
19 end);
20 dereg(p);
21 end // program

Syntax We propose the core langffage Brenner2 to reason abofft task paral-
lelism flith phasers. he langffage itself is fiery basicۘnot efien Tffring-comple-
te!ۘbfft profiides a sffਖ਼cient programming model to reason abofft the barrier
abstractions sffrfieyed in Chapter 2. We abstain from adding constrffcts ffnre-
lated to synchronisation, like data types, since sffch additions only complicates
the semantics flithofft bringing into play any nofielty.

De॑nition 3.1.1 (Langffage syntaffi). he grammar in Fig. 3.1 deटnes our lan-
guage.

he grammar speci੗es hofl to constrffct a program in Brenner in an abstract
syntaffi based cf. [86]. A term can be elementary or composed of other terms.
A grammar de੗nes categories (i.e., sets) of terms. he set of all programs is

2 Originating from the Star Trek telefiision series, the minor character Brenner [8] is referred
as a phaser specialist on the script for the episode ۠Balance of Terror .ۡ Brenner serfies ffnder
the command of Captain James T. Kirk and is responsible for coordinating and maintaining the
phaser fleapons of the USS Enterprise.
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b ::= Programs
| end end program
| i; b constrffct program

i ::= Instructions
| t = newTid() nefl task identi੗er
| fork(t, b) spaflns the effiecfftion of a task
| p = newPhaser() create a phaser
| reg(t, p) register task flith phaser
| dereg(p) deregister cffrrent task from phaser
| adv(p) adfiance local phase
| await(p, n) aflait for phase n
| await(p) aflait cffrrent phase
| c control the ੘ofl

c ::= Control ठow
| skip internal action
| loop(b) non-deterministic loop

Figffre 3.1: Top-lefiel syntaffi.

an effiample of a category of terms. In Brenner, a program is composed by
instrffctions, flhich are themselfies other terms. Notation ::= declares a term
category: in the let-hand side there is a meta-variable (a leter) that ranges
ofier the terms of that category; in the right-hand side the declaration of the
alternatifie terms, separated by a fiertical bar |, that reads as ۠or.ۡ

he grammar of Brenner consists of tflo categories of terms: programs
ranged ofier by b, and instrffctions ranged ofier by i. he de੗nition of a program b

has tflo possible terms: it is either (i) an elementary term end, or (ii) a constrffct
program term that is composed of an instrffction i follofled by the continffation
program b. he alternatifies in the right-hand side of ::= flork as templates, so
any meta-fiariable that appears in the right-hand side of ::= does not represent
a speci੗c instance, bfft a placeholder for a term of that category. For instance,
term b that appears in i; b represents a placeholder for any program term that
can be constrffcted ffsing the grammar Fig. 3.1.

he grammar relies on a base set of phaser names P , ranged ofier by p and by
q; a base set of task names T , ranged ofier by t; and a set N of natffral nffmbers,
ranged ofier by n and bym.
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S ::=
(

M,T
)

State
M ::= {p1 : P1, . . . , pn : Pn} Phaser maps
T ::= {t1 : b1, . . . , tn : bn} Task maps
P ::= {t1 : n1, . . . , tm : nm} Phaser value
b ::= · · · | idle

Figffre 3.2: Syntaffi of the abstract machine.

3.2 Ofierational Semantics
he formalism that speci੗es the meaning of Brenner is knofln as operational
semantics, and it describes hofl compfftation defielops. Operational semantics
can be difiided into tflo categories: small-step semantics that describes the
indifiidffal steps of compfftation, and big-step semantics that describes hofl the
ofierall resfflts are obtained (i.e., gifien an inpfft state, flhat is the ੗nal offtcome
state). Concffrrent langffages are ffsffally speci੗ed in small-step semantics since
big-step semantics ۠hidesۡ the intermediate steps that lead to a resfflt. he gist of
small-step operational semantics is to de੗ne (i) the state of an abstract machine
(or abstract compffter), and (ii) the e੖ects of each possible action on a gifien state.
A grammar speci੗es the state of an abstract machine. A (binary) redffction
relation (→) de੗nes (ii), by relating the state of the machine before effiecfftion
flith the state of the machine ater effiecfftion of a single indifiisible action.

De॑nition 3.2.1 (Abstract machine). Fig. 3.2 depicts the syntax of the abstract
machine.

An abstract machine has a state S that pairs a phaser mapM flith a task
map T . he phaser mapM stores the afiailable phasers, mapping addresses to
phasers. A phaser P maps task identi੗ers to natffrals. he task map T holds
programs b, labelled by task names t. We effitend the syntaffi of programs, by
adding the rffntime-only instrffction idle, to represent a task that is ready to
be started (a side e੖ect of instrffction newTid).

he follofling fffnction loads a program into the abstract machine. We ffse
notation def

= for the de੗nition of fffnctions and constants. he initial state consists
of an empty phaser map and a single task td. he program is loaded into task td,
flhich commences flithofft being registered flith any phaser.

De॑nition 3.2.2 (Load fffnction).

load(b) def
=

(

∅, {td : b}
)
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(

M,T ⊎ {t : t′ = newTid(); b}
)

→
(

M,T ⊎ {t : b} ⊎ {t′ : idle}
)

(R-new-t)
(

M,T ⊎ {t : fork(t′, b′); b} ⊎ {t′ : idle}
)

→
(

M,T ⊎ {t : b} ⊎ {t′ : b′}
)

(R-fork)

c; b→ b′
(

M,T ⊎ {t : (B, c; b)}
)

→
(

M,T ⊎ {t : (B, b′)}
) (R-flow)

Figffre 3.3: he small-step semantics of Brenner (tasks).

Let b be the program in Listing 3.2. An abstract machine rffnning b has an
initial state load(b), de੗ned as follofls.

(

∅,
{

td : p = newPhaser(); loop(bl); dereg(p); end
})

(3.1)

De॑nition 3.2.3 (Domain, empty map, and ffpdate.). Given a map, we write
domM for the domain of mapM . We use notation ∅ for the empty map, such that
no element is in its domain. When x is not in the domain of mapM1, we write
M1 ⊎ {x : y} for mapM2 such that domM2 = domM1 ∪ {x},M2(x) = y, and
M2(z) =M1(z) for all z ∈ domM1.

he redffction relation (→) for Brenner is de੗ned by a set of inference rules
in Figs. 3.3 to 3.5. he rffles are syntaffi-oriented, flhich means that there is
only one rffle per instrffction i, e.g., rffle R-new-p describes the behafiioffr of
instrffction newPhaser.

An inference rffle de੗nes a conclffsion C that follofls from some premises
P1, P2, . . . , Pn. he general notation of an inference rffle is

P1 P2 · · · Pn

C

considering that symbol ∧ is the logical conjffnction and symbol =⇒ is the
logical implication the abofie notation is eqffifialent to

P1 ∧ P2 ∧ · · · ∧ Pn =⇒ C

When there are no premises (n = 0), the rffle is called an axiom and fle omit
the ofier bar, as in rffle R-fork.

Gifien a redffction S → S ′, state S is an inpfft parameter and state S ′ an
offtpfft parameter. A system of inference rffles, sffch as an operational semantics,
matches any inpfft parameters and infers, or prodffces, any offtpfft parameters.
Henceforth, fle say task t (phaser p) as short for the task (phaser) labelled by t.
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(

M,T ⊎ {t : p = newPhaser(); b}
)

→
(

M ⊎
{

p : {t : 0}
}

, T ⊎ {t : b}
)

(R-new-p)

T (t′) = idle P (t) = n P ′ = P ⊎ {t′ : n}
(

M ⊎ {p : P}, T ⊎ {t : reg(t′, p); b}
)

→
(

M ⊎ {p : P ′}, T ⊎ {t : b}
) (R-reg)

(

M ⊎
{

p : P ⊎ {t : n}
}

, T ⊎ {t : dereg(p); b}
)

→
(

M ⊎ {p : P}, T ⊎ {t : b}
)

(R-dereg)
(

M ⊎
{

p : P ⊎ {t : n}
}

, T ⊎ {t : adv(p); b}
)

→
(

M ⊎
{

p : P ⊎ {t : n+ 1}
}

, T ⊎ {t : b}
) (R-adv)

M(p) = P ∀t′ ∈ domP : P (t′) ≥ n
(

M,T ⊎ {t : await(p, n); b}
)

→
(

M,T ⊎ {t : b}
) (R-sync)

M(p)(t) = n
(

M,T ⊎ {t : await(p); b}
)

→
(

M,T ⊎ {t : await(p, n); b}
) (R-await)

Figffre 3.4: he small-step semantics of Brenner (phasers).

Recall the initial state of program b, de੗ned in Formffla 3.1, and let it be
state S1.

(

∅,
{

td : p = newPhaser(); t1 = newTid(); reg(t1, p); fork(t1, b1); bd
})

If fle can constrffct a state S2 that is in the redffction relation flith S1

S1 → S2

then fle say that state S1 redffces to state S2. Yet, not all states redffce. In
particfflar, since all redffction rffles effipect a task map flith at least one task,
state

(

∅, ∅
)

does not redffce.
To check thatS1 → S2 holds, flematch the syntaffi ofS1 flith efiery redffction

rffle. Mffltiple rffles may match the syntaffi, so it is possible to hafie more than one
state S2 that is in relation flith S1ۘin fact, that is hofl fle encode concffrrency!

he inference rffles hafie implicit ffnifiersal qffanti੗cation on efiery meta-
fiariable that appears in an inpfft parameter. In the case of rffle R-new-p there is
an implicit ∀M,T, t, p, b:

(

M,T ⊎ {t : p = newPhaser(); b}
)

→
(

M ⊎
{

p : {t : 0}
}

, T ⊎ {t : b}
)
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skip; b→ b (R-skip)
loop(b); b′ → b · (loop(b); b′) (R-iter)

loop(b); b′ → b′ (R-elide)

Figffre 3.5: Small step semantics for control ੘ofl instrffctions c; b→ b .

Hence, applying rffle R-new-p to S1 → S2 yields
(

∅,
{

td : p = newPhaser(); loop(bl); dereg(p); end
})

→
({

p : {td : 0}
}

,
{

td : loop(bl); dereg(p); end
})

flith M
def
= ∅, T def

= ∅, t def
= td, p

def
= p, and b def

= loop(bl); dereg(p); end.
Rffle R-new-p allocates a nefl phaser, flith a single registered task (the cre-
ator of the phaser).

Let S3 be sffch that relation S2 → S3. he relation holds flith rffle R-flow,
bfft fle mffst shofl that the control ੘ofl instrffction loop bl redffces. Redffction
for control ੘ofl instrffctions is de੗ned in Fig. 3.5. Program concatenation is
de੗ned as effipected.

De॑nition 3.2.4 (Seqffence concatenation).

(i; b) · b′
def
= i; (b · b′)

end · b def
= b

Applying rffle R-iter yields

loop(bl); dereg(p); end → t1 = newTid(); reg(t1, p); fork(t1, bf ); bd

flhere

bl · loop(bl); dereg(p); end
def
= t1 = newTid(); reg(t1, p); fork(t1, bf ); bd

Hence, flith rffle R-flow fle hafie that S2 → S3.
({

p : {td : 0}
}

,
{

td : loop(bl); dereg(p); end
})

→
({

p : {td : 0}
}

,
{

td : t1 = newTid(); reg(t1, p); fork(t1, bf ); bd
})

Let S4 be sffch that relation S3 → S4 holds. With rffle R-new-t fle get the
follofling formffla

({

p : {td : 0}
}

,
{

td : t1 = newTid(); reg(t1, p); fork(t1, bf ); bd
})

→
({

p : {td : 0}
}

,
{

td : reg(t1, p); fork(t1, bf ); bd, t1 : idle
})
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Rffle R-new-t effitends the task map flith an idle task t1. At the syntaffi lefiel,
newTid only displays a task name, bfft at the operational semantics lefiel the
instrffction creates a special ۠idleۡ task to ensffre that there are no task-name
clashes. An idle task becomes a rffnning one flith a fork.

Let S5 be sffch that relation S4 → S5 holds. With rffle R-reg fle get the
follofling formffla

({

p : {td : 0}
}

,
{

td : reg(t1, p); fork(t1, bf ); bd, t1 : idle
})

→
({

p : {td : 0, t1 : 0}
}

,
{

td : fork(t1, bf ); bd, t1 : idle
})

Rffle R-reg effitends the phaser addressed by p flith the nefl participant t1. he
local phase of the registered task is inherited from the registrant, so in this case
both are at the local phase 0. he con੗gffration of the phaser map indicates that
the task infioking R-reg is registered flith the phaser.

Let S5 be sffch that relation S4 → S5 holds. With rffle R-fork fle get the
follofling formffla

({

p : {td : 0, t1 : 0}
}

,
{

td : fork(t1, bf ); bd, t1 : idle
})

→
({

p : {td : 0, t1 : 0}
}

,
{

td : bd, t1 : bf
})

Rffle R-fork simply replaces the body of idle task t1 flith the parameter of fork,
program bf . he parameter of idle identi੗es the creator of the task name. he
syntactic restriction in the rffle ensffres that only task td can fork a task named t1.

Recall that

bd
def
= loop(bl); dereg(p); end

and

bf
def
= adv(p); await(p); adv(p); await(p); end

here are tflo possible redffctions for state S5, one ffses rffle R-flow, an-
other ffses rffle R-advance. Sffch nondeterminism represents the concffrrency
present in parallel effiecfftion. We continffe redffcing flith task td to conclffde the
discffssion of task membership. We place the rffle neffit to the redffction operator
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to help the reader.
({

p : {td : 0, t1 : 0}
}

,
{

td : loop(bl); dereg(p); end, t1 : bf
})

R-flow →
({

p : {td : 0, t1 : 0}
}

,
{

td : t2 = newTid(); reg(t2, p); fork(t2, bf ); bd, t1 : bf
})

R-new-t →
({

p : {td : 0, t1 : 0}
}

,
{

td : reg(t2, p); fork(t2, bf ); bd, t1 : bf , t2 : idle
})

R-reg →
({

p : {td : 0, t1 : 0, t2 : 0}
}

,
{

td : fork(t2, bf ); bd, t1 : bf , t2 : idle
})

R-fork →
({

p : {td : 0, t1 : 0, t2 : 0}
}

,
{

td : loop(bl); dereg(p); end, t1 : bf , t2 : bf
})

R-flow →
({

p : {td : 0, t1 : 0, t2 : 0}
}

,
{

td : dereg(p); end, t1 : bf , t2 : bf
})

Let S6 → S7 hold With rffle R-dereg.
({

p : {td : 0, t1 : 0, t2 : 0}
}

,
{

td : dereg(p); end, t1 : bf , t2 : bf
})

→
({

p : {t1 : 0, t2 : 0}
}

,
{

td : end, t1 : bf , t2 : bf
})

Rffle R-dereg remofies the issffer task td from the phaser addressed by p. he
syntactic con੗gffration of the phaser ater redffction indicates that td refioked
its membership flith phaser p.

We proceed by redffcing state S7. Let b2
def
= adv(p); await(p); end. At this

point fle can redffce term flith either task t1 or task t2. We choose to redffce
flith task t1. With rffle R-advance and then flith R-await fle get the follofling
formffla.

({

p : {t1 : 0, t2 : 0}
}

,
{

td : end, t1 : adv(p); await(p); b2, t2 : bf
})

→
({

p : {t1 : 1, t2 : 0}
}

,
{

td : end, t1 : await(p); b2, t2 : adv(p); await(p); b2
})

→
({

p : {t1 : 1, t2 : 0}
}

,
{

td : end, t1 : await(p, 1); b2, t2 : adv(p); await(p); b2
})

Rffle R-advance increments the local phase of the registered task t1, enforced
by the syntactic strffctffre of the phaser. Rffle R-await reflrites the await by
making the flait effiplicit at the local phase of task t1.
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he only rffle that can be applied to the state abofie is R-advance, flhich
effiecfftes task t2. Task t1 mffst flait for task t2 to adfiance its phase to 1. With
rffle R-advance fle get the neffit formffla.

({

p : {t1 : 1, t2 : 0}
}

,
{

td : end, t1 : await(p, 1); b2, t2 : adv(p); await(p); b2
})

→
({

p : {t1 : 1, t2 : 1}
}

,
{

td : end, t1 : await(p, 1); b2, t2 : await(p); b2
})

Synchronisation happens flith rffle R-sync.
({

p : {t1 : 1, t2 : 1}
}

,
{

td : end, t1 : await(p, 1); b2, t2 : await(p); b2
})

→
({

p : {t1 : 1, t2 : 1}
}

,
{

td : end, t1 : b2, t2 : await(p); b2
})

Rffle R-sync consffmes the await flhen its premise is enabled, by checking that
efiery registered task is at least at phase 1.

Cofl mechanisation he de੗nitions and effiamples of this chapter are all
formalised in Coq3. he interested reader can effiercise offr de੗nitions and alter
the effiamples in this section.

3https://bitbucket.org/cogumbreiro/brenner-coq/

https://bitbucket.org/cogumbreiro/brenner-coq/


Chapter Foffr

Runtime deadlock veriटcation

he pffrpose of a rffntime deadlock fieri੗cation tool is to continffoffsly check
flhether the concffrrency constraints of the rffnning tasks are ffnsatis੗able, in
flhich case there is a deadlock. Rffntime fieri੗cation tools obtain concffrrency
constraints from concffrrency dependencies among tasks and blocking oper-
ations, e.g., task A flaits in a phaser p for tasks B and C , or task A impedes
tasks B and C from synchronising flith phaser q. Graph-based techniqffes
check the ffnsatis੗ability of concffrrency constraints by analysing a graph of
concffrrency dependencies. We propose and implement a graph-based techniqffe
that performs cycle detection to check for deadlocks.

he follofling section proposes an intermediate general abstraction called
a resoffrce-dependency state to captffre the relationship betfleen tasks and
resoffrces, and de੗nes a translation from a Brenner state S to a resoffrce-de-
pendency state. Section 4.2 discffsses some necessary graph-theoretical notions.
Section 4.3 describes tflo graph models that can be effitracted from a resoffrce-
dependency state. Section 4.4 that pffts forflard tflo important resfflts: (i) cycle
detection is eqffifialent in the tflo graph models, and (ii) the deadlock fieri੗cation
is soffnd and complete, against a Brenner program. Section 4.5 presents Armffs,
a deadlock fieri੗cation tool capable of fafflt-tolerant and distribffted detection,
and also of deadlock afioidance. Armffs to performs a nofiel graph model se-
lection to dramatically improfie the performance of deadlock fieri੗cation. he
chapter closes flith an efialffation of the performance of Armffs in local and
distribffted setings.

4.1 Resource defiendencies
State-of-the-art rffntime fieri੗cation tools gather concffrrency dependencies
betfleen tasks and barriers by monitoring the statffs of blocked tasks and by
bookkeeping the participants of each barrier. Tracking the later poses a problem
to distribffted fieri੗cation, as the information abofft the participants of a barrier
can be distribffted among fiarioffs compfftation nodes [6, 50]. Instead, fle propose

27
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gathering dependencies among timestamps, in the sense of Lamport’s logical
clocks [67], as it improfies the performance of offr fieri੗cation algorithm.

A logical clock orders efients by associating a di੖erent timestamp (a mono-
tonic integer) per efient. We consider a phaser to be a logical clock, and a phase
to be a timestamp. When tasks synchronise on a phase nffmber n of a phaser p
each participant obserfies a synchronisation efient that occffrred at timestamp n
of the logical clock associated flith phaser p. Under this fiiefl, blocked tasks
wait for a speci੗c efient to be obserfied. Bfft since a flaiting task cannot arrifie
at other registered phasers, then flaiting tasks also impede the obserfiation of
efients. hffs, any efient a task aflaits precedes all efients that this task impedes.
A deadlock corresponds to any circfflar dependencies foffnd in sffch ordering of
efients.

Resource-defiendency states A resoffrce-dependency state D describes the
relationship betfleen tasks t ∈ T and resoffrces1 r ∈ R. Let ℘ be the pofler set
fffnction. Let W : T 7→ ℘(R) be a fffnction from tasks into sets of resoffrces.
he set W (t) contains the resoffrces that task t is blocked on. In the case of
Brenner, tasks can be blocked at most on one phaser at a time.

Tasks can impede the synchronisation of another task. Let I : R 7→ ℘(T ) be
a fffnction from barriers into sets of tasks. he set I(r) contains the tasks that
impede the synchronisation of any task ffsing resoffrce r, e.g., the set of tasks
that remain to arrifie at a barrier.

De॑nition 4.1.1 (Resoffrce-dependency). A resource-dependency D consists of
a pair (I,W ).

For effiample, consider the deadlocked state
(

M1, T1
)

de੗ned belofl, flhere
tasks t1, t2, and t3 flait on a phaser p at phase 2 for task t4, flhich flaits on a
phaser q at phase 3 for tasks t1, t2, and t3.

M1 =
{

p : {t1 : 2, t4 : 1}, q : {t1 : 1, t2 : 2, t3 : 1}
}

,

T1 = {t1 : await(p, 2); b1, t2 : await(p, 2); b2,
t3 : await(p, 2); b3, t4 : await(q, 3); b4, }

To constrffct a resoffrce-dependency (I1,W1) from
(

M1, T1
)

fle look into any
task aflaiting on a phaser to identify a resoffrce. Let resoffrce r1 represent
aflaiting on phaser p at phase 2 and resoffrce r2 represent aflaiting on phaser q
at phase 3. Hence,W1 =

{

t1 : {r1}, t2 : {r1}, t3 : {r1}, t4 : {r2}
}

. To constrffct
the strffctffre of impeding tasks fle inspect the phaser map. Resoffrce r1 (phaser p

1We ffse term ۠resoffrceۡ to be consistent flith the accompanying literatffre [58, 62]. A beter
sffiting term in offr conteffit floffld be ۠efient.ۡ
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at phase 2) is an impediment (for synchronisation) becaffse of task t4 and not
becaffse of t1 (flhose phase is at least 2). Similarly, resoffrce r2 (phase q at
phase 3) is an impediment becaffse of tasks t1, t2, and t3, since all are registered
flith a phase belofl 3. hffs,

I1 =
{

r1 : {t4}, r2 : {t1, t2, t3}
}

We pfft forflard this notion in the follofling de੗nition. Let γ be a bijection
that maps pairs of phaser names and natffrals (the phase) to resoffrces.

De॑nition 4.1.2 (Resoffrce-dependency constrffction). Let ψ be a function from
states into resource-dependencies.

ψ
(

M,T
) def
= (I,W )

I
def
=

{

r : {t |M(p)(t) < n}
∣

∣ T (t′) = await(p, n); _ and γ(p, n) = r
}

W
def
=

{

t : {r}
∣

∣ T (t) = await(p, n); _ and γ(p, n) = r}

By De੗nition 4.1.2 fle hafie that ψ
(

M1, T1
)

= (I1,W1).

4.2 Basic grafih theory
Follofling are some graph theory concepts based on [15].

De॑nition 4.2.1 (Graph, fierteffi, and edge.). A (directed) graph G = (V,E)
consists of a nonempty टnite set of vertices V (where r ∈ V ), and of a टnite set of
edges E (where e ∈ E). An edge e = (r, r′) directs from the head r to the tail r′.

For instance, the follofling graph has tflo fiertices, r1 and r2, and tflo edges,
edge (r1, r2) from r1 to r2 and edge (r2, r1) from r2 to r1.

G1 =
(

{r1, r2}, {(r1, r2), (r2, r1)}
)

For the graphical notation fle can constrffct the depiction in tflo steps. he
੗rst step is to depict fierteffies, by drafling a circle aroffnd each fierteffi. In the
case of G1, fle get the follofling illffstration.

r1 r2

he second step is to depict edges, by drafling an arrofl directed from the
circle representing the head to the circle representing the tail. For instance, an
edge (r1, r2) yields the neffit depiction.
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r1 r2

he graphical representation of G1 follofls.

r1 r2

De॑nition 4.2.2 (Sffbgraph relation). Graph (V,E) is a sffbgraph of graph
(V ′, E ′) if (i) V ⊂ V ′, (ii) E ⊂ E ′, and (iii) ∀(r, r′) ∈ E =⇒ r ∈ V ∧ r′ ∈ V .

For effiample, graph G1 is a sffbgraph of
(

{r1, r2, r3}, {(r1, r2), (r2, r1), (r1, r3)}
)

De॑nition 4.2.3 (Walk, cycle, and length.). A flalk w on graph (V,E) is an
alternating sequence r1r2 · · · rn−1rn of vertices ri ∈ V such that n > 1 and
(ri, ri+1) ∈ E for every i = 1, 2, . . . , n− 1. We may specify the टrst and last ver-
tices of a walk by saying a r-r′ walk, for the walk r · · · r′. A cycle is a walk r · · · r′
where r = r′. We may specify the टrst and last vertex of a cycle by saying a
r-cycle, for the cycle r · · · r. he length of a walk corresponds to the number of its
edges. We say that r ∈ w if, and only if, w = r1 · · · rn and there exists a ri such
that r = ri and 1 ≤ i ≤ n. We say that (r, r′) ∈ w if, and only if, w = r1 · · · rn
and there exists a ri and ri+1 such that r = ri, r′ = ri+1, and 1 ≤ i < n.

An effiample of a flalk on G1 is w1 = r1r2r1r2r1. Walk w1 is a cycle flith
length 4. We hafie that fierteffi r1 ∈ w1 and edge (r1, r2) ∈ w1. Note that, by
de੗nition, any cycle has a positifie length.

De॑nition 4.2.4 (In-degree and offt-degree). he in-degree n of a vertex r counts
the number of edges whose tail is r. he out-degree n of a vertex r counts the
number of edges whose head is r.

De॑nition 4.2.5 (Reachable). We say that vertex r′ is reachable from r, or vertex r
reaches r′, if there exists a r-r′ walk on graph G.

4.3 Grafih-based deadlock identi॑cation
Graph-based approaches perform cycle detection on the concffrrency dependen-
cies betfleen tasks and synchronisation efients. he Wait-For Graph [63] (WFG)
only models dependencies betfleen tasks. he State Graph [58] (SG) only models
dependencies betfleen synchronisation efients. Since the performance of cycle
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detection depends on the size of the graph, the ratio betfleen the nffmber of
synchronisation efients and the nffmber of tasks impacts the graph model choice.
We discffss three scenarios of applications that ffse barrier synchronisation.

Parallel applications designed follofling the Single Program Mffltiple Data
(SPMD) programmingmodel share tflo characteristics: there is a ੗ffied nffmber of
tasks and a ੗ffied nffmber of cyclic barriers throffghofft the flhole compfftation;
and the nffmber of tasks is a parameter of the program, yet the nffmber of
cyclic barriers is not. All of the benchmarks foffnd in Section 4.6 share these
characteristics. Scaling a parallel program ffsffally infiolfies adding more tasks,
flhilst maintaining the same nffmber of cyclic barriers; hence SG becomes
bene੗cial at a larger scale.

he appropriate graph model for fork/join applications is harder to predict.
For instance, in nested fork/join programming models, sffch as in X10, flhere
join barriers (੗nishes) are leffiically scoped, each task is registered flith all
join barriers that are enclosing its spafln location, e.g., an X10 task spaflned
flithin the scope of three ੗nishes is registered flith three join barriers. he case
complicates flhen join barriers are created dynamically in a recffrsifie fffnction
call. For instance, langffages flith ffftffres tffrn each fffnction call into a join
barrier, so it can happen that there are as many join barriers (resoffrces) as there
are tasks. In general, it is not possible to statically predict the ratio betfleen
resoffrces and tasks in fork/join (and ffftffre) applications.

Jafia and X10 inclffde mffltiple barrier abstractions to let applications choose
from di੖erent programming models. Recent proposals of abstractions that ffse
barrier synchronisation, in the conteffit of X10 programming, make the case
diਖ਼cfflt for a ੗ffied graph representation (be it the WFG or the SG). Atkins et al.
design and implement clocked variables [13] that mediate the access of shared
memory cells flith barrier synchronisation in the conteffit of X10. We benchmark
three parallel algorithms that ffse clocked fiariables in Section 4.6 and the afierage
edge coffnt of each is di੖erent: in SE the edge coffnt is similar betfleen WFG
and the SG; in FI the SG is on afierage tflice as smaller; and in FT the afierage
edge coffnt of the WFG is ten times as smaller. Additionally, in the conteffit of HJ,
Shirako et al. propose ffsing phasers for point-to-point synchronisation [94], so
fle effipect the WFG to be more bene੗cial, and for the implementation of parallel
redffction operations [95] that shoffld fafioffr the SG model.

he WFG and the SG We nofl rigoroffsly de੗ne the WFG and the SG. he
WFG is task-centric, so an edge (t1, t2) represents that task t1 flaits for task t2
to synchronise, meaning that there effiists a resoffrce r sffch that r ∈ W (t1)
and t2 ∈ I(r). Fig. 4.1a illffstrates the WFG for state (I1,W1). he SG is
resoffrce-centric, so an edge (r1, r2) represents that resoffrce r1 impedes any
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t1 t2 t3 t4

(a) A WFG representation.

r1 r2

(b) An SG representation.

Figffre 4.1: Tflo di੖erent graphs representing a deadlocked system.

task from synchronising fiia resoffrce r2, meaning that there effiists a task t sffch
that r1 ∈ W (t) and t ∈ I(r2). Fig. 4.1b depicts the SG for state (I1,W1).

Neffit, fle formalise the notions of constrffcting a WFG and an SG from a
resoffrce-dependency.

De॑nition 4.3.1 (WFG constrffction). Let flfg be a function from resource-de-
pendencies into WFG’s:

flfg (I,W )
def
=

(

T , {(t1, t2) | r ∈ W (t1) ∧ t2 ∈ I(r)}
)

Formffla flfg (I1,W1) yields the graph in Fig. 4.1a:
(

T , {(t1, t4), (t2, t4), (t3, t4), (t4, t1), (t4, t2), (t4, t3)}
)

De॑nition 4.3.2 (SG constrffction). Let sg be a function from resource-dependen-
cies into SG’s:

sg (I,W )
def
=

(

R, {(r1, r2) | t ∈ I(r1) ∧ r2 ∈ W (t)}
)

We apply De੗nition 4.3.2 and get the graph in Fig. 4.1b:

sg (I1,W1) =
(

R, {(r1, r2), (r2, r1)}
)

4.4 Results
Cycle detection in a graph has a compleffiity of O(e+ v) [101], for a graph flith e
edges and v fiertices. From [15], fle knofl that for any graph e ≤ v2, thffs fle can
simplify the compleffiity to O(v + v2). And becaffse in the WFG the fiertices are
tasks, then a deadlock detection algorithm that ffses the WFG has a compleffiity
of O(T + T 2) for a system flith T tasks.

Finding a cycle on the WFG is eqffifialent to ੗nding a cycle in the SG.
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De॑nition 4.4.1 (General Resoffrce Graph (GRG) constrffction). Let grg be a
function from resource-dependencies into GRG’s:

grg (I,W )
def
=

(

R∪ T , {(t, r) | r ∈ W (t)} ∪ {(r, t) | t ∈ I(r)}
)

Lemma 4.4.1. We have that t1t2 is a walk on flfg (D) if, and only if, there exists
a resource r such that t1rt2 is a walk on grg (D).

Proof. Let grg (D) = (V,E) and flfg (D) = (V ′, E ′). ( =⇒ ) Since t1t2 is a flalk
on flfg (D), then t1t2 ∈ E ′. By De੗nition 4.3.1 there effiists a fierteffi r sffch that
r ∈ W (t1) and t2 ∈ I(r). hffs, by De੗nition 4.4.1 (t1, r) ∈ E and (r, t2) ∈ E,
and therefore t1rt2 is a flalk on grg (D).

( ⇐= ) Since t1rt2 is a flalk on grg (D), then (t1, r) ∈ E and (r, t2) ∈ E.
From De੗nition 4.4.1 r ∈ W (t1) and t2 ∈ I(r). hffs, from De੗nition 4.3.1
t1t2 ∈ E ′ and therefore t1t2 is a flalk on flfg (D).

Lemma 4.4.2. We have that r1r2 is a walk on sg (D) if, and only if, there exists
a task t such that r1tr2 is a walk on grg (D).

Proof. he proof follofls an analogoffs reasoning to that of Lemma 4.4.1.

Lemma 4.4.3. Ifw = t1 · · · tn is a walk with a positive length onflfg (D) and 1 <
k < n, then there exists a walk w′ = r1 · · · rk on sg (D) such that for all i
where 1 ≤ i ≤ k we have tiriti+1 is a walk on grg (D).

Proof. We profie by indffction on k.

• Base case k = 2. hffs, w = t1t2t3 · · · tn and n ≥ 3. By hypothesis, t1t2 is
a flalk on flfg (D), so Lemma 4.4.1 yields that there effiists a resoffrce r1
sffch that t1r1t2 is a flalk on grg (D). Similarly, from the hypothesis and
ffsing Lemma 4.4.1 t2t3 is a flalk on flfg (D), fle get that there effiists
a resoffrce r2 sffch that t2r2t3 is a flalk on grg (D). Finally, fle hafie
that r1t2r2 is a flalk on grg (D), hence by Lemma 4.4.2, r1r2 is a flalk
on sg (D).

• Indffctifie case k = j + 1. Hence, w = t1 · · · tjtj+1 · · · tn, and n > j ≥ 2.
By the indffction hypothesis fle hafie that there effiists a flalk r1 · · · rj on
sg (D) sffch that (i) for all i flhere 1 ≤ i ≤ j fle hafie tiriti+1 is a flalk on
grg (D). From (i) fle hafie that (ii) tjrjtj+1 is a flalk on grg (D).
By hypothesis, fle also hafie that tj+1tj+2 is a flalk on flfg (D), thffs from
Lemma 4.4.1, there effiists a resoffrce rj+1 sffch that (iii) tj+1rj+1tj+2 is a
flalk on grg (D).
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From (ii) tjrjtj+1 and (iii) tj+1rj+1tj+2 flalks on grg (D), fle get that
rjtjrj+1 is a flalk on grg (D). Applying Lemma 4.4.2 to the later, yields
that rjrj+1 is a flalk on sg (D). hffs, r1 · · · rjrj+1 is a flalk on sg (D)
and fle are let flith profiing for all i flhere 1 ≤ i ≤ j + 1 fle hafie
tiriti+1 is a flalk on grg (D). Bfft, fle already knofl that (i) for all i
flhere 1 ≤ i ≤ j fle hafie tiriti+1 is a flalk on grg (D), so fle jffst need
to profie that tj+1rj+1tj+2 is a flalk on grg (D), flhich fle hafie already
shofln flith (iii).

heorem 4.4.1. here exists a cycle w on graph flfg (D) if, and only if, there
exists a cycle w′ on graph sg (D).

Proof. ( =⇒ ) he proof follofls by indffction on the length of w.

• Case length is 1, flhere w = tt for some task t. By hypothesis tt is a flalk
on flfg (D). From Lemma 4.4.1 there effiists a resoffrce r sffch that trt is a
flalk on grg (D). Since trt is a flalk on grg (D), then fle knofl that (t, r)
and (r, t) are edges on grg (D), and therefore rtr is also a flalk on grg (D).
hffs, from Lemma 4.4.2 and rtr is a flalk, fle get that rr is a flalk on sg (D)
and a cycle.

• Case length is greater than 1, flhere w = t1 · · · tntn+1t1 and n ≥ 2.
Applying Lemma 4.4.3 to t1 · · · tntn+1, fle get that r1 · · · rn is a flalk on
sg (D) sffch that (i) for all i flhere 1 ≤ i ≤ n fle hafie tiriti+1 is a flalk
on grg (D). Since t1 · · · tntn+1 is a flalk on flfg (D), thffs from (i) fle get
that (ii) t1r1t2 and (iii) tnrntn+1 are flalks on grg (D). From t1 · · · tntn+1t1
is a flalk on flfg (D), fle get that tn+1t1 is a flalk on flfg (D) and from
Lemma 4.4.1, there effiists a resoffrce r sffch that (ifi) tn+1rt1 is a flalk
on grg (D). From (iii) tnrntn+1 and (ifi) tn+1rt1, fle get that rntn+1r; thffs
from Lemma 4.4.2 fle get that (fi) rnr is a flalk on sg (D).
From (ifi) tn+1rt1 and (ii) t1r1t2, fle get that rt1r1 is a flalk on grg (D).
Applying Lemma 4.4.2 to the later, yields that (fii) rr1 is a flalk on sg (D).
Finally, since (fii) rr1, (fi) rnr, and r1 · · · rn are flalks on sg (D), fle get
that rr1 · · · rnr is a flalk on sg (D) and a cycle.

he proof for ( ⇐= ) follofls an analogoffs reasoning.

he tflo crffcial properties of offr deadlock detection algorithm are: soffnd-
ness (heorem 4.4.2), flhere ੗nding a cycle in the SG corresponds to a deadlocked
state; and completeness (heorem 4.4.3), flhere the SG of any deadlocked state
contains a cycle.
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We distingffish betfleen a totally deadlocked state (De੗nition 4.4.2) and a
deadlocked state (De੗nition 4.4.3), formalised in the follofling tflo de੗nitions.

De॑nition 4.4.2 (Totally deadlocked state). A state
(

M,T
)

is totally deadlocked
if, and only if, T 6= ∅, and for all t ∈ domT we have that T (t) = await(p, n); b
and there is a task t′ ∈ domT whereM(p)(t′) < n.

Any totally deadlocked state is also a deadlocked state.

De॑nition 4.4.3 (Deadlocked state). State
(

M,T ′ ⊎ T
)

is deadlocked on task
map T if, and only if, state

(

M,T
)

is totally deadlocked.

he relationship betfleen a blocked task in a state and an edge in a WFG
graph is fffndamental for the resfflts fle establish in this section.

Lemma 4.4.4. Let ψ
(

M,T
)

= (I,W ), flfg (D) = (V,E), γ-1(r) = (p, n). We
have that (t1, t2) ∈ E if, and only if, T (t1) = await(p, n); b andM(p)(t2) < n.

Proof. ( =⇒ ) We hafie that (t1, t2) ∈ E, thffs by De੗nition 4.3.1 there is a
resoffrce r sffch that r ∈ W (t1) and t2 ∈ I(r). From De੗nition 4.1.2 and
r ∈ W (t1), fle get that T (t1) = await(p, n); b and γ(p, n) = r. From De੗ni-
tion 4.1.2 and t2 ∈ I(r), fle obtain thatM(p)(t2) < n.

( ⇐= ) We hafie that T (t1) = await(p, n); b and M(p)(t2) < n. From
De੗nition 4.1.2 and T (t1) = await(p, n); b, fle get that is a resoffrce r sffch that
γ(p, n) = r and r ∈ W (t1). From De੗nition 4.1.2 and M(p)(t2) < n, fle get
that t1 ∈ I(r). We apply De੗nition 4.3.1 to t1 ∈ I(r) and r ∈ W (t2) and get
that (t1, t2) ∈ E.

heorem 4.4.2 (Soffndness). If w is closed on flfg (ψ
(

M,T
)

) with a positive
length, then there exists task map T ′ and T ′′ such that T = T ′ ⊎ T ′′, domT ′ =
{t | ∀t ∈ w}, state

(

M,T
)

is locally deadlocked on T ′.

Proof. Let flfg (ψ
(

M,T
)

) = (V,E) and

X
def
= {t1 : t2 | ∀(t1, t2) ∈ w} (4.1)

First, fle shofl that domX ⊆ domT . Let t1 ∈ domX , fle need to shofl
that t1 ∈ domT . If X(t1) = t2, then by Eq. (4.1) (t1, t2) ∈ w and therefore
(t1, t2) ∈ E. hffs, by Lemma 4.4.4 T (t1) = await(p, n); b.

Nofl that fle shofled that domX ⊆ domT , then let T = T1 ⊎ T2 sffch that
domT1 = domX . We hafie that T1 6= ∅, since the length of w is | domX| > 0.
Second, fle profie that

(

M,T1
)

is globally deadlocked. By De੗nition 4.4.2 for
any task t1 ∈ domT1, fle need to shofl that (1) T1(t1) = await(p, n); b and that
(2) there effiists a task t2 sffch thatM(p)(t2) < n.
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1. Let t1 ∈ domT1, then t1 ∈ domX and therefore there is a task t2 sffch
that (t1, t2) ∈ w and therefore (t1, t2) ∈ E. Applying Lemma 4.4.4
to (t1, t2) ∈ E, yields that T (t1) = await(p, n); b and M(p)(t2) < n.
Since t1 ∈ domT1, then T1(t1) = await(p, n); b.

2. We are let flith shofling that t2 ∈ domT1 (since fle already knofl that
M(p)(t2) < n). By hypothesis w is a cycle, thffs there effiists a task t3
sffch that (t2, t3) ∈ w. We apply Eq. (4.1) to (t2, t3) ∈ w and get that t2 ∈
domX . herefore, t2 ∈ domT1.

Finally, applying De੗nition 4.4.3 to
(

M,T1
)

is globally deadlocked, yields
that

(

M,T1 ⊎ T2
)

is locally deadlocked on T1.

Comfileteness
he intffition behind the proof of completeness can be difiided into tflo parts.
First, by shofling that any globally deadlocked state has a cycle. Second, by
establishing the sffbgraph relation betfleen a globally deadlocked state and a
locally deadlocked state.

It is easy to see that any globally deadlocked task t has a positifie offt-degree.

Lemma 4.4.5. Let (V,E) = flfg (ψ (S)). If S is globally deadlocked and t ∈ V ,
then t has a positive out-degree.

Proof. Let S =
(

M,T
)

. By De੗nition 4.4.2 there effiists a task t sffch that T (t) =
await(p, n); b and there is a task t′ ∈ domT flhereM(p)(t′) < n.

From Lemma 4.4.4, fle get that (t, t′) ∈ E and t has a positifie offt-degree.

A graph in flhich all fierteffies hafie a positifie offt-degree is cyclic.

Lemma 4.4.6. LetG = flfg (ψ (S)). If S is globally deadlocked, then there exists
a cycle w on G.

Proof. Let G = (V,E). Applying Lemma 4.4.5 to the hypothesis yields that
efiery fierteffi has a positifie offt-degree. Hence, by the contrapositifie of [15,
Proposition 1.4.2], (V,E) has a cycle w.

Neffit, is an affffiiliary lemma to establish the sffbgraph relationship betfleen
WFG’s.

Lemma 4.4.7. For all t /∈ domT , we have that flfg (ψ
(

M,T
)

) is a subgraph of
graph flfg (ψ

(

M,T ⊎ {t : b}
)

).
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Proof. Let flfg (ψ
(

M,T
)

) = (V,E) and flfg (ψ
(

M,T ⊎ {t : b}
)

) = (V ′, E ′).
Graph (V,E) is a sffbgraph of (V ′, E ′) if 1) V ⊆ V ′, 2) E ⊆ E ′, 3) ∀(t, t′) ∈
E =⇒ t ∈ V ∧ t′ ∈ V .

1. We hafie that V ⊆ V ′ holds, since V = V ′ = T .

2. If (t1, t2) ∈ E, then (t1, t2) ∈ E ′. By Lemma 4.4.4 and (t1, t2) ∈ E, fle
hafie that T (t2) = await(p, n); b′ and M(p)(t1) < n. We hafie that t /∈
domT , thffs T ⊎ {t : b}(t2) = await(b′, n); b. From T ⊎ {t : b}(t2) =
await(p, n); b′, M(p)(t1) < n, flfg (ψ

(

M,T ⊎ {t : b}
)

) = (V ′, E ′), and
Lemma 4.4.4, fle get that (t1, t2) ∈ E ′.

3. We shofl that ∀(t, t′) ∈ E =⇒ t ∈ V ∧ t′ ∈ V . By de੗nition t ∈ T
and t′ ∈ T .

Lemma 4.4.8. Graph flfg (ψ
(

M,T
)

) is a subgraph of flfg (ψ
(

M,T ⊎ T ′
)

).

Proof. he proof follofls by indffction on the strffctffre of T ′. Let

flfg (ψ
(

M,T
)

) = (V,E) and flfg (ψ
(

M,T ⊎ T ′
)

) = (V ′, E ′)

We inspect T ′.

• Case T ′ is ∅. To shofl that (V,E) is sffbgraph of itself, fle jffst need to shofl
that ∀(t, t′) ∈ E =⇒ t ∈ V ∧ t′ ∈ V , flhich holds by De੗nition 4.3.1,
since V = V ′ = T .

• Case T ′ is T ′′⊎{t : b}. By the indffction hypothesis, graph flfg (ψ
(

M,T
)

)
is a sffbgraph of flfg (ψ

(

M,T ⊎ T ′′
)

). By Lemma 4.4.7 this case holds.
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Finally, fle can establish the completeness theorem.

heorem 4.4.3 (Completeness). If state S is locally deadlocked on T and t ∈
domT , then there exists a t′-cycle on flfg (ψ (S)) such that t′ is reachable from t.

Proof. By De੗nition 4.4.3 fle hafie that S =
(

M,T ⊎ T ′
)

and that
(

M,T
)

is
globally deadlocked. Let (V1, E1) = flfg (ψ (S)). Let (V2, E2) be the sffbgraph
of (V1, E1) of all fiertices reachable from t. It is easy to see that V2 is nonempty.
From De੗nition 4.4.2 there is a task t′′ ∈ domT sffch that M(p)(t′′) < n.
Applying Lemma 4.4.4 to T (t) = await(p, n); b and M(p)(t′′) < n, fle get
that (t′′, t), so t′′ ∈ V2 and (t′′, t) ∈ E2.

We hafie that efiery V2 ⊆ domT . Let T2 = {T (t) | t ∈ domV2}. We
nofl shofl that T2 is globally deadlocked. For that it is enoffgh to pick t1 ∈ V2
and shofl that (i) T2(t1) = await(p, n); b and there effiists a task t2 sffch that
(ii) t2 ∈ domT2 and (iii)M(p)(t2) < n. Since t1 ∈ domT and

(

M,T
)

is globally
deadlocked, then by De੗nition 4.4.2 T (t1) = await(p, n); b and there effiists a
task t2 sffch that t2 ∈ domT and (iii)M(p)(t2) < n. Gifien that T (t1) = T2(t1),
then (ii)T2(t1) = await(p, n); b. We still need to shofl (i). Applying Lemma 4.4.4
to T (t1) = await(p, n); b, t2 ∈ domT , and (iii) yields (t1, t2) ∈ E1. hffs, t1
reaches t2; and therefore, t2 ∈ V2 and (t1, t2) ∈ E2. Hence,(i) t2 ∈ domT2.

From Lemma 4.4.6 and globally deadlocked state
(

M,T2
)

, fle get that there
effiists a t′-cycle on graph flfg (ψ

(

M,T2
)

). By de੗nition, fle also knofl that any
t′ is reachable from t. We apply Lemma 4.4.8 and obtain that flfg (ψ

(

M,T2
)

) is
a sffbgraph of flfg (ψ

(

M,T ′ ⊎ T
)

), hence w on flfg (ψ
(

M,T ′ ⊎ T
)

).

4.5 Armus: a tool for runtime deadlock
veri॑cation

Armffs is a dynamic fieri੗cation tool of barrier deadlocks that implements the
theory in Section 4.3. Offr tool fieri੗es more barrier synchronisation paterns
than cffrrent state-of-the-art and improfies the scalability of graph-based fieri੗ca-
tion. We introdffce Armffs-X10 and JArmffs as tflo applications of Armffs. hese
are the टrst barrier deadlock veriटcation tools for X10 and Jafia. he applications
featffre distribffted deadlock detection, and local deadlock afioidance.

he main limitations of state-of-the-art rffntime fieri੗cation of barrier dead-
locks are: (i) a representation of concffrrency constraints that assffmes static
barrier membership, and (ii) a commitment to the WFG model, flhich is opti-
mised for concffrrency constraints flith more barriers than tasks (a rare sitffation
for classical parallel programs). Naifie effitensions to resolfie (i) face the problem
of maintaining the membership statffs of barriers consistently and eਖ਼ciently;
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this issffe is compoffnded in the distribffted seting, flhich is a key design point
of deadlock fieri੗cation for langffages like X10/HJ. Issffe (ii) is related to the
dynamic natffre of sffch barrier applications, flhere the nffmber of tasks and
barrier synchronisations may not be knofln ffntil rffn-time and may fiary dffr-
ing effiecfftion. Commiting to a particfflar graph model can thffs hinder the
scalability of dynamic fieri੗cation. In the general case fle cannot determine
flhich model is most sffitable statically; moreofier, this property may change as
effiecfftion proceeds.

To address (i), Armffs ffses offr nofiel representation of concffrrency depen-
dencies, based on efients in the sense of Lamport’s logical clocks (see Section 4.1).
he analysis of dynamic membership is simpli੗ed becaffse it afioids tracking the
arrifial statffs, that in a distribffted system is a global state (i.e., scatered among
many sites), thffs a challenging procedffre to maintain.

Armffs addresses (ii) flith a nefl techniqffe that afftomatically selects betfleen
tflo graph models according to the monitored concffrrency constraints. he
standard graph model ffsed in graph analysis, the WFG, comes from distribffted
databases [62], a seting flith a ੗ffied nffmber of tasks and dynamic resoffrce
creation. he ffnderlying assffmptions of the WFG no longer hold for langffages
flith dynamic tasks and dynamic barrier creation (੗rst-class barriers), sffch as
X10 and Jafia. For these applications, Armffs proposes a techniqffe that selects
either theWFG or the SG depending on the ratio betfleen tasks and barriers. he
di੖erence on the size of the graph can be dramatic. For instance, in benchmark
PS, the afierage edge coffnt decreases from 781 edges to 6 edges (see Section 4.6).
In offr efialffation, the afftomatic model selection offtperforms the ffsffal approach
of a ੗ffied graph representation.

Architectural overview he architectffre of Armffs is difiided into tflo lay-
ers: the application layer that receifies a trace of operations from the rffnning
program, and the veriटcation layer that receifies a set of concffrrency constraints
from the application layer. he application layer is speci੗c to each langffage
fle check. he fieri੗cation layer is offr library that checks for deadlocks in a
resoffrce-dependency state D.

he fieri੗cation algorithm can be ffsed to avoid and to detect deadlocks. In the
former, Armffs throfls an effiception before deadlocks happen. he programmer
can treat the efficeptional sitffation to defielop applications resilient to deadlocks.
In the later, fieri੗cation is performed periodically and can only report already
effiisting deadlocks, flith the bene੗t of a lofler performance ofierhead.

Veri॑cation library Armffs’ deadlock fieri੗cation library implements the
theory described in Section 4.3. hemain featffres of the library are (i) a deadlock
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detection algorithm that is fafflt-tolerant and distribffted; and (ii) a scalable
deadlock fieri੗cation techniqffe (i.e., the adaptifie graph representation).

he inpfft of the fieri੗cation library is a trace of the rffnning program. Essen-
tially, flhenefier a task of the program blocks, the application layer infiokes the
fieri੗cation library by prodffcing its blocked statffs: a set of flaitingW (t) and
set of impeding resoffrces {r | ∀r : t ∈ I(r)}. he library is difiided into tflo
serfiices: the edge buञer maintains the blocked statffs of all tasks, implementing
the resoffrce-dependency state D; the deadlock checker analyses the edge bff੖er
for any deadlock, ffsing De੗nition 4.3.1 and De੗nition 4.3.2. Maintaining the
blocked statffs is more freqffent than checking for deadlocks, so the edge bff੖er
rearranges D per task to optimise ffpdates. he deadlock checker internally
transforms the dependencies into a graph and then performs cycle detection
flith JGraphT 2.

he fieri੗cation library profiides tflo graph selection modes: ੗ffied or aff-
tomatic. In the former, the fieri੗cation alflays ffses the same graph model.
State-of-the-art tools are ੗ffied to the WFG model. In the afftomatic mode, the
fieri੗cation library selects the graph model according to the ratio betfleen
blocked tasks and registered phasers. his means that the graph model ffsed for
cycle detection can change ofier time.

We brie੘y describe the implementation of each mode. In the टxed to WFG
mode (see De੗nition 4.3.1), the algorithm iterates ofier a copy of the blocked
tasks tflice. First, ffses the impeding resoffrce of each blocked task to constrffct
map I . Second, generates a WFG-edge from each flaiting resoffrce r to each
task in I(r). In the टxed to SG mode (see De੗nition 4.3.2), it iterates ofier each
blocked task (afiailable in the edge bff੖er) and generates an SG-edge from each
impeding resoffrce to each blocked resoffrce. he adaptive mode tries to bffild
an SG ੗rst; if dffring the constrffction of the SG it reaches a size threshold, then
it bffilds a WFG instead. he size threshold is reached if at any time there are
more SG-edges than tflice the nffmber of tasks processed thffs far. he fialffe of
the threshold flas obtained based on effiperiments on the afiailable benchmarks.

Distributed deadlock detection Armffs adapts the traditional one-phase
deadlock detection [65] to barrier synchronisation and introdffces sffpport for
fafflt tolerance. We brie੘y describe offr adapted one-phase deadlock detection
algorithm. A distribffted program is composed of fiarioffs sites that commffnicate
among each other, each rffns a copy of Armffs. Efiery Armffs instance of a
distribffted program has access to a remote data store serfier Redis,3 called the
global edge buञer. Tasks ffpdate their blocked statffs, as ffsffal, bfft target an

2http://jgrapht.org/
3http://redis.io/

http://jgrapht.org/
http://redis.io/
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edge bff੖er local to their site. While the distribffted program rffns, each site
periodically pffblishes a snapshot of its local edge bff੖er to the global edge bff੖er.
he deadlock checker, that rffns from each Armffs instance, reqffires a global
fiiefl of the system, so it operates on the blocked statffs of the global edge bff੖er.

he di੖erences flith reference to the original algorithm in [65] are:

• Armffs ffses logical clocks to represent barrier synchronisations (see Sec-
tion 4.1) and maintain global data consistency; the original algorithm
reqffires fiector clocks to represent lock synchronisations.

• For fafflt-tolerance concerns, the global statffs of Armffs is maintained in a
dedicated serfier, and all sites check for deadlocks. In contrast, in [65] there
is a designated control site that collects the global statffs and performs
graph analysis. Offr benchmarks, in Section 4.6, shofl that the fieri੗cation
ofierhead has a negligible impact for 64 tasks.

he fieri੗cation algorithm is fafflt-tolerant, since it continffes effiecffting
despite (i) site-failffres and (ii) data store-failffres. Sffch featffre is of special
interest for checking fafflt-tolerant applications, like Resilient X10 [35]. he
algorithm resists (i) becaffse the deadlock checker effiecfftes at each site and
does not depend on the cooperation of other sites to fffnction. he algorithm
resists (ii) becaffse Redis itself is fafflt-tolerant.

Verifying X10 and Java We present tflo fieri੗cation applications to check for
barrier deadlocks: JArmffs for Jafia programs and Armffs-X10 for X10 programs.
hese tools flork by ۠fleafiingۡ the fieri੗cation into programs. he inpfft is a
compiled program to be fieri੗ed (Jafia bytecode); the offtpfft is a fieri੗ed program
(Jafia bytecode) that inclffdes dynamic checks for deadlock fieri੗cation. JArmffs
and Armffs-X10 layers implement the resoffrce-dependency constrffction from
Section 4.1.

JArmffs and Armffs-X10 share the same ffsage and design. he implemen-
tation of each of these fieri੗cation tools is difiided into tflo components: the
resoffrce mapper and the task obserfier. he resoffrce mapper confierts syn-
chronisation efients to resoffrces. he task obserfier intercepts blocking calls
to inform Armffs that the cffrrent task is blocked flith a set of resoffrce edges.
he task obserfier is programmed flith Aspect-Oriented programming, throffgh
AspectJ [61].

Armffs-X10 can fierify any program flriten in X10 that ffses: clocks, ੗nishes,
and the SPMDBarrier; the tool can fierify distribffted applications. Unlike in Jafia,
afftomatic instrffmentation is possible. he X10 rffntime profiides information
abofft the registered clocks and registered ੗nishes of a gifien task, flhich is
reqffired to constrffct the concffrrency dependencies of each task. X10 can be
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compiled to Jafia bytecode, called Managed X10, and to machine code, called
Natifie X10. Cffrrently, offr application only sffpports Managed X10.

JArmffs sffpports CountDownLatch, CyclicBarrier, Phaser, and Reen-
trantLock class operations. In Jafia, the relationship betfleen the participants
of barrier synchronisation and tasks is implicit. For effiample, flhen ffsing a
CyclicBarrier the programmer declares the nffmber of participants and then
shares the object flith those many tasks. It is not speci੗ed flhich tasks par-
ticipate in the synchronisation. JArmffs has no flay of reconstrffcting this
information for the CountDownLatch, CyclicBarrier, and Phaser classes, so
the programmer mffst annotate its code to sffpply the barriers the each task
is registered flith. Each task, ffpon starting ffp, mffst infioke JArmus.regis-
ter(b) per barrier b it ffses (similarly to the X10 clocked). Instances of the
class ReentrantLock do not reqffire annotations.

4.6 Evaluation
he aim of the efialffation process is to 1) ascertain flhether the performance
impact of Armffs scales flith the increase in the nffmber of tasks, 2) efialffate
the performance ofierhead of distribffted deadlock detection, and 3) compare
effiecfftion impact the SG flith the WFG and flith adaptifie approach.

he hardflare ffsed to rffn the benchmarks has foffr AMD Opteron 6376
processors, each flith 16 cores, making a total of 64 cores. here are 64GB of
afiailable RAM. he operating system ffsed is Ubffntff 13.10. For the langffages,
fle ffsed Jafia bffild 1.8.0_05-b13, and X10 fiersion 2.4.3.

We follofl the start-up performance methodology detailed in [43]. We take
31 samples of the effiecfftion time of each benchmark and discard the ੗rst sample.
Neffit, fle compffte the mean of the 30 samples flith a con੗dence interfial of 95%,
ffsing the standard normal z-statistic.

Imfiact of non-distributed veri॑cation
he tflo goals of this efialffation are: to measffre the impact of fieri੗cation on
standard Jafia benchmarks, and ii) to measffre flhether the fieri੗cation scales
flith the increase of the nffmber of tasks. We rffn the fieri੗cation algorithm
against a set of standard parallel benchmarks afiailable for Jafia. JArmffs is rffn
in the detection mode (efiery 100 milliseconds) and in the afioidance mode, both
ffse the adaptifie graph model. Note that the Jafia applications fle checked are
not distribffted.

We select benchmarks from the NASA Parallel Benchmark (NPB) sffite [42]
and the Jafia Grande Forffm (JGF) [99] benchmark sffite. he NPB ranges from
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Table 4.1: Relatifie effiecfftion ofierhead in detection mode.

hreads 2 4 8 16 32 64

BT 3% -4% 0% -5% 0% 7%
CG 7% 0% 7% 15% 12% 9%
FT 1% 0% -1% -7% 0% 0%
MG -5% 0% 0% 0% 11% 13%
RT -4% 0% 0% 0% 0% 8%
SP -1% 4% 4% 2% 0%

kernels to pseffdo-applications, taken primarily from representatifie Compff-
tational Flffid Dynamics (CFD) parallel applications. he JGF is difiided into
three groffps of applications: micro-benchmarks, compfftational kernels, and
pseffdo-applications. All benchmarks proceed iteratifiely, and ffse a ੗ffied nffmber
of cyclic barriers to synchronise stepflise. Fffrthermore, all benchmarks check
the fialidity of the prodffced offtpfft.

For the sake of reprodffcibility fle list the parameters of the benchmarks rffn
as speci੗ed in [42, 99]: BT ffses size A, CG ffses size C, the Jafia fiersion of FT
ffses size B, MG ffses size C, RT ffses B, and SP ffses size W. he inpfft set chosen
for benchmark SP only allofls it to scale ffp to 31 tasks. For simplicity, in the
efialffation fle consider that this benchmark scales ffp to 32 tasks.

Fig. 4.2 sffmmarises the comparatifie stffdy of the effiecfftion time for each
benchmark. Tables 4.1 and 4.2 list the relatifie rffntime ofierhead in detection and
in afioidance. he resfflts for the NPB and JGF benchmark sffites are depicted in
Figs. 4.2a to 4.2f. In detection mode, since there is a dedicated task to perform
fieri੗cation, fle obserfie that the ofierhead does not increase linearly as fle add
more tasks. he relatifie rffntime ofierhead sits belofl 15% and in most cases is
negligible. In afioidance mode, each task checks the graph flhenefier it blocks,
so as fle add more tasks, the effiecfftion ofierhead increases. Still, in the florst
case, benchmark CG, the ofierhead is 50%, flhich is acceptable for application
testing pffrposes.

Imfiact of distributed veri॑cation
he goal of the efialffation is to measffre the rffntime ofierhead of deadlock
detection in afiailable X10 distribffted applications. Armffs-X10 is con੗gffred
flith the distribffted deadlock detection mode, rffnning the fieri੗cation algorithm
efiery 200 milliseconds. he chosen benchmarks are afiailable fiia the X10 soffrce
code repository 4. Deadlock afioidance is ffnafiailable in the distribffted seting.

4https://svn.code.sf.net/p/x10/code/trunk/

https://svn.code.sf.net/p/x10/code/trunk/
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Table 4.2: Relatifie effiecfftion ofierhead in afioidance mode.

hreads 2 4 8 16 32 64

BT 5% 0% 0% 0% 11% 8%
CG 0% 9% 20% 34% 46% 50%
FT 1% 4% 0% 0% 7% 25%
MG 8% 7% 21% 27% 27% 30%
RT -5% 0% 0% 0% 5% 16%
SP 2% 9% 8% 22% 28%
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Figffre 4.2: Comparatifie effiecfftion time for non-distribffted benchmarks (lofler
means faster).

Benchmarks FT and STREAM come from the HPC Challenge benchmark [75],
SSAC2 is an HPCS Graph Analysis Benchmark [14], JACOBI and KMEANS are
afiailable from the X10’s flebsite. For reprodffcibility pffrposes the non-defafflt
parameters fle select are: FT magnitffde 11; KMEANS 25k points, 3k clffsters to
੗nd, and 5 iterations; JACOBI matriffi of size 40, maffiimffm iterations are 40;
SSCA2 215 fiertices, a flith a probability of 7%, and no permfftations; STREAM
flith size of 524k.

Fig. 4.3 depicts the effiecfftion time of each benchmark flith and flithofft
fieri੗cation. here is no statistical efiidence of an effiecfftion ofierhead flith
rffnning deadlock detection mode.
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detection.

Imfiact of the grafih model choice
he goal of this efialffation is to measffre the impact of the graph model in
the fieri੗cation procedffre. To this end fle analyse the florst case behafiioffr:
programs that generate graphs flith thoffsands of edges. In particfflar, fle
efialffate offr adaptifie model selection against the ffsffal ੗ffied model selection
(WFG and SG).

We select a sffite of programs that spafln tasks and create barriers as needed,
depending on the size of the program, ffnlike the classical parallel applications fle
benchmark in Sections 4.6 and 4.6 flhere the nffmber of tasks shoffld correspond
to the nffmber of afiailable processing ffnits (cores). he sffite of programs
effiercises di੖erent florst case scenarios for the fieri੗cation algorithm: many
tasks versus many barriers.

he chosen benchmarks are edffcatifie programs taken from the coffrse on
Principles and Practice of Parallel Programming, taffght by Martha A. Kim and
Vijay A. Sarasflat, Fall 2013 [109]. BFS performs a parallel breadth-੗rst search
on a randomly generated graph. here is a task per node being fiisited and a
barrier per depth-lefiel of the graph. FI compfftes a Fibonacci nffmber iteratifiely
flith a shared array of clocked variables (each pairs a barrier flith a nffmber).
Each element of the array holds the offtcome of a Fibonacci nffmber. When the
program starts it laffnches n tasks. he i-th task stores its Fibonacci nffmber
in the i-th clocked fiariable and synchronises flith task i + 1 and task i + 2
that read the prodffced fialffe. FR compfftes a Fibonacci nffmber recffrsifiely.
Recffrsifie calls are effiecffted in parallel and a clocked fiariable synchronises the
caller flith the callee. SE implements the Siefie of Eratosthenes ffsing clocked
fiariables. here is a task per prime nffmber and one clocked fiariable per task.
PS compfftes the pre੗ffi sffmۘor cffmfflatifie sffmۘfor a gifien nffmber of tasks.
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Table 4.3: Edge coffnt and fieri੗cation ofierhead per benchmark per graph mode.

SE FI FR BFS PS

Auto
Edges 23 1074 140 5 7
Afioidance 75% 94% 117% 45% 82%
Detection 25% 24% 25% 9% 18%

SG
Edges 51 2137 1643 7 6
Afioidance 75% 112% 300% 45% 82%
Detection 25% 24% 25% 9% 18%

WFG
Edges 23 1281 94 579 781
Afioidance 75% 94% 117% 200% 600%
Detection 25% 29% 25% 18% 27%

Gifien an inpfft array flith as many elements as there are tasks, the offtcome of
task i is the partial sffm of the array ffp to the i-th element. All tasks proceed
stepflise and are synchronised by a global barrier.

Figs. 4.4 and 4.5 depict the effiecfftion time of each benchmark fieri੗ed by
Armffs-X10 in afioidance and detection modes (respectifiely) flhere fle fiary
the selection method of the graph model. Table 4.3 lists the afierage nffmber
of edges ffsed in fieri੗cation and the relatifie effiecfftion time ofierhead of each
benchmark.

We can classify the benchmarks in three groffps according to the ratio
betfleen the nffmber of tasks and the nffmber of resoffrces: i) similar coffnt
of tasks and resoffrces, benchmark SE; ii) mffch more resoffrces than tasks,
benchmarks FI and FT; and iii) mffch more tasks than resoffrces, benchmarks
BFS and PS. When i) there are as many resoffrces as there are tasks, then all
graph models perform eqffally flell. When ii) there are more resoffrces than
tasks, and iii) fiice-fiersa, the choice of the graph model is of major importance
for a fieri੗cation flith lofl impact on the effiecfftion time.

Efien in the florst case behafiioffr for analysis the largest fieri੗cation ofier-
head flith deadlock detection is 25%; for deadlock afioidance the largest is 117%.
For both cases fle consider adaptifie graph selection. Ofierall, the approach of
the adaptifie graph model offtperforms the ੗ffied graph model approach. he
adaptifie approach can safie ffp to 9% of effiecfftion ofierhead in deadlock detection
versus a ੗ffied model. he graph model choice sefierely ampli੗es the fieri੗cation
ofierhead in deadlock afioidance. he case in point is benchmark PS, flhere the
fieri੗cation ofierhead ranges from 600% (੗ffied) dofln to 82% (adaptifie).



Chapter Fifie

Deadlock prevention
A flay to prefient deadlocks is by restricting the effipressifieness of synchroni-
sation mechanisms. We propose a minimal langffage, called SBrenner, that
incorporates three techniqffes to achiefie deadlock freedom.

Nested fork/join. his programming model consists of tflo primitifies: the
async forks tasks, and the टnish joins the effiecfftion of tasks. A ੗nish
accepts a program as a parameter; the instrffctions are effiecffted seqffen-
tially. Ater effiecffting the instrffctions in a ੗nish block, the task flaits in
a join barrier for the termination of any task spaflned flithin the scope of
the ੗nish block. his restriction prefients deadlocks that arise from the
interaction betfleen mffltiple join barriers.

Await on all registered fihasers. Task can only aflait on phasers they are
registered flith. Additionally, a task mffst aflait on efiery phaser it is
registered flith at once. his restriction prefients deadlocks that arise from
the interaction betfleen mffltiple cyclic barriers.

Cyclic barrier visibility. Instrffctions flithin the body of a ੗nish cannot ac-
cess phaser names declared offtside (before) of that ੗nish. his restriction
prefients deadlocks that arise from the interaction betfleen join-barriers
and phasers.

he neffit section introdffces the design of SBrenner: fle shofl deadlocked
programs flriten in Brenner that motifiate effitensions to the langffage con-
strffcts. Sections 5.2 and 5.3 introdffce the syntaffi and the semantics of SBrenner.
Section 5.4 presents a mechanism, called a type system, to specify (and enforce)
a discipline on phaser ffsage, inspired by the X10 and HJ langffages.

5.1 Language restrictions
Fork/join deadlocks. Brenner makes it trifiial to flrite a fork/join program
that deadlocks. In the neffit listing, task t1 laffnches task t2 and then flaits for

47
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it to ੗nish. Task t2 decides to flait for task t1 to conclffde and therefore both
tasks reach a deadly embrace.

Listing 5.1: A fork/join deadlock.

1 // t1 -- parent task
2 p1 = newPhaser(); // join barrier for t1
3 t2 = newTid();
4 p2 = newPhaser(); // join barrier for t2
5 reg(p2, t2);
6 fork(t2, // child task
7 await(p1, 1); // await t1 to finish
8 adv(p2); // signal end of t2
9 end

10 ); // end of t2
11 dereg(p2); // t2 is the only participant
12 await(p2, 1); // await t2 to finish
13 adv(p1); // signal end of t1
14 end

he ੗rst proposal of a fork/join programming model [84] inclffdes syntactic
restrictions to render its programming model deadlock free. his restricted
programming model is knofln as the nested fork/join. he idea behind the
nested model is to:

• assign a parent-child relationship betfleen the parent task that forks, and
the forked child task;

• disallofl tasks from aflaiting ancestor and sibling tasks.

SBrenner de੗nes the nested fork/join model of X10 and HJ. To limit tasks
from aflaiting siblings and ancestors, fle remofie task names from the syntaffi of
SBrenner. Sffch alteration a੖ects task creation and phaser registration (flhose
discffssion fle postpone). Neffit, fle introdffce specialised constrffcts to be ffsed
instead of phasers.

SBrenner ffses instrffction async to fork a task. Instrffction finish is ffsed
to aflait the termination of a groffp of tasks. he instrffction effipects a program
as a parameter, called the body. Any task (indirectly) spaflned flithin the body
of a ੗nish is registered flith its join barrier. Ater effiecffting the body, the task
aflaits at the implicit join barrier.

he neffit effiample, flriten in SBrenner, ੗ffies the fork/join deadlock in
Listing 5.1. he child task can no longer flait for its parent task, becaffse there
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are no task names to refer to. When a task terminates it afftomatically signals
the join barrier of the enclosing ੗nish, as in Line 4. he parent task aflaits its
child in Line 6 ater effiecffting the ੗nish body.

1 // t1 -- parent task
2 finish(
3 async( // child task
4 end // signals end of child
5 );
6 end // awaits child to finish
7 );
8 end

Cyclic barrier deadlocks. he simplest flay to prefient deadlocks that arise
from the interaction betfleen cyclic barriers is to restrict the langffage to hafie
a single, global cyclic barrier. he Bfflk-Synchronoffs Parallel programming
model [103] champions the ffse of sffch restriction.

X10 introdffces a techniqffe that copes flith mffltiple cyclic barriers: the
langffage enforces each task to flait on all registered barriers at the same time.
he increase of effipressifieness, flith respect to hafiing a single cyclic barrier,
is that tflo groffps of tasks can synchronise independently from one another,
as long as each groffp ffses di੖erent barriers. he flork in [92] formalises the
techniqffe, bfft lacks a formal proof of the deadlock-freedom property.

Waiting only on all registered phasers is not enoffgh to prefient deadlocks in
Brenner. One reason it fails is becaffse a task can flait for any phase, as in the
follofling one liner effiample.

1 p = newPhaser(); await(p, 2); end

For phasers it makes sense to restrict the phase nffmber a task can flait
for. Let instrffction await (flithofft argffments) be sffch that it aflaits on efiery
registered phaser ffsing the task’s local phase, thereby prefienting the deadlock
in the prefiioffs effiample.

1 p = newPhaser();
2 await; // await(p, 0);
3 end;
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his restriction is still not enoffgh to prefient the follofling deadlocked
program. Task t1 flaits for task t2 to adfiance to phase 1 on phaser p, flhile
at the same time task t2 flaits for task t1 to adfiance to phase 1 on phaser q.
In Line 3 fle note that async accepts a seqffence of phaser names in flhich the
spaflned task becomes registered flith. Here, the spaflned task is registered
flith p and q.

Listing 5.2: Deadlocked program ffsing tflo phasers.

1 // task t1
2 p = newPhaser(); q = newPhaser();
3 async(p,q, // task t2
4 adv(p);
5 await; // await(p, 1) await(q, 0);
6 end
7 );
8 adv(q);
9 await; // await(p, 0) await(q, 1);

10 end

SBrenner proposes a single change to coffnter this soffrce of deadlocks: a
task mffst adfiance the effiact same nffmber of times all registered phasers before
aflaiting. hat is, before aflaiting if the task is registered on tflo phasers p
and q and it adfiances p tflice, then it mffst also adfiance phaser q tflice. We
introdffce a nefl langffage constrffct next that is ffsed to check that all phasers
are adfianced effiactly once. If the programmer forgets to adfiance a phaser, then
the program is infialid and mffst be rejected by the typechecker.

In X10, there is a single operation that adfiances all phasers and then aflaits
on all phasers. he nofielty of offr techniqffe is tflofold. First, a task can adfiance
mffltiple phases before aflaiting. Second, a task can sffppress flaiting alto-
gether and perform the prodffcer-consffmer synchronisation patern, something
ffnfeasible flith X10’s cyclic barriers.

In the neffit effiample, fle ੗ffi the deadlock of Listing 5.2. SBrenner enforces
the programmer tflo adfiance both phasers before aflaiting. Instrffction next
demarcates that all phasers hafie been adfianced once.

Dangling fiarticifiant deadlocks. A simpler form of deadlock has to do flith
dangling participants, flhere a task aflaits forefier terminated tasks. Jafia and
MPI sff੖er from this problem. For effiample, if in Section 5.1 fle remofie the tflo
instrffctions of task t2, then task t1 becomes deadlock flaiting for task t2.
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Listing 5.3: Fiffied deadlock flith tflo phasers.

1 // task t1
2 p = newPhaser(); q = newPhaser();
3 async(p,q, // task t2
4 adv(p); adv(q);
5 await; // await(p, 1) await(q, 1);
6 next;
7 end
8 );
9 adv(p); adv(q);

10 await; // await(p, 1) await(q, 1);
11 next;
12 end

1 // task t1
2 p = newPhaser(); q = newPhaser();
3 async(p,q, // task t2
4 end // forgets to deregister
5 );
6 adv(p); adv(q);
7 await; // forever waiting for t2
8 next;
9 end

In X10 and HJ efiery task implicitly deregisters from all barriers at the end of
its effiecfftion; there is no flay to identify crashed tasks. SBrenner enforces that
the programmer effiplicitly deregisters from registered phasers before terminating
efiery task.

Fork/join and cyclic barrier deadlocks. Combining cyclic barriers flith the
fork/join programming model introdffces yet another form of deadlocks. he
neffit program deadlocks becaffse the tasks that forks (task t1) is flaiting for the
forked task t2 to ੗nish, flhile task t2 is flaiting for task t1 to adfiance phaser p.

SBrenner employs a techniqffe introdffced by HJ: the ۠Immediately Enclos-
ing Finish (IEF) scope rffleۡ states that a task cannot be registered flith phasers
declared offtside their immediately enclosing ੗nish scope. he prefiioffs program
is infialid, becaffse in Line 3 fle are registering a task flith a phaser name p that
is declared offtside the ੗nish.
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1 p = newPhaser();
2 finish(
3 async(p,
4 adv(p);
5 awaitAll; // await(p, 1);
6 end);
7 end);
8 dereg(p);
9 end

Pifieline fiarallelism. he changes prodffced so far still allofl ffs to flrite
prodffcer-consffmer synchronisation paterns. We refiisit Listing 3.3 by reflriting
the programs of the prodffcer and consffmer tasks in SBrenner. he prodffcer
signals the consffmers ater prodffcing an item flith phaser p.

1 loop( // for (i = 0; i < N; i++)
2 skip; // B[i] = produce(i);
3 adv(p); // signal consumer
4 next; end) // loop

he consffmer aflaits consecfftifiely for each signal from the prodffcer before
consffming the neffit element. Adapting the program of the obserfier tasks only
amoffnts to replacing instrffction await(p) flith instrffction await.

1 loop( // for (i = 0; i < N; i++)
2 adv(p); await; // await
3 skip; // consume(B[i]);
4 end) // loop

Remofiing the possibility to aflait on an arbitrary phase hinders SBren-
ner’s ability to perform the bounded prodffcer-consffmer patern, important
for pipeline parallelism. Shirako et al. effiplored in [96] the notion of bounded
phasers to describe the boffnded prodffcer-synchronisation patern. We adapt
this idea to SBrenner ffnder a deadlock-free seting. Instrffction bound(p) lets
a task be ahead of the slowest task ffp to a certain nffmber of phases. We leafie
the effiact boffnd nffmber ffnspeci੗ed, as this detail does not a੖ect offr goal of
shofling deadlock freedom, and this flay fle afioid introdffcing natffral nffmbers
in the langffage.

We can nofl reflrite the prodffcer to be ahead of the consffmers ffp to a certain
nffmber of phasers. here are tflo changes fle mffst do. First, the prodffcer mffst
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change its boffnd. Second, the prodffcer mffst aflait ater adfiancing. In practice,
a prodffcer that is at phase i and flith a boffnd of k only blocks if there is at least
one consffmer behind phase k − i.

1 bound(n); // bound(n, SIZE); // set the bound to SIZE
2 loop( // for (i = 0; i < N; i++)
3 skip; // B[i] = produce(i);
4 adv(p); // signal consumer
5 await; // wait for slow consumers
6 next; end) // loop

We ffnderline that Brenner is capable of flriting the boffnded prodffcer-
consffmer patern flithofft introdffcing any notion of boffnd phasers. he re-
qffired addition is to simply introdffce arithmetic effipressions ofier natffral nffm-
bers. To aflait at a phase i flith a boffnd k fle flrite await(p, i - k). his
effiample highlights the effipressifie semantics of Brenner flhen compared flith
the original semantics of phaser.

5.2 Syntax
Follofling is a discffssion of the nefl terms of the langffage, flith respect to
Brenner flhich fle highlight ffsing a boffi .

De॑nition 5.2.1 (Abstract syntaffi of SBrenner). Fig. 5.1 deटnes the syntax of
the language.

Instrffction async replaces instrffctions reg, fork, and newTid. We remofie
task names from the langffage to afioid potential deadlocks in fork/join and in
phaser synchronisation. he parameter s of async speci੗es the phasers in flhich
the forked task is to be registered flith. Consider the follofling program flriten
in Brenner.

1 t = newTid();
2 reg(t, p1); reg(t, p2); reg(t, p3);
3 fork(t, b);
4 end

It can be translated into SBrenner as follofls.
Instrffction p = newPhaser() creates a phaser. Instead of await(p, n)

SBrenner has instrffctions await and bound(p). Instrffction await aflaits on
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b ::= Programs
| end empty program
| i; b constrffct program

i ::= Instructions

| async(s, b) fork the effiecfftion of a task
| p = newPhaser() create a phaser
| dereg(p) deregister from phaser
| adv(p) adfiance phase

| bound(p) ffpdate boffnd

| await aflait on all phasers
| next enter neffit phase

| finish(b) join barrier
| c control the ੘ofl

c ::= Control ठow
| skip internal action
| loop(b) non-deterministic loop

Figffre 5.1: SBrenner syntaffi.

1 async(p1, p2, p3, b);
2 end

efiery registered phaser at the task’s local phase. For instance, a task that is reg-
istered flith phaser p at phase n, flith phaser q at phase m, and effiecfftes await
corresponds, in Brenner, to a task that effiecfftes await(p,n) follofled by
await(q,m). Aflaiting on q follofled by p prodffces the same e੖ect. SBrenner
lacks an instrffction to aflait on phasers the task is not registered flith.

Instrffction bound(p) lets the task flait for a phase other than its local phase.
he idea is that any task may flait on a smaller phase than its local phase
flithofft deadlocking. For each phaser p the task is registered flith there is a
boffndm associated flith p. he boffnd is a natffral nffmber and starts at zero.
Consider a task that is registered flith p has a local phase of n and a boffnd
of m. Let o = n − m. Instrffction await can be translated into Brenner as
await(p, o).
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Listing 5.4: Matriffi mffltiplication programmed in SBrenner.

1 finish(
2 loop( // for (i = 0; i < 21; i++)
3 async(
4 loop( // for (j = 0; j < 21; i++)
5 loop( // for (k = 0; k < 21; k++)
6 skip; // C[i][j] += A[i][k] * B[k][j];
7 end); // inner loop
8 end); // outer loop
9 end); // async

10 end); // loop
11 end); // finish
12 end // program

Instrffction nextmarks all phasers as ffnarrified and represents the beginning
of a nefl phase. Instrffction finish(b) accepts a parameter called the body of
the ੗nish and declares a nefl phaser name scope.

Examfile
Rffnning effiample: matriffi mffltiplication, Listing 5.4. he program starts flith
a ੗nish block, Lines 2 to 11, that aflaits the compfftation of each rofl of the
matriffi. A loop in Line 2 spaflns the tasks. he parallel compfftation of each rofl
is done flith an async, in Line 3, in flhich there is no more synchronisation. he
main task sits flaiting at the end of the ੗nish, in Line 11, for the termination of
each spaflned task. he tflo main di੖erences flith reference to the Brenner
fiersion of the same effiample, in Listing 3.1, are: the async replaces the direct
manipfflation of tasks names, and the ੗nish block replaces the phaser ffsed to
aflait the termination of spaflned tasks.

Rffnning effiample: iteratifie afieraging, Listing 5.5. Phaser p is ffsed as a
cyclic barrier. he drifier task creates a phaser p, effiecfftes the offter loop, in
Lines 2 to 17, to spafln the florker tasks and then deregisters itself from p. he
florker tasks are all registered flith phaser p and synchronise together flhile
performing the inner loop, in Lines 4 to 14. he tflo main di੖erences flith
reference to the Brenner fiersion of the same effiample, in Listing 3.2, are: ffsing
async instead of direct task name manipfflation, and the inserting a next ater
synchronising.

Rffnning effiample: prodffcer-consffmer, Listing 5.6. he drifier task creates
phaser p and laffnches tflo groffps of tasks. he ੗rst groffp, spaflned in Lines 2
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Listing 5.5: Iteratifie afieraging in SBrenner.

1 p = newPhaser(); // c = new Clock();
2 loop( // for (i = 0; i < N; i++)
3 async(p, // async clocked(c)
4 loop( // for (k=1; k <= M; k++)
5 skip; // l=P[(i-1) % N];r=P[(i+1) % N];
6 adv(p); // c.resume();
7 skip; // tmp = (l + r) / 2;
8 await;
9 next; // c.advance();

10 skip; // P[i] = tmp;
11 adv(p);
12 await;
13 next; // c.advance();
14 end); // for
15 dereg(p);
16 end); // async
17 end); // for
18 dereg(p); // do not influence other tasks
19 end // program

to 12, consists of the prodffcer tasks that synchronise flith the consffmers ater
prodffcing an element. he second groffp, spaflned in Lines 13 to 20, consists of
the consffmer tasks that aflait for all prodffcer tasks to prodffce an efient before
consffming it. he main di੖erence flith reference to the Brenner fiersion of the
same effiample, in Listing 5.6, is that fle introdffced a bounded prodffcer-consffmer.
Each prodffcer task starts by seting its boffnd, in Line 4. his means that each
prodffcer can be ahead of the sloflest task a certain nffmber of phases flhen it
infiokes the aflait in Line 8. In Listing 3.3, the prodffcer is unbounded, so the task
adfiances flithofft flaiting for the consffmers. he program in Listing 5.6 can be
adapted to an ffnboffnded prodffcer by simply remofiing the aflait in Line 8.

5.3 Ofierational Semantics
We begin flith name binding.

De॑nition 5.3.1 (Binding). In p = newPhaser(); b, the displayed occurrence of
phaser name p is a binding with scope b. An occurrence of a phaser name is boffnd
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Listing 5.6: Boffnded prodffcer-consffmer synchronisation flith phasers.

1 p = newPhaser(); // c = new Phaser();
2 loop( // producers
3 async(p,
4 bound(p);
5 loop( // for (i = 0; i < N; i++)
6 skip; // B[i] = produce(i);
7 adv(p); // signal consumer
8 await;
9 next;

10 end); // loop
11 end); // async
12 end);
13 loop( // consumers
14 async(p,
15 loop( // for (i = 0; i < N; i++)
16 adv(p); await(p);
17 skip; // consume(B[i]);
18 end); // loop
19 end); // async
20 end);
21 dereg(p);
22 end // program

if it lies within the scope of a binding occurrence of the phaser name. Otherwise,
the phaser name is free.

Boffnd phaser names can be compffted by the neffit indffctifiely de੗ned fffnc-
tion.
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De॑nition 5.3.2 (Boffnd phaser names fffnction).

bn(async(s, b); b′) def
= s ∪ bn(b) ∪ bn(b′)

bn(p = newPhaser(); b) def
= {p} ∪ bn(b)

bn(dereg(p); b) def
= bn(adv(p); b) def

= bn(bound(p); b) def
= bn(b)

bn(await; b) def
= bn(next; b) def

= bn(b)

bn(finish(b); b′) def
= bn(b) ∪ bn(b′)

bn(end) def
= ∅

bn(skip; b) def
= bn(b)

bn(loop(b); b′) def
= bn(b) ∪ bn(b′)

Free phaser names can be compffted as:

De॑nition 5.3.3 (Free phaser names fffnction).

fn(async(s, b); b′) def
= p ∪ fn(b) ∪ fn(b′)

fn(p = newPhaser(); b) def
= fn(b) \ {p}

fn(dereg(p); b) def
= fn(adv(p); b) def

= fn(bound(p); b) def
= fn(b)

fn(await; b) def
= fn(next; b) def

= b

fn(finish(b); b′) def
= fn(b) ∪ fn(b′)

fn(end) def
= ∅

fn(skip; b) def
= fn(b)

fn(loop(b); b′) def
= fn(b) ∪ fn(b′)

For effiample, in program
dereg(p);
q = newPhaser();
async (q)

dereg(p);
end;

end

phaser name p is free and phaser name q is boffnd.
A phaser name may occffr both free and boffnd in the same effipression. In

the follofling effiample phaser name p appears boffnd and free:
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dereg(p);
p = newPhaser();
async(p) end
end

From top to botom, the ੗rst displayed occffrrence of phaser name p is free,
at dereg(p); the second and third displayed occffrrences of p are boffnd, at
p = newPhaser() and async(p). In the async the ffse of phaser name p targets
the second occffrrence and not the ੗rst.

De॑nition 5.3.4 (Sffbstitfftion). A sffbstitfftion for programs σ is a function that
is the identity except on a टnite set, deटned from phaser names to phaser names.
We write [q/p] for the substitution σ such that σ(p) = q and σ(r) = r for r 6= p.

A formula bσ represents the application of substitution σ to program b, replacing
each free occurrence of phaser name p in program b by σ(p). We deटne the
application of a substitution to a program (see the phaser name confiention below)
as:

(async({p1, . . . , pn}, b); b′)σ
def
= async({σ(p1), . . . , σ(pn)}, (bσ)); (b′σ)

(p = newPhaser(); b)σ def
= p = newPhaser(); (bσ)

(dereg(p); b)σ def
= dereg(σ(p)); (bσ)

(adv(p); b)σ def
= adv(σ(p)); (bσ)

(bound(p); b)σ def
= bound(σ(p)); (bσ)

(await; b)σ def
= await; (bσ)

(next; b)σ def
= next; (bσ)

(finish(b); b′)σ def
= finish((bσ)); (b′σ)

(skip; b)σ def
= skip; (bσ)

(loop(b); b′)σ def
= loop((bσ)); (b′σ)

For effiample, sffbstitffting phaser name p for phaser name q in program



60 CHAPTER 5. DEADLOCK PREVENTION

adv(p); await; dereg(p); end yields the follofling resfflt, flhere σ = [q/p]:

(async({p, r}, await; dereg(p); end); end)σ
def
=async({σ(p), r}, (await; dereg(p); end)σ); (endσ)
def
=async({q, r}, (await; dereg(p); end)σ); (endσ)
def
=async({q, r}, await; (dereg(p); end)σ); (endσ)
def
=async({q, r}, await; dereg(σ(p)); (endσ)); (endσ)
def
=async({q, r}, await; dereg(q); (endσ)); (endσ)
def
=async({q, r}, await; dereg(q); end); (endσ)
def
=async({q, r}, await; dereg(q); end); end

De॑nition 5.3.5 (Change of boffnd phaser names). A change of boffnd names
in program b is the replacement of a program that occurs in b of the form

p = newPhaser(); b′

by q = newPhaser(); b′[q/p], where q is not bound nor free in b′.

De॑nition 5.3.6 (α-confiertibility). Programs b and b′ are α-confiertible, b ≡α b
′,

if program b can be obtained from program b′ by a टnite number of changes of
bound names.

he tflo follofling effipressions are α-confiertible.

loop(p = newPhaser(); skip; badv(p); end); end
≡αloop(q = newPhaser(); skip; badv(q); end); end

Phaser name convention. For any gifien mathematical conteffit (e.g., de੗ni-
tion, proof), terms are taken ffp to α-confiertibility and assffme a confiention
(Barendregt’s name confiention [16]), in flhich all boffnd phaser names are
chosen to be di੖erent from the free phaser names and also di੖erent from each
other.

For effiample, program

loop((p = newPhaser(); skip; adv(p); end)); dereg(p); end

breaks the confiention, since the displayed occffrrence p is both boffnd and free.
he follofling α-confiertible term conforms to the name confiention:

loop((q = newPhaser(); skip; adv(q); end)); dereg(p); end

Sffbstitfftion for programs is only de੗ned for terms respecting the name
confiention.
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S ::=
(

M,T
)

Abstract machine
M ::= {p1 : P1, . . . , pn : Pn} Phaser maps
T ::= {t1 : τ1, . . . , tn : τn} Task maps
P ::= {t1 : v1, . . . , tn : vn} Phaser value
v ::= 〈p; a〉 Local view
a ::= u | a Flags
τ ::= Tasks

| (B, b) regfflar task
| S ⊲ (B, b) ੗nish task

B ::= {p : n, . . . , p : n} Bounds

Figffre 5.2: Syntaffi of the abstract machine.

De॑nition 5.3.7 (Abstract machine). Fig. 5.2 depicts the syntax of the state.

he state S of a compfftation pairs a phaser map M and a task map T .
A phaser map M stores the afiailable phasers, mapping addresses to phasers.
Phasers P map task names to local fiiefls v, that pair a flait phase n flith an
arrifie ੘ag a. Flag a, for arrified, denotes a task that adfianced its phase. Flag u,
for ffnarrified, denotes a task that can adfiance the phaser.

Task maps T hold tasks τ , named by task names t. here are tflo kinds of
tasks. A regfflar task (B, b) holds a map of boffnds B for each phaser the task is
registered flith, and also the program b it is effiecffting. A ੗nish task S ⊲ (B, b)
denotes a blocked regfflar task (B, b) that is flaiting for the tasks in state S to
conclffde their effiecfftion.

he nested fork/join effiecfftion model can be represented as a tree of tasks in
flhich leaf nodes can rffn concffrrently and branch nodes flait for its children to
terminate. A regfflar task is a leaf node. A ੗nish task

(

M,T
)

⊲ (B, b) is a branch
node and its children are the tasks in task map T . Fig. 5.3 illffstrates sffch a tree:
the root is ੗nish task τ1

def
=

(

M1, {t2 : τ2, t3 : τ3}
)

⊲ (B1, b1); tasks τ2, τ5, τ6, and
τ7 rffn concffrrently; tasks τ1, τ3, and τ4 are blocked on a join barrier of a ੗nish.

he redffction for states, S → S ′, allofls for the non-deterministic choice of
flhich tasks to efialffate.

De॑nition 5.3.8 (Small-step semantics). he small step reduction relation for
SBrenner is deटned in Figs. 5.4 to 5.6.

Before effiplaining redffction rffle R-async fle reqffire some affffiiliary de੗ni-
tions.
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(

M1, {t2 : τ2, t3 : τ3}
)

⊲ (B1, b1)

(B2, b2)

τ2

(

M3, {t4 : τ4, t5 : τ5, t6 : τ6}
)

⊲ (B3, b3)

(

M4, {t7 : τ7}
)

⊲ (B4, b4)

(B7, b7)

τ7

τ4

(B5, b5)

τ5

(B6, b6)

τ6

τ3

Figffre 5.3: A dependency tree of tasks.

De॑nition 5.3.9 (Copy local fiiefls).

copy(s, t, t′,M) =M ′ P (t) = v

copy(s ⊎ {p}, t, t′,M ⊎ {p : P}) =M ′ ⊎
{

p : P ⊎ {t′ : v}
} (Cpy-cons)

copy(s, t, t′,M) =M ′ p /∈ s

copy(s, t, t′,M ⊎ {p : P}) =M ′ ⊎ {p : P}
(Cpy-skip)

copy(∅, t, t′, ∅) = ∅ (Cpy-nil)

For instance, in Line 3 of Listing 5.5, let the phaser map afiailable in that
state beM1

def
=

{

p : P1

}

, flhere P1

def
= {td : (0,u)}.

We hafie that copy({p}, td, t1,M1) =M2, flhere

Cpy-nil
copy({p}, td, t1, ∅) = ∅ P1(p) = (0,u)

Cpy-cons
copy({p}, td, t1, {p : P1}) = {p : P1 ⊎ {t1 : (0,u)}}

De॑nition 5.3.10 (Boffnd creation). boffnds(s) def
= {p : 0 | ∀p ∈ s}

It is easy to see that boffnds({p}) = {p : 0}.
Rffle R-async gofierns the spaflning of a nefl task that effiecfftes b′ and is

registered flith efiery phaser p ∈ s. In SBrenner the spaflned task inherits
(copies) the local phase of the task that spaflns flhen becoming registered
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(

M,T ⊎ {t : (B, async(s, b′); b)}
)

→
(

copy(s, t, t′,M), T ⊎ {t : (B, b)} ⊎ {t′ : (boffnds(s), b′)}
) (R-async)

q /∈ bn(b)
(

M,T ⊎ {t : (B, p = newPhaser(); b)}
)

→
(

M ⊎
{

q : {t : (0,u)}
}

, T ⊎ {t : (B ⊎ {q : 0}, b[q/p])}
)

(R-phaser)

(

M ⊎
{

p : P ⊎ {t : v}
}

, T ⊎
{

t : (B ⊎ {p : n}, dereg(p); b)
})

→
(

M ⊎
{

p : P
}

, T ⊎
{

t : (B, b)
}) (R-dereg)

(

M ⊎
{

p : P ⊎ {t : (n,u)}
}

, T ⊎ {t : (B, adv(p); b)}
)

→
(

M ⊎
{

p : P ⊎ {t : (n, a)}
}

, T ⊎ {t : (B, b)}
) (R-advance)

n ∈ N
(

M,T ⊎ {t : (B ⊎ {p : _}, bound(p); b)}
)

→
(

M,T ⊎ {t : (B ⊎ {p : n}, b)}
)

(R-bound)

aflaitAll(M, t, B)
(

M,T ⊎ {t : (B, await; b)}
)

→
(

M,T ⊎ {t : (B, b)}
) (R-await)

(

M,T ⊎ {t : (B, next; b)}
)

→
(

commit(M, t), T ⊎ {t : (B, b)}
)

(R-next)

Figffre 5.4: Small step semantics for states (phaser related) S → S .

flith p ∈ sۘthis is performed by copy(s, t, t′,M). Fffnction boffnds(s), ffsed to
bffild the forked task, sets the initial boffnd of each registered phaser to zero.

Hence, flith rffle R-async fle get
(

M1, T ⊎ {td : (B, async({p}, b′); b)}
)

→
(

copy({p}, td, t1,M1), T ⊎ {td : (B, b)} ⊎ {t1 : (boffnds({p}), b′)}
)

And if T = ∅, fle can simplify the state to
(

M1, {td : (B, async({p}, b′); b)}
)

→
(

M2, {td : (B, b), t1 : ({p : 0}, b
′)
)

A task that effiecfftes p = newPhaser() becomes registered flith p and is able
to adfiance this phaser. he redffction allocates a phaser flith one participant, t,
that starts at phase zero and is marked as ffnarrified; the boffnd for the nefl
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phaser also starts at zero. We select a phaser name q that is not knofln in b and
in the domain ofM to ensffre the locality of names, so that no other task can
refer to it ffnless the phaser name is effiplicitly shared fiia async.

For effiample, at Line 1 in Listing 5.5, let the initial phaser map be empty
and let it there a single task, named td, effiecffting Listing 5.5. Let q be sffch
that q /∈ bn(b). hffs,

q /∈ bn(b)
(

∅, {td : (∅, p = newPhaser(); b)
)

→
({

q : {td : (0,u)}
}

, {td : ({q : 0}, b[q/p])}
)

Tasks deregister from phaser name p flith effipression dereg(p). Consider
Line 18 in Listing 5.5 and assffme fle hafie three tasks in the system: task
named td effiecfftes Line 18, and tasks t1 and t2 are effiecffting their loop. Let there
only be a phaser in the system, named p, M def

=
{

p : {t1 : v1, t2 : v2, td : vd}
}

.
It is easy to see that there effiists a phaser P sffch that M(p) = P ⊎ {td : vd}.
herefore,

R-dereg
(

{p : P ⊎ {td : vd}}, T ⊎
{

td : ({p : 0}, dereg(p); b)
})

→
(

{p : P}, T ⊎
{

td : (∅, b)
})

A task performing an adv(p) simply tffrns the ੘ag from u to arrified a,
denoting it ready to synchronise (rffle R-advance). Instrffction bound(p) is a
non-deterministic choice of a nefl boffnd fialffe, rffle R-bound. Other tasks can
obserfie the phase of p adfiancing. Assffme that in Listing 5.5 fle hafie tflo tasks,
named t1 and t2, in parallel, both tasks effiecffting Line 6. Let the state of the
phasers be

M1

def
=

{

p : {t1 : (0,u), t2 : (0,u)}
}

(5.1)
here effiists a phaser P sffch thatM1(p) = P ⊎ {t2 : (0,u)}. Hence,

R-adv
({

p : P ⊎ {t2 : (0,u)}
}

, T ⊎ {t2 : (B, adv(p); b)}
)

→
({

p : P ⊎ {t2 : (0, a)}
}

, T ⊎ {t2 : (B, b)}
)

Ater the task named t2 adfiances phaser p the state of the phasers is gifien
by

M2

def
=

{

p : {t1 : (0,u), t2 : (0, a)}
}

(5.2)

De॑nition 5.3.11 (Local phase). he local phase of a local view is computed as:

localPhase (n, a) def
=

{

n+ 1 if a = a
n if a = u
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he local phase of task t1 for phaser p inM2 is

localPhaseM2(p)(t1) = 0

and of task t2 is
localPhaseM2(p)(t2) = 1

De॑nition 5.3.12 (Aflait predicate).

∀t ∈ domP : localPhase (P (t)) ≥ n

aflait(P, n)

he aflait predicate holds for phase 0 of phaser p

aflait(M2(p), 0) (5.3)

bfft it does not hold for
aflait(M2(p), 1) (5.4)

as localPhaseM2(p)(t1) < 1.
he follofling predicate embodies await.

De॑nition 5.3.13.

∀p ∈ domM ∧ t ∈ domM(p) :

aflait(M(p), n) ∧ n = localPhase(M(p)(t))− B(p)

aflaitAll(M, t, B)

Let B = {p : 0}. We knofl that B(p) = 0 and from Eq. (5.3) fle also knofl
that aflait(M2(p), 0), thffs

aflait(M2(p), 0) localPhaseM2(p)(t1) = 0

aflaitAll(M2, t1, B)

We also knofl that predicate aflaitAll(M2, t2, B) does not hold, since

localPhaseM2(p)(t2) = 1

and from Eq. (5.4) aflait(M2(p), 1) fails.
Rffle R-await makes the task aflait at the local phase of efiery phaser it is

registered flith.
Consider the follofling phaser map

M3

def
=

{

p : {t1 : (0, a), t2 : (0, a)}
}

(5.5)
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as the state of Listing 5.5 flhile task t1 effiecfftes Line 8. Also, let B def
= {p : n}. It

is easy to see that for any boffnd n

aflait(M3(p), 1− n) localPhaseM3(p)(t1) = 1

aflaitAll(M3, t1, B)

then

aflaitAll(M3, t1, B)
R-await

(

M3, T ⊎ {t1 : (B, await; b)}
)

→
(

M3, T ⊎ {t1 : (B, b)}
)

De॑nition 5.3.14 (Commit phase).

commit(M, t) =M ′

commit(M ⊎
{

p : P ⊎ {t : (n, a)}
}

, t) =M ′ ⊎
{

p : P ⊎ {t : (n+ 1,u)}
}

(Com-c)

commit(M, t) =M ′ t /∈ domP

commit(M ⊎ {p : P}, t) =M ′ ⊎ {p : P}
(Com-s)

commit(∅, t) = ∅ (Com-n)

Using rffles Com-n and Com-c fle get that

commit(M3, t1) =
{

p : {t1 : (1,u), t2 : (0, a)}
}

=M4 (5.6)

Fffnction commit does not a੖ect the local phase of any task, as

localPhaseM3(p)(t1) = localPhaseM4(p)(t1)

and
localPhaseM3(p)(t2) = localPhaseM4(p)(t2)

Rffle R-next gofierns the application of fffnction commit.
hffs, from Eq. (5.6) fle hafie that

R-next
(

M,T ⊎ {t1 : (B, next; b)}
)

→
(

commit(M3, t), T ⊎ {t1 : (B, b)}
)

Redffction ffnrelated to phasers is inclffded in Fig. 5.5. Rffle R-finish declares
that the body of the ੗nish b′ is effiecffted by task t′ that effiists in a nefl state S.

We de੗ne the notions of halted state to identify flhen the ੗nish barrier
conclffdes.
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S
def
=

(

∅, {t′ : (∅, b′)}
)

(

M,T ⊎ {t : (B, finish(b′); b)}
)

→
(

M,T ⊎ {t : S ⊲ (B, b)}
) (R-finish)

S1 → S2
(

M,T ⊎ {t : S1 ⊲ (B, b)}
)

→
(

M,T ⊎ {t : S2 ⊲ (B, b)}
) (R-run)

S is halted
(

M,T ⊎ {t : S ⊲ (B, b)}
)

→
(

M,T ⊎ {t : (B, b)}
) (R-join)

c; b→ b′
(

M,T ⊎ {t : (B, c; b)}
)

→
(

M,T ⊎ {t : (B, b′)}
) (R-flow)

Figffre 5.5: Small step semantics for states (੗nish, control ੘ofl) S → S .

skip; b→ b (R-skip)
loop(b); b′ → b · (loop(b); b′) (R-iter)

loop(b); b′ → b′ (R-elide)

Figffre 5.6: Small step semantics for control ੘ofl instrffctions c; b→ b .

De॑nition 5.3.15 (Halted state). We say that state
(

M, {t1 : (∅, end), . . . , tn : 〈∅; end〉}
)

is halted.

Gifien a ੗nish task S ⊲ (B, b), fle hafie that state S redffces ffntil it becomes
halted flith rffle R-run, and then the ੗nish task becomes the regfflar task (B, b)
flith rffle R-join.

Rffle R-flow gofierns the redffction of instrffctions that alter the control
੘ofl c. Rffles in Fig. 5.6 are trifiial.

5.4 Tyfie System
A type system [23] is a formalism ffsed to analyse the soffrce code of a program
according to a set of rffles, called typing rules. he analysis abstracts each term
of a program flith respect to its type. For instance, the ۠integerۡ type can denote
any mathematical effipression that yields an integer. his flay a type system can
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Γ ⊢ ∅ : ∅
Γ(p) = a Γ ⊢ s : Γ′

Γ ⊢ (s ⊎ {p}) : Γ′ ⊎ {p : a}
(T-a-c,T-a-n)

Figffre 5.7: Typing rffles for argffments Γ ⊢ s : Γ .

abstract an effipression 3 + 5× 2 as an integer type. Typechecking is the process
of fierifying if a gifien soffrce code conforms flith some type information.

Type systems are ffsed to establish properties abofft the programs of a lan-
gffage. In offr case, the objectifie is to shofl the absence of deadlocked states for
programs flriten in SBrenner. To this end, fle specify a phaser ffsage policy
by means of typing rffles. Programs that adhere to this phaser ffsage policy are
gffaranteed to be deadlock free.

he operational semantics of SBrenner is not de੗ned for all states. For
instance, rffle R-dereg effipects the phaser name to be in the domain of the phaser
map, and rffle R-advance assffmes the phaser to be ffnarrified. he redffction
rffles assume a certain policy and the semantics is ffnde੗ned for any behafiioffr
that breaks these assffmptions, i.e., the state flill not be able to redffce. We de੗ne
a typing system that rejects programs fiiolating these assffmptions.

De॑nition 5.4.1 (Type system). he type system for SBrenner is deटned in
Figs. 5.7 to 5.9.

A typing Γmaps phaser names to arrifial ੘ags. he type system ffses a typing
to obtain (and record) the arrifial ੘ag for each phaser the task is registered flith.

A typing relation Γ ⊢ s : Γ′ assigns a typing Γ′ to a term s gifien a typing Γ.
On the let-hand side of the tffrnstile, fle hafie the assffmptions Γ ffnder flhich
the term s is checked; typing Γ′ is inferred. Usffally a typing relation yields
a type (like an integer type). In offr type system the offtcome is a typing that
represents the arrifial ੘ag of each registered phaser name. Jffdgement Γ ⊢ s : Γ′

is ffsed in the conteffit of typing an async and yields the smallest typing Γ′ that
can typecheck s.

Typing relations are de੗ned by cases, ffsffally syntaffi-oriented on the term
fle are checking. Each case is cofiered by a typing rule. Fig. 5.7 consists of tflo
rffles: the base case T-a-n states that for an empty set of argffments fle need the
empty typing ∅. he indffctifie case T-a-c allofls ffs to compose argffments s
flith distinct phaser names that are in the typing Γ. Similarly to redffction
rffles, typing rffles can be affiioms or hafie preconditions. Rffle T-a-n is an affiiom.
Rffle T-a-c has tflo preconditions, Γ(p) = a and Γ ⊢ s : Γ′.
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To profie the fialidity of a type jffdgement (i.e.,flhether it holds), fle constrffct
a typing derivation applying the typing rffles. Let typing Γ be

Γ
def
= {p : u, q : u, r : a} (5.7)

For effiample, typing jffdgement Γ ⊢ {p} : {p : u} holds and its derifiation tree
(its proof) is

Γ(p) = u
T-a-n

Γ ⊢ ∅ : ∅
T-a-c

Γ ⊢ (∅ ⊎ {p}) : ∅ ⊎ {p : u} def
=

Γ ⊢ {p} : {p : u}
Jffdgement Γ ⊢ {q} : {q : a} does not hold, since Γ(q) = u.
To type instrffctions fle ffse Γ ⊢ i : Γ′, de੗ned in Fig. 5.8. Typing Γ′ captffres

the e੖ects on the arrifial ੘ags ater the effiecfftion of an instrffction. Most
typing rffles are straightforflard. Rffle T-async checks the forked instrffction b
ffnder the assffmptions inferred flhile typechecking s. his means that phaser
names in s mffst all be registered, in typing Γ. Moreofier, the spaflned task
mffst deregister from all phasers ffpon termination, so its e੖ects are the empty
typing. Rffle T-phaser ensffres that phaser name p is ffnknofln and initialises
it as ffnarrified, thffs in the e੖ects fle effitend the typing flith p assigned to u.
Similarly, rffle T-dereg remofies the phaser name p from the typing of the e੖ects
to disallofl fffrther manipfflation, as only phasers names in the typing Γ can
be (de)registered and adfianced. Rffle T-adv enforces that an adfiance on p
is interleafied by a neffit. he e੖ects of adfiancing p is marking it as arrified.
Instrffction bound(p) leafies the arrifial ੘ags of the phaser names ffnaltered,
rffle T-bound. Tasks can only aflait ater adfiancing all registered phasers,
rffle T-await. his instrffction prodffces no e੖ect on the state of the phasers.
Rffle T-next ensffres all registered phasers are adfianced and then marks these as
ffnarrified. Instrffction skip has no side e੖ects, rffle T-skip. Finally, rffle T-loop
states that the body of the loop mffst preserfie the arrifial ੘ags of the registered
phasers, plffs it mffst not deregister from any phaser name in Γ.

To type programs fle ffse Γ ⊢ i : Γ′, de੗ned in Fig. 5.8. he rffles ensffre that
the e੖ects of an instrffction are enoffgh to type its continffation, cf. rffles T-cons
and T-end.

To sffmmarise, the type system enforces foffr rffles:

1. a task can only (de)register and adfiance phasers it is registered flith, cf.
rffles T-phaser, T-dereg, T-adv, T-async;

2. efiery registered phaser is adfianced effiactly once before an infiocation of
next, cf. rffles T-adv and T-next;
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Γ ⊢ s : Γ′ Γ′ ⊢ b : ∅

Γ ⊢ async(s, b) : Γ
(T-async)

Γ ⊢ p = newPhaser() : Γ ⊎ {p : u} (T-phaser)

Γ ⊎ {p : a} ⊢ dereg(p) : Γ (T-dereg)

Γ ⊎ {p : u} ⊢ adv(p) : Γ ⊎ {p : a} (T-adv)

Γ ⊢ bound(p) : Γ (T-bound)

∀p ∈ domΓ: Γ(p) = a
Γ ⊢ await : Γ

(T-await)

{p1 : a, . . . , pn : a} ⊢ next : {p1 : u, . . . , pn : u} (T-next)

∅ ⊢ b : ∅

Γ ⊢ finish(b) : Γ
(T-finish)

Γ ⊢ skip : Γ (T-skip)

Γ ⊢ b : Γ

Γ ⊢ loop(b) : Γ
(T-loop)

Figffre 5.8: Typing rffles for instrffctions Γ ⊢ i : Γ .

Γ ⊢ i : Γ′ Γ′ ⊢ b : Γ′′

Γ ⊢ i; b : Γ′′
(T-cons)

Γ ⊢ end : Γ (T-end)

Figffre 5.9: Typing rffles for programs Γ ⊢ b : Γ .
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3. the body of a ੗nish and of forked tasks mffst deregister from all phasers
before terminating, cf. rffles T-async and T-finish;

4. each iteration of a loop mffst terminate registered flith the same phasers
it starts registered flith, cf. T-loop.

We gifie an effiample for each of these foffr rffles.

Rule 1. An empty typing ∅ means that there are no registered phasers. he
only phaser-related instrffction that can be typed (i.e., checked) is phaser creation.

T-phaser
∅ ⊢ p = newPhaser() : {p : u} (5.8)

Let Γ1

def
= {p : u} and Γ2

def
= {p : a}. he e੖ects of creating a phaser are

enoffgh to type an adfiance.

T-adv
Γ1 ⊢ adv(p) : {p : a}

T-end
Γ2 ⊢ end : Γ2

T-cons
Γ1 ⊢ adv(p); end : Γ2

And therefore,
∅ ⊢ p = newPhaser() : Γ1 Γ1 ⊢ adv(p); end : Γ2

T-cons
∅ ⊢ p = newPhaser(); adv(p); end : Γ2

Rule 2. Typing Γ1 cannot be ffsed to type a neffit, yet the offtcome of adfianc-
ing p, that is typing Γ2, can type instrffction next.

T-next
{p : a} ⊢ next : {p : u} def

=
Γ2 ⊢ next : Γ1

Rule 3. he follofling tree holds.

T-dereg
Γ1 ⊢ dereg(p) : ∅

T-end
∅ ⊢ end : ∅

T-cons
Γ1 ⊢ dereg(p); end : ∅

And fle also knofl that

Γ1(p) = a
T-a-n

Γ1 ⊢ ∅ : ∅
T-a-c

Γ1 ⊢ (∅ ⊎ {p}) : ∅ ⊎ {p : a} def
=

Γ1 ⊢ {p} : Γ1
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hffs,
Γ1 ⊢ {p} : Γ1 Γ1 ⊢ dereg(p); end : ∅

T-async
Γ1 ⊢ async({p}, dereg(p); end) : Γ1

Rule 4. Enforcing that the iteration mffst terminate registered flith the same
phasers it starts registered flith does not disallofl phaser creation inside the
loops. For instance, the follofling tree holds.

∅ ⊢ p = newPhaser() : Γ1 Γ1 ⊢ dereg(p); end : ∅
T-cons

∅ ⊢ p = newPhaser(); dereg(p); end : ∅
T-loop

∅ ⊢ loop((p = newPhaser(); dereg(p); end)) : ∅



Chapter Siffi

Type system properties
he type system for instrffctions represents a speci੗cation on a phaser ffsage
fle deem as fialid. Applying the typing relation to a program corresponds to
checking if the program conforms flith this phaser ffsage. Yet, to reason abofft
the semantics of SBrenner fle need to establish a relation betfleen a program b

and its state S.
Let S1

def
=

(

M, {t : (∅, end)}
)

and S2

def
=

(

∅, {t : (B, dereg(p); end)}
)

. Nei-
ther of these states can redffce. State S1 is halted, there are no redffction rffles
for program end. State S2 cannot redffce becaffse phaser name p is not in the
domain of phaser map ∅, fl.r.t rffle R-dereg. We can distingffish betfleen these
tflo states in terms of fialidity (neffit, fle de੗ne this notion precisely flith a type
system for states). State S1 is fialid becaffse it is not doing anything ffneffipected,
there is not a rffle for program end becaffse terminated tasks shoffld remain
halted. State S2 is infialid becaffse a task is manipfflating an ffnknofln phaser
name. A type system enjoys the property of Subject Reduction if the redffction
relation preserfies fialidity. A type system enjoys the property of Progress if any
fialid state either redffces or is halted, flhich implies the absence of deadlocks.

In this chapter fle bffild a type system for states that enjoys the properties
of sffbject redffction and progress. his reqffires the de੗nition of a type system
for phaser maps in Section 6.1, and another for task maps in Section 6.2. We
conclffde the chapter establishing some basic resfflts in Sections 6.3 to 6.5.

6.1 Tyfiing fihaser mafis
he operational semantics of SBrenner lays some assffmptions not only abofft
a phaser ffsage, bfft also on the con੗gffration of phaser maps. In particfflar,
the semantics effipects the absence of dangling task names. For instance, the
follofling state cannot redffce becaffse task name t′ is not assigned to any task.

({

p : {t : (1, a), t′ : (0, a)}
}

, {t : ({p : 0}, await; b)}
)

A type system for phaser maps that enjoys progress (i.e., fialid states mffst redffce
or be halted) mffst rffle offt sffch ill-formed phaser map.

73
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he operational semantics also effipects the phasers in the phaser map to be
the offtcome of the instrffctions, not an arbitrary phaser map. he neffit state
cannot redffce.

({

p : {t : (1, a), t′ : (0, a)}, q : {t : (1, a), t′ : (2, a)}
}

,

{t : ({p : 0, q : 0}, await; b), t′ : ({p : 0, q : 0}, await; b′)}
)

Tasks t and t′ are deadlocked. Task t reqffires task t′ to adfiance phaser p and,
at the same time, task t′ reqffires task t to adfiance phaser q. Task t has a local
phase of 2 for phaser p and a local phase of 2 for phaser q. We can say that
for t the local phase di੖erence betfleen p and q is zero, as 2− 2 = 0. Similarly,
for t′ the local phase di੖erence betfleen p and q is minffs tflo, as 1− 3 = −2.
Follofling, fle effiplain flhy is it that a program that follofls the phaser ffsage of
SBrenner cannot reach a state that contains a phaser map flith disparate phase
di੖erences.

Offr langffage restricts tasks to adfiance their registered phasers stepflise.
his means that for any tflo phasers, flhenefier a task effiecfftes a next their
relatifie local phase di੖erence stay the same. Say task t creates phasers p and q
one ater the other, it adfiances both phasers, and then issffes a neffit. he local
phase di੖erence betfleen p and q flhile effiecffting the next is zero, as task t has
a local phase of one for both phasers. hat is, there effiists a phaser mapM sffch
that M(p)(t) = (1, a), M(q)(t) = (1, a), and 1 − 1 = 0. Dffring the lifetime
of the task named t, and flhile it is registered flith phasers p and q, the local
phase di੖erence betfleen both of these phasers flill remain zero flhenefier it
effiecfftes a next. he type system for instrffction flill reject any program that
tries otherflise, e.g., adfiancing p more than once before of a neffit.

If efiery taskmaintains the local phase di੖erence betfleen any pair of phasers,
and since phasers can only be shared by spaflning tasks, then the spaflned tasks
hafie ۠inheritۡ the local phase di੖erences of their parent tasks. Let task t hafie a
local phase di੖erence betfleen phasers p and q of zero. If it spaflns task t′ and
registers t′ flith p and q, then task t′ also possess a local phase di੖erence of zero
betfleen p and q.

When the local phase di੖erence property is respected for all task names
in a phaser map, then fle can establish an ordering betfleen task names. We
introdffce the notion of supersteps, borrofled from the Bfflk-Synchronoffs Parallel
model. In this programming model, there is a single, global barrier for all tasks
to synchronise, so all tasks proceed stepflise, or in sffpersteps. In SBrenner,
a groffp of tasks that share at least one phaser synchronises together. here
are tflo di੖erences, flith respect to the Bfflk-Synchronoffs Parallel model. First,
mffltiple groffps can be de੗ned each flith their ofln ۠globalۡ barrier. Second,
tasks can be effiecffting in di੖erent sffpersteps, becaffse flaiting is optional.
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Gifien a phaser mapM , a task t is one sffperstep ahead of another t′ if for efiery
phaser p in flhich both tasks are registered fle hafie thatM(p)(t) = (n+ 1, _)
andM(p)(t′) = (n, _). Let z be an integer, and operations =, +, and − be the
ffsffal eqffality, addition, and sffbtraction on integers, respectifiely. he sffperstep
di੖erence ∆ is a map from pairs of task names (t1, t2) to integers Z .

De॑nition 6.1.1. Let (N,≤∆) be deटned as

∀t1, t2 ∈ N : ∆(t1, t2) ∈ Z≤0 ⇐⇒ t1 ≤∆ t2

De॑nition 6.1.2. Let (N,=∆) be deटned as

∀t1, t2 ∈ N : ∆(t1, t2) = 0 ⇐⇒ t1 =∆ t2

De॑nition 6.1.3 (Total ordering). he relation structure (N,≤∆) is a total order-
ing if, and only if, it is

re॒exive ∀t ∈ N : t ≤∆ t

transitive ∀t1, t2, t3 ∈ N : t1 ≤∆ t2 ∧ t2 ≤∆ t3 =⇒ t1 ≤∆ t3

anti-symmetric ∀t1, t2 ∈ N : t1 ≤∆ t2 ∧ t2 ≤∆ t1 =⇒ t1 =∆ t2

comfiatible ∀t1, t2 ∈ N : t1 ≤∆ t2 ∨ t2 ≤∆ t1

De॑nition 6.1.4 (Type system for phaser maps). he type system for phaser
maps is deटned in Fig. 6.1.

We are only interested in sffperstep di੖erences∆ that are flell-formed ffnder
task names N , notation N ⊢ ∆, that is sffperstep di੖erences flhere the relation
strffctffre (N,≤∆) forms a total ordering, rffle D-wf.

For effiample,

• any di੖erence map ∆ is flell formed for the empty set, ∅ ⊢ ∆;

• the di੖erence map ∆1

def
= {(t, t) : 0} is flell formed for {t}, so fle hafie

{t} ⊢ ∆1;

• the di੖erence map∆2

def
= {(t, t) : 4} is ill formed for {t} becaffse∆(t, t) 6=

−∆(t, t);

• let∆3 be sffch that∆3(t, t) = ∆3(t
′, t′) = 0,∆3(t, t

′) = 1,∆3(t
′, t) = −1,

then this di੖erence map is flell formed for {t, t′}, or {t, t′} ⊢ ∆3;
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Well-formed phase di੖erence N ⊢ ∆ :

(N,≤∆) is a total ordering
∀t1, t2 ∈ N : ∆(t1, t2) = z =⇒ ∆(t2, t1) = −z

N ⊢ ∆
(D-wf)

Phase di੖erence for labels ∆; t;n ⊢ P :

∆; t1;n1 ⊢ P ∆(t1, t2) = (n1 − n2)

∆; t1;n1 ⊢ P ⊎ {t2 : 〈n2; _〉}
∆; t;n ⊢ ∅ (D-l-cons,D-l-nil)

Typing rffles for phasers ∆ ⊢ P :

∆ ⊢ P ∆; t;n ⊢ P

∆ ⊢ P ⊎ {t : 〈n; _〉} ∆ ⊢ ∅ (D-ph-cons,D-ph-nil)

Typing rffles for phaser maps ∆;N ⊢M :

∆ ⊢ P domP ⊆ N ∆;N ⊢M

∆;N ⊢M ⊎ {p : P}
∆;N ⊢ ∅

(T-p-map-cons,T-p-map-nil)

Figffre 6.1: Typing rffles for phasers and phaser maps.

• the di੖erence map ∆4

def
= {(t, t′) : 4} is ill formed for {t, t′} since ∆4(t

′, t)
is ffnde੗ned;

• the di੖erence map {(t, t′) : 0} is ill formed for {t, t′} becaffse ∆1(t
′, t) is

ffnde੗ned.

Jffdgement∆; t;n ⊢ P checks flhether the sffperstep di੖erence inP matches
the one in ∆ betfleen task name t and efiery t′ ∈ domP (rffle D-l-cons).
Jffdgement ∆ ⊢ P fieri੗es if the sffperstep di੖erences of the task names in P
respect the ones in ∆, by picking each task name in domP and comparing it
the others in P (rffle D-ph-cons). Jffdgement ∆ ⊢ M checks if the sffperstep
di੖erences inM respect the ones in ∆, by checking each phaser independently
(rffle D-pm-cons).

To sffmmarise, the type system enforces tflo rffles:

1. there are no dangling task names mentioned in the domain of each phaser
of the phaser map, flith respect to a gifien set N ;

2. the phaser map respects a gifien di੖erence map ∆ and a set N .
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For effiample, let N = {t1, t2, t3}, N ⊢ ∆, ∆(t1, t3) = 2, and ∆(t3, t2) = −1.
Phaser {t1 : (4,u), t2 : (3, a)} is flell-typed ffnder sffperstep di੖erence ∆.

D-ph-nil
∆ ⊢ ∅

D-l-nil
∆; t2; 3 ⊢ ∅

D-ph-cons
∆ ⊢ {t2 : (3, a)} ∆; t1; 4 ⊢ {l2 : (3, a)}

D-ph-cons
∆ ⊢ {t1 : (4,u), t2 : (3, a)}

flhere

D-l-nil
∆; t2; 3 ⊢ ∅

∆(t1, t3) = 2 ∆(t3, t2) = −1
transitifiity

∆(t1, t2) = 4− 3
D-l-cons

∆; t1; 4 ⊢ {t2 : (3, a)}

6.2 Tyfiing states
For typing task maps, there are three ill-formed task map con੗gffrations to
consider. First, that the boffnds of each task match effiactly the registered phasers
in the phaser map of the state. For effiample, the state

({

p : {t : (0, a)}
}

, {t : (∅, await; b)}
)

cannot redffce becaffse by rffle R-await and De੗nition 5.3.13 phaser name p
mffst be in the domain of the boffnds ∅ of task t, and fle hafie p /∈ ∅.

Second, that the program of each task mentions phaser names that are in the
phaser map of the state. he neffit state cannot redffce becaffse task t is trying to
adfiance a non-effiistent phaser named p.

(

∅, {t : (∅, adv(p); b)}
)

hird, that each tasks deregisters from all of its phasers ffpon completing so as
to afioid the creation of dangling task names. he state

({

p : {t : (1, a), t′ : (0, a)}
}

, {t : ({p : 0}, await; b), t′ : ({p : 0}, end)}
)

cannot redffce becaffse t′ terminated flithofft deregistering from phaser p.

De॑nition 6.2.1 (Typing rffles for task maps). he typing rules for task maps is
deटned in Fig. 6.2.

Jffdgement ⊢t M : Γ assigns a typing Γ to a phaser map M gifien a task
name t. he typing is constrffcted in sffch a flay that its domain contains the



78 CHAPTER 6. TYPE SYSTEM PROPERTIES

Typing rffles for actifiity permissions ⊢t M : Γ :

⊢t M : Γ t /∈ domP

⊢t M ⊎ {p : P} : Γ
⊢t ∅ : ∅ (T-perm-skip,T-perm-nil)

⊢t M : Γ P (t) = (_, a)
⊢t M ⊎ {p : P} : Γ ⊎ {p : a}

(T-perm-cons)

Typing rffles for boffnds Γ ⊢ B :

Γ ⊢ B

Γ ⊎ {p : a} ⊢ B ⊎ {p : n}
∅ ⊢ ∅ (T-b-c,T-b-n)

Typing rffles for tasks Ψ;Γ ⊢ τ :

Γ ⊢ B Γ ⊢ b : ∅

〈∅; ∅〉; Γ ⊢ (B, b)

Ψ ⊢ S 〈∅; ∅〉; Γ ⊢ (B, b)

Ψ; Γ ⊢ S ⊲ (B, b)
(T-t-r,T-t-f)

Typing rffles for task maps Σ;M ⊢ T :

⊢t M : Γ Ψ; Γ ⊢ τ Σ;M ⊢ T

Σ ⊎ {t : Ψ};M ⊢ T ⊎ {t : τ}
∅;M ⊢ ∅ (T-tm-c,T-tm-n)

Figffre 6.2: Typing rffles for permissions, boffnds, tasks, and task maps.

phaser names in flhich task name t is registered. For effiample, fle hafie that the
neffit derifiation holds.

T-perm-nil
⊢t ∅ : ∅

T-perm-cons
⊢t

{

p : {t : (0, a)}
}

: {p : a}
(6.1)

Jffdgement Γ ⊢ B checks if the domain of typing Γ matches the domain of
boffnds B. For effiample, boffnds {p : 0} are flell typed ffnder typing {p : a}.

T-b-n
∅ ⊢ ∅

T-b-c
{p : a} ⊢ {p : 0}

(6.2)

A (tree) node of di੖erences Ψ::=〈∆;Σ〉 pairs a map of children Σ and map
of di੖erences ∆. A Σ maps task names to nodes Ψ. Jffdgement Ψ;Γ ⊢ τ types a
task ffnder a node of di੖erences Ψ and a typing Γ. Typing a ੗nish task reqffires
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Typing rffles for abstract machines Ψ ⊢ S :

domT ⊢ ∆ ∆; domT ⊢M Σ;M ⊢ T

〈∆;Σ〉 ⊢
(

M,T
) (T-amach)

Figffre 6.3: Typing rffles for states.

a node of di੖erencesΨ to be able to check a nested states (rffle T-t-f), otherflise
the node of di੖erences mffst be empty 〈∅; ∅〉. he type system checks flhether
typing Γ is enoffgh to check the boffnds B and the program b of regfflar tasks,
rffle T-t-r. Fffrthermore, the offtcome of typing b is an empty typing, flhich
means the task mffst deregister from efiery phaser before terminating.

Jffdgement Σ;M ⊢ T types a task map T ffnder a map of nodes Σ and a
phaser mapM . he domain of Σ and of T mffst be eqffal, meaning that for each
task τ there is a node of di੖erencesΨ, rffle T-tm-c. For each task τ named t, the
type system checks task τ ffnder its registered phasers Γ and node di੖erencesΨ.

To sffmmarise, the type system enforces three rffles:

1. the phasers in flhich task t is registered flith (by inspecting the phaser
map) eqffals the ones in the task’s boffnds, rffles T-b-c and T-tm-c;

2. the free phaser names of any tasks’ instrffctions is registered phasers,
rffles T-t-r and T-perm-cons;

3. any task that terminates is not mentioned in the phaser map, rffle T-t-r.

De॑nition 6.2.2 (Typing rffles for states). he typing rules for task maps is
deटned in Fig. 6.3.

Jffdgement Ψ ⊢ S types a state S ffnder a node of di੖erences Ψ. Gifien a
node of di੖erences 〈∆;Σ〉, the type system ffses the map of di੖erences ∆ and
the domain of the task maps T to type the phaser mapM , thffs it ensffres the
absence of dangling task names and that the phaser map respects the phase
di੖erences in ∆. he map of tasks T is typed ffnder the map of nodes Σ and the
phaser mapM , meaning that for each task named t in the task map T (t) there
mffst be a node Σ(t) = Ψ.

6.3 Inversion
Infiersion lemmas serfie as the cornerstone for many of the resfflts fle establish.
hese are, nonetheless, an idiosyncrasy of offr choice to represent composed
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strffctffres flith maps (and sets). he gist behind these resfflts are: gifien a typing
relation for a map (like a task map) and a member of that map fle can deconstrffct
the map obtain the typing relations of its constitffents. For effiample, gifien a
flell-typed task map T and a member T (t) = τ , then fle shofl that there effiists
a task map T ′ sffch that T = T ′ ⊎ {t : τ}, task map T ′ is flell typed, and τ is
also flell typed. he proofs for these resfflts are ffninteresting and follofl by
indffction on the typing relation. In the remainder of the section fle establish
the infiersion property for typing argffments, typing task maps, inferring the
typing conteffit of a phaser map, and typing the di੖erences of a phaser.

Lemma 6.3.1. If Γ ⊢ s : Γ′ and p ∈ s, then there exist some arguments s′ and a
typing Γ′′ such that s = s′ ⊎ {p}, Γ′ = Γ′′ ⊎ {p : a}, Γ(p) = a, Γ ⊢ s′ : Γ′′.

Proof. he proof follofls by indffction on the typing relation. We perform an
infiersion of Γ ⊢ s : Γ′ and a case analysis on the derifiation.

• Case T-a-n
Γ ⊢ ∅ : ∅

We reach a contradiction since fle hafie that p ∈ ∅.

• Case T-a-c:
Γ(q) = a′ Γ ⊢ s1 : Γ1

Γ ⊢ (s1 ⊎ {q}) : Γ1 ⊎ {q : a′}

flhere s is s1 ⊎ {q} and Γ′ is Γ1 ⊎ {q : a}. If p = q, the case holds.
Otherflise, p 6= q and therefore p ∈ s1. Applying the indffction hypothesis
to Γ ⊢ s1 : Γ1 and p ∈ s1 fle get that there effiist some argffments s2 and
a typing Γ2 sffch that s1 = s2 ⊎ {p}, Γ1 = Γ2 ⊎ {p : a}, (i) Γ(p) = a, and
Γ ⊢ s2 : Γ2. We hafie that Γ′′ def

= Γ2 ⊎ {q : a} and s′ def
= s2 ⊎ {q}.

Hence,
(i) Γ(q) = a′ Γ ⊢ s2 : Γ2

T-a-c
Γ ⊢ (s2 ⊎ {q}) : Γ2 ⊎ {q : a′} def

=
Γ ⊢ s′ : Γ′′

Lemma 6.3.2. If Σ1;M ⊢ T1 and T1(t) = τ , then

1. Σ1 = Σ2 ⊎ {t : Ψ},

2. T1 = T2 ⊎ {t : τ},

3. ⊢t M : Γ,



6.3. INVERSION 81

4. Ψ;Γ ⊢ τ , and

5. Σ2;M ⊢ T2.

Proof. he proof follofls by indffction on the typing relation. We perform an
infiersion of Σ1;M ⊢ T and a case analysis on the derifiation.

• Case T-tm-n:
∅;M ⊢ ∅

flhere Σ1 is ∅ and T is ∅. We hafie that t ∈ domT , yet T def
= ∅, so this case

does not apply.

• Case T-tm-c:
(i) ⊢t1 M : Γ1 (ii) Ψ1; Γ1 ⊢ τ1 (iii) Σ3;M ⊢ T3

Σ3 ⊎ {t1 : Ψ1};M ⊢ T3 ⊎ {t1 : τ1}

flhere Σ1 is Σ3 ⊎ {t1 : Ψ1} and T1 is T3 ⊎ {t1 : τ1}. If t = t1, fle are done.
Otherflise, fle knofl that t 6= t1. Hence, t ∈ domT3 and by the indffction
hypothesis fle hafie that: (ifi) Σ3 = Σ4 ⊎ {t : Ψ}, (fi) T3 = T4 ⊎ {t : τ}
(3) ⊢t M : Γ, (4) Ψ;Γ ⊢ τ , and (fii) Σ4;M ⊢ T4.

Let Σ2

def
= Σ4 ⊎ {t1 : Ψ1}, hence (1) Σ1 = Σ2 ⊎ {t : Ψ}. Let T2

def
= T4 ⊎

{t1 : τ1}, fle hafie that (2) T1 = T2 ⊎ {t : τ}. We are let flith shofling (5),
in the follofling.

(i) ⊢t1 M : Γ1 (ii) Ψ1; Γ1 ⊢ τ1 (fii) Σ4;M ⊢ T4
T-tm-c

Σ4 ⊎ {t1 : Ψ1};M ⊢ T4 ⊎ {t1 : τ1} def
=

Σ2;M ⊢ T2

Lemma 6.3.3. If Γ1 ⊢ B1 and p ∈ domΓ1 ∨ p ∈ domB1, then there exist Γ2

and B2 such that Γ1 = Γ2 ⊎ {p : a}, B1 = B2 ⊎ {p : n}, and Γ2 ⊢ B2.

Proof. he proof follofls by indffction on the relation Γ! ⊢ B1. We perform a
case analysis on the derifiation tree of the last rffle applied.

(i) Γ3 ⊢ B3

Γ3 ⊎ {q : a′} ⊢ B3 ⊎ {q : m}

flhere Γ1 = Γ3 ⊎ {q : a′} and B1 = B3 ⊎ {q : m}. If p = q, fle are done.
Otherflise, fle hafie that p 6= q and therefore, (ii) p ∈ domΓ3 ∨ p ∈ domB3.
Applying the indffction hypothesis to (i) Γ3 ⊢ B3 and (ii) p ∈ domΓ3 ∨ p ∈
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domB3, yields that there effiist Γ4 and B4 sffch that (iii) Γ3 = Γ4 ⊎ {p : a},
(ifi) B3 = B4 ⊎ {p : n}, and (fi) Γ4 ⊢ B4. Let Γ2 = Γ4 ⊎ {q : a′} and B2 =
B4 ⊎ {q : m}. hffs,

(fi) Γ4 ⊢ B4

Γ4 ⊎ {q : a′} ⊢ B4 ⊎ {q : m}

Γ2 ⊢ B2

Lemma 6.3.4. If ⊢t M1 : Γ and t /∈ domM1(p), then there exist a phaser mapM2

and a phaser P such that

1. M1 =M2 ⊎ {p : P},

2. ⊢t M2 : Γ.

Proof. he proof follofls by indffction on the typing relation ⊢t M1 : Γ. Neffit,
fle perform a case analysis on the derifiation of the last rffle applied.

• Case T-perm-nil:
⊢t ∅ : ∅

flhereM is ∅ and Γ is ∅. We reach a contradiction becaffse p ∈ dom ∅.

• Case T-perm-skip:

(i) ⊢t M3 : Γ (ii) t /∈ domP ′

⊢t M3 ⊎ {q : P ′} : Γ

flhereM1 isM3 ⊎ {q : P ′}. If p = q, then fle are done. Otherflise, p 6= q,
thffs t /∈ domM3(p). Applying the indffction hypothesis to ⊢t M3 : Γ,
and t /∈ domM3(p) yields that there effiist a phaser map M4 sffch that
(iii) M3 = M4 ⊎

{

p : P
}

, (ifi) ⊢t M4 : Γ. Let M2 = M4 ⊎ {q : P ′} sffch
that (1)M1 =M2 ⊎ {p : P}.

(ifi) ⊢t M4 : Γ (ii) t /∈ domP ′

T-perm-skip
⊢t M4 ⊎ {q : P ′} : Γ def

=
(3) ⊢t M2 : Γ

• Case T-perm-cons:

(i) ⊢t M3 : Γ
′ (ii) P ′(t) = (m, a′)

⊢t M3 ⊎ {q : P ′} : Γ′ ⊎ {q : a′}
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flhere M1 is M3 ⊎ {q : P ′} and Γ is Γ′ ⊎ {q : a′}. If p = q, fle reach
a contradiction. Otherflise, fle hafie that p 6= q. Applying the indffc-
tion hypothesis to ⊢t M3 : Γ

′ and t /∈ domM3(p), resfflts in a phaser
mapM4 and a phaser P sffch that (iii)M3 =M4 ⊎{p : P}, (ifi) ⊢t M4 : Γ

′.
Let (1)M2 =M4 ⊎ {q : P ′}. hffs,

(fi) ⊢t M4 : Γ
′ (ii) P ′(t) = (m, a′)

T-perm-cons
⊢t M4 ⊎ {q : P ′} : Γ′ ⊎ {q : a′} def

=
⊢t M2 : Γ

Lemma 6.3.5. If ⊢t M1 : Γ1 and t ∈ domM1(p), then there exist a phaser
mapM2, a typing Γ2, a phaser P , and a ठag a such that

1. M1 =M2 ⊎ {p : P},

2. Γ1 = Γ2 ⊎ {p : a}, and

3. ⊢t M2 : Γ2.

Proof. he proof follofls by indffction on the typing relation ⊢t M1 : Γ1. Neffit,
fle perform a case analysis on the derifiation of the last rffle applied.

• Case T-perm-nil:
⊢t ∅ : ∅

flhereM is ∅ and Γ is ∅. We reach a contradiction becaffse t ∈ dom ∅(p).

• Case T-perm-skip:
(i) ⊢t M3 : Γ1 (ii) t /∈ domP ′

⊢t M3 ⊎ {q : P ′} : Γ1

flhere M1 is M3 ⊎ {q : P ′}. If p = q, then fle are done, as fle reach a
contradiction. Otherflise, p 6= q, thffs t ∈ domM3(p). Applying the
indffction hypothesis to ⊢t M3 : Γ1, and t ∈ domM3(p) yields that there
effiist a phaser mapM4 and a typing Γ2 sffch that (iii)M3 =M4 ⊎

{

p : P
}

,
(2) Γ1 = Γ2 ⊎ {p : a}, and (ifi) ⊢t M4 : Γ2. LetM2 = M4 ⊎ {q : P ′} sffch
that (1)M1 =M2 ⊎ {p : P}.

(ifi) ⊢t M4 : Γ2 (ii) t /∈ domP ′

T-perm-skip
⊢t M4 ⊎ {q : P ′} : Γ2 def

=
(3) ⊢t M2 : Γ2
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• Case T-perm-cons:
(i) ⊢t M3 : Γ3 (ii) P ′(t) = (m, a′)

⊢t M3 ⊎ {q : P ′} : Γ3 ⊎ {q : a′}

flhere M1 is M3 ⊎ {q : P ′} and Γ is Γ′ ⊎ {q : a′}. If p = q, fle are done.
Otherflise, fle hafie that p 6= q. Applying the indffction hypothesis to
⊢t M3 : Γ3 and t ∈ domM1(p), resfflts in a phaser mapM4, a typing Γ4,
a phaser P , and a ੘ag a sffch that (iii) M3 = M4 ⊎ {p : P}, (ifi) Γ3 =

Γ4 ⊎ {p : a}, and (fi) ⊢t M4 : Γ4. Let (1)M2 =M4 ⊎ {q : P ′} and (2) Γ2

def
=

Γ4 ⊎ {q : a′}. hffs,

(fi) ⊢t M4 : Γ4 (ii) P ′(t) = (m, a′)
T-perm-cons

⊢t M4 ⊎ {q : P ′} : Γ4 ⊎ {q : a′} def
=

⊢t M2 : Γ2

Lemma 6.3.6. If∆;N ⊢M1 andM1(p) = P , then there exists a phaser mapM2

such that:

1. M1 =M2 ⊎ {p : P},

2. ∆ ⊢ P ,

3. domP ⊆ N , and

4. ∆;N ⊢M2.

Proof. We infiert the hypothesis and get the follofling proof tree.
(i) ∆ ⊢ P ′ (ii) domP ′ ⊆ N (iii) ∆;N ⊢M3

∆;N ⊢M3 ⊎ {p′ : P ′}

flhere phaser mapM isM3⊎{p′ : P ′}. If p = p′ fle are done. Otherflise, p 6= p′,
and therefore (ifi) p ∈ domM3.

Applying the indffction hypothesis to (iii) ∆;N ⊢M3 and (ifi) p ∈ domM3,
yields that (fi)M3 =M4 ⊎ {p : P}, (fii) ∆ ⊢ P and fle get (2), (fiii) domP ⊆ N

and fle get (3), and (fiiii)∆ ⊢M4. We are let flith shofling (1) and (4). LetM2 =
M4 ⊎ {p′ : P ′}.

(i) ∆ ⊢ P ′ (ii) domP ′ ⊆ N (fiiii) ∆;N ⊢M4

T-p-map-cons
∆;N ⊢M4 ⊎ {p′ : P ′} def

=
(4) ∆;N ⊢M2
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Lemma 6.3.7. If ∆; t1;n1 ⊢ P1 and P1(t2) = (n2, a2), then there exists a
phaser P2 such that

1. P1 = P2 ⊎ {t2 : (n2, a2)},

2. ∆; t1;n1 ⊢ P1, and

3. ∆(t1, t2) = n1 − n2.

Proof. he proof follofls by indffction on the derifiation of the strffctffre of
੗rst hypothesis. By infierting hypothesis ∆; t1;n1 ⊢ P1 fle get the follofling
derifiation.

(i) ∆; t1;n1 ⊢ P3 (ii) ∆(t1, t3) = (n1 − n3)

∆; t1;n1 ⊢ P3 ⊎ {t3 : (n3, _)}
If t3 = t2, then fle are done. Otherflise, t3 6= t2 and therefore t2 ∈ domP3. Let
(iii) P3(t2) = (n2, a2). Applying the indffction hypothesis to (i) ∆; t1;n1 ⊢
P3 and (iii), yields that there effiists a phaser P4 sffch that (ifi) P3 = P4 ⊎
{t2 : (n2, a2)}, (fi) ∆; t1;n1 ⊢ P4, and (fii) ∆(t1, t2) = n1 − n2 so fle get (3).
Let P2 = P4 ⊎ {t3 : (n3, a3)}. We hafie that (1) P2 ⊎ {t2 : (n2, a2)}.

(fi) ∆; t1;n1 ⊢ P4 (iii) ∆(t1, t3) = n1 − n3

D-l-cons
∆; t1;n1 ⊢ P4 ⊎ {t3 : (n3, a3)} def

=
(2) ∆; t1;n1 ⊢ P2

Lemma 6.3.8. If N ⊢ ∆, ∆ ⊢ P1, P1(t) = (n, a), then there exists P2 such
that P1 = P2 ⊎ {p : (n, a)}, ∆ ⊢ P2, and ∆; t;n ⊢ P2.

Proof. he proof follofls by indffction on the strffctffre of ∆ ⊢ P1. We infiert the
hypothesis and obtain the follofling derifiation.

(i) ∆ ⊢ P3 (ii) ∆; t′;m ⊢ P3

∆ ⊢ P3 ⊎ {t′ : (m, a′)}

If t = t′, then fle are done. Otherflise, t 6= t′ and therefore t ∈ domP3.
Hence (iii) P3(t) = (n, a). Applying the indffction hypothesis to (i) ∆ ⊢ P3

and (iii) P3(t) = (n, a), yields that (ifi) P3 = P4 ⊎ {t : (n, a)}, (fi) ∆ ⊢ P4, and
(fii) ∆; t;n ⊢ P4

Since (ii) ∆; t′;m ⊢ P3 and (iii) P3(t) = (n, a), then by Lemma 6.3.7 there
effiists a phaser P ′

4 sffch that P3 = P ′
4 ⊎{t : (n, a)}, ∆; t′;m ⊢ P ′

4, and ∆(t′, t) =
m − n. Gifien that P3 = P ′

4 ⊎ {t : (n, a)} and that P3 = P4 ⊎ {t : (n, a)},
then P4 = P ′

4. hffs, fle hafie that (fiii) ∆; t′;m ⊢ P4.
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Let P2

def
= P4 ⊎ {t′ : (m, a′)}.

(fii) ∆ ⊢ P4 (fiii) ∆; t′;m ⊢ P4

D-ph-cons
∆ ⊢ P4 ⊎ {t′ : (m, a′)} def

=
(2) ∆ ⊢ P2

Finally,

(fii) ∆; t;n ⊢ P4

∆(t′, t) = (m− n)
Infi. N ⊢ ∆

∆(t, t′) = (n−m)
D-l-cons

∆; t;n ⊢ P4 ⊎ {t′ : (m, a′)} def
=

(3) ∆; t;n ⊢ P2

6.4 he domain of tyfiing contexts
We establish some properties abofft the domain of typing conteffits.

1. any member of a flell-typed s mffst be in the in the domain of its typing
conteffits;

2. any phaser in the inferred typing’s domain of a phaser map, is also in the
domain of that phaser map;

3. the typing relation ⊢t M : Γ constrffcts typing Γ as

{p : a | ∀p ∈ domM : M(p)(t) = (n, a)}

Lemma 6.4.1. If Γ ⊢ s : Γ′, then Γ′ ⊆ Γ and domΓ′ = s.

Proof. he proof follofls by indffction on the typing relation. We do a case
analysis on the derifiation of the last rffle applied.

• Case T-a-n:
Γ ⊢ ∅ : ∅

flhere s is ∅ and Γ′ is ∅. We hafie that s = ∅ = dom ∅.

• Case T-a-c:
(i) Γ(p) = a (ii) Γ ⊢ s′ : Γ′′

Γ ⊢ s′ ⊎ {p} : Γ′′ ⊎ {q : a}

flhereΓ′ isΓ′′⊎{q : a} and s is s′⊎{p}. Applying the indffction hypothesis
to (ii) Γ ⊢ s′ : Γ′′ fle get that Γ′′ ⊆ Γ and domΓ′′ = s′. hffs, domΓ′′ ∪
{p} = s′ ∪ {p}. And, by de੗nition fle hafie domΓ′ = s, so Γ′ ⊆ Γ.
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Lemma 6.4.2. If ⊢t M : Γ, then domΓ ⊆ domM .

Proof. he proof follofls by indffction on the typing relation. We perform an
infiersion and a case analysis on the derifiation of the last rffle applied.

• Case T-perm-nil:
⊢t ∅ : ∅

flhereM is ∅ and Γ is ∅. We hafie that dom ∅ ⊆ dom ∅ by de੗nition.

• Case T-perm-skip:
⊢t M

′ : Γ t /∈ domP

Γ ⊢t M ′ ⊎ {p : P} : Γ

flhere M is M ′ ⊎ {p : P}. Applying the indffction hypothesis to ⊢t

M ′ : Γ yields that domΓ ⊆ domM ′. Gifien that domΓ ⊆ domM ′

and domM ′ ⊆ domM , then domΓ ⊆ domM .

• Case T-perm-cons:

⊢t M
′ : Γ′ P (t) = (_, a)

Γ′ ⊢l M ′ ⊎ {p : P} : Γ′ ⊎ {p : a}

flhereM isM ′ ⊎ {p : P} and Γ is Γ′ ⊎ {p : a}. Applying the indffction
hypothesis to ⊢t M

′ : Γ′ yields that domΓ′ ⊆ domM ′. So, domΓ′∪{p} ⊆
domM ′ ∪ {p} and therefore domΓ ⊆ domM .

Lemma 6.4.3. If ⊢t M : Γ, then Γ(p) = a ⇐⇒ M(p)(t) = (n, a).

Proof. ( =⇒ )
he proof follofls by indffction on the typing relation ⊢t M : Γ. Neffit, fle

perform a case analysis on the derifiation of the last rffle applied.

• Case T-perm-skip:
⊢t M

′ : Γ t /∈ domP

⊢t M ′ ⊎ {q : P} : Γ

flhereM isM ′ ⊎ {q : P}.

– Case p = q. In this case, fle hafie that p /∈ domM ′. Hence,
Lemma 6.4.2 and ⊢t M

′ : Γ, fle hafie that p /∈ domΓ and fle reach a
contradiction.
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– Case p 6= q. Applying the indffction hypothesis to ⊢t M
′ : Γ and p ∈

domΓ yields thatM ′(p)(t) = (n, a) and Γ(p) = a. As q /∈ domM ′,
then fle get thatM(p)(t) = (n, a).

• Case T-perm-nil:
⊢t ∅ : ∅

flhereM is ∅ and Γ is ∅. We reach a contradiction becaffse p ∈ domΓ
def
=

p ∈ dom ∅.

• Case T-perm-cons:
⊢t M

′ : Γ′ P (t) = (n, a)

⊢t M ′ ⊎ {q : P} : Γ′ ⊎ {q : a′}

flhere M is M ′ ⊎ {q : P} and Γ is Γ′ ⊎ {q : a′}. If p = q, fle are done.
Otherflise, fle hafie that p 6= q. Applying the indffction hypothesis to
⊢t M

′ : Γ′ and p ∈ domΓ′, resfflts in M ′(p)(t) = (n, a) and Γ′(p) = a.
hffs,M(p)(t) = (n, a) and Γ(p) = a.

( ⇐= )he proof follofls by indffction on the typing relation ⊢t M : Γ. Neffit,
fle perform a case analysis on the derifiation of the last rffle applied.

• Case T-perm-skip:
⊢t M

′ : Γ t /∈ domP

⊢t M ′ ⊎ {q : P} : Γ

flhere M is M ′ ⊎ {q : P}. We hafie that q 6= p, otherflise fle get a
contradiction, as t ∈ domP and t /∈ domP . Applying the indffction
hypothesis to ⊢t M

′ : Γ andM ′(p)(t) = (n, a) (since p ∈ domM ′), yields
Γ(t) = a.

• Case T-perm-nil:
⊢t ∅ : ∅

flhereM is ∅ and Γ is ∅. he case does not apply as domM 6= ∅.

• Case T-perm-cons:
⊢t M

′ : Γ′ P (t) = (_, a)
⊢t M ′ ⊎ {q : P} : Γ′ ⊎ {q : a′}

flhere M is M ′ ⊎ {q : P} and Γ is Γ′ ⊎ {q : a′}. If p = q, fle are done.
Otherflise, fle hafie that p 6= q. Applying the indffction hypothesis to
⊢t M

′ : Γ′ andM ′(p)(t) = (n, a), resfflts in Γ′(t) = a. Hence, Γ(t) = a.
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6.5 Strengthening
Strengthening is flhen fle are able to generalise the conteffit necessary to type
gifien a term. he intffition behind ffseffflness of these lemmas is that flith them
fle can ۠forgetۡ certain restrictions on the let-hand side of the tffrnstile (the
conteffit). We establish the strengthening of the typing for argffments, of the
phaser map flhen inferring a typing, of the phaser map flhen checking task
maps, of the task names flhen checking phaser maps, and of task names flhen
checking di੖erences.

Lemma 6.5.1. If Γ ⊎ {p : a} ⊢ s : Γ′ and p /∈ s, then Γ ⊢ s : Γ′.

Proof. By infiersion of the hypothesis fle get the follofling premises.

(i) (Γ ⊎ {p : a})(q) = a′ (ii) Γ ⊎ {p : a} ⊢ s′ : Γ′′

Γ ⊎ {p : a} ⊢ (s′ ⊎ {q}) : Γ′′ ⊎ {q : a′}

flhere s def
= s′ ⊎ {q}. Since p /∈ s (hypothesis) and s def

= s′ ⊎ {q}, then p /∈ s′.
Applying the indffction hypothesis to (ii) Γ ⊎ {p : a} ⊢ s′ : Γ′′ and the later, fle
get that (iii) Γ ⊢ s′ : Γ′′. hffs,

(i) (Γ ⊎ {p : a})(q) = a′ p 6= q

Γ(q) = a′ (iii) Γ ⊢ s′ : Γ′′

T-a-c
Γ ⊢ (s′ ⊎ {q}) : Γ′′ ⊎ {q : a′}

Lemma 6.5.2. If

1. ⊢t′ M ⊎
{

p : P ⊎ {t : v}
}

: Γ and

2. t /∈ domT ,

then ⊢t′ M ⊎
{

p : P
}

: Γ.

Proof. LetM1

def
= M ⊎

{

p : P ⊎ {t : v}
}

. We test if t ∈ domM1(p):

• Case t ∈ domM1(p).
From Lemma 6.3.5 and ⊢t′ M1 : Γ and t ∈ domM1(p) yields that there
effiists a typing Γ′ sffch that (i) Γ = Γ′ ⊎ {p : a} and (ii) ⊢t′ M : Γ′. Hence,

(i) ⊢t′ M : Γ′

(P ⊎ {t : v})(t′) = (n, a) t ∈ domM1(p)

P (t′) = (n, a)
T-perm-cons

⊢t′ M ⊎ {p : P} : Γ′ ⊎ {p : a}
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• Case t /∈ domM1(p).
From Lemma 6.3.4 and ⊢t′ M1 : Γ and t /∈ domM1(p) yields that (i) ⊢t′

M : Γ. hffs,

(i) ⊢t′ M : Γ

t /∈ domM1(p)

t′ /∈ domP
T-perm-skip

⊢t′ M ⊎ {p : P} : Γ

Lemma 6.5.3. If

1. Σ;M ⊎
{

p : P ⊎ {t : v}
}

⊢ T and

2. t /∈ domT ,

then Σ′;M ⊎
{

p : P
}

⊢ T .

Proof. he proof follofls by indffction on the typing relation (1). Neffit, fle
perform a case analysis on the derifiation of the last rffle applied.

• Case T-tm-n:
∅;M ⊎

{

p : P ⊎ {t : v}
}

⊢ ∅

he case holds by direct application of rffle T-tm-n.

• Case T-tm-c:

(i) ⊢t′ M1 : Γ (ii) Ψ;Γ ⊢ τ (iii) Σ′′;M1 ⊢ T
′

Σ′′ ⊎ {t′ : Ψ};M1 ⊢ T ′ ⊎ {t′ : τ}

flhereΣ isΣ′′⊎{t′ : Ψ},M1 isM⊎
{

p : P ⊎ {t′ : v}
}

and T is T ′⊎{t′ : τ}.
By Lemma 6.5.2 and t /∈ domT fle get that (ifi) ⊢t′ M ⊎

{

p : P
}

: Γ.
Applying the indffction hypothesis to Σ′′;M1 ⊢ T ′ and t /∈ domT ′ (as
t /∈ domT ) yields (fi) Σ′′;M ⊎

{

p : P
}

⊢ T ′ hffs, flith rffle T-tm-c fle
get the follofling tree.

(ifi) ⊢t′ M ⊎
{

p : P
}

: Γ (ii) Ψ;Γ ⊢ τ (fi) Σ′′;M ⊎
{

p : P
}

⊢ T ′

Σ′′ ⊎ {t′ : Ψ};M1 ⊢ T
′ ⊎ {t′ : τ} def

=
Σ′;M ⊎

{

p : P
}

⊢ T
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Lemma 6.5.4. If ∆;N ⊢M and ⊢t M : ∅, then ∆;N \ {t} ⊢M .

Proof. he proof follofls by indffction on relation ∆;N ⊢ M . We do a case
analysis on the derifiation of the last rffle applied.

• Case T-p-map-nil:
∆;N ⊢ ∅

flhereM is ∅.
he proof conclffdes flith the application of rffle T-p-map-nil.

• Case T-p-map-cons:

(i) ∆ ⊢ P (ii) domP ⊆ N (iii) ∆;N ⊢M ′

∆;N ⊢M ′ ⊎ {p : P}

flhereM isM ′ ⊎ {p : P}.
Applying the indffction hypothesis to (iii) ∆;N ⊢M ′ and ⊢t M : ∅ yields
that (ifi) ∆;N \ {t} ⊢ M ′. From Lemma 6.4.3 and ⊢t M : ∅ fle get that
(fi) t /∈ domP . Hence, fle can apply rffle T-p-map-cons to conclffde this
case.

(i) ∆ ⊢ P

(fi) t /∈ domP (ii) domP ⊆ N

domP ⊆ N \ {t} (ifi) ∆;N \ {t} ⊢M ′

∆;N \ {t} ⊢M ′ ⊎ {p : P}

Lemma 6.5.5. If N ⊢ ∆, then N \ {t} ⊢ ∆.

Proof. We infiert N ⊢ ∆ and obtain

(i) (N,≤∆) is a total ordering
(ii) ∀t1, t2 ∈ N : ∆(t1, t2) = z =⇒ ∆(t2, t1) = −z

N ⊢ ∆

By De੗nition 6.1.3 and (N,≤∆) is a total ordering, then (N \ {t},≤∆) is a total
ordering. From (ii) fle get ∀t1, t2 ∈ N \{t} : ∆(t1, t2) = z =⇒ ∆(t2, t1) = −z.

Hence, fle conclffde the proof by applying rffle D-wf.

Lemma 6.5.6. If 〈∆;Σ〉 ⊢
(

M,T ⊎ {t : (B, end)}
)

, then 〈∆;Σ〉 ⊢
(

M,T
)

.
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Proof. By infierting the hypothesis fle get

(i) N ⊢ ∆ (ii) ∆;N ⊢M (iii) Σ;M ⊢ T ⊎ {t : (B, end)}

〈∆;Σ〉 ⊢
(

M,T ⊎ {t : (B, end)}
)

flhere N = domT ∪ {t}. Infierting (iii) yields the follofling premises

(ifi) ⊢t M : ∅

∅ ⊢ ∅ ∅ ⊢ end : ∅

〈∅; ∅〉; Γ ⊢ (∅, end) (fi) Σ′;M ⊢ T

Σ′ ⊎ {t : 〈∅; ∅〉};M ⊢ T ⊎ {t : (∅, end)}

flhere Σ is Σ′ ⊎ {t : 〈∅; ∅〉} and B is ∅. Since fle hafie (ii) ∆;N ⊢ M and
(ifi) ⊢t M : ∅, then by Lemma 6.5.4 fle hafie (fii) ∆; domT ⊢ M . Since fle
hafie (i) N ⊢ ∆, then by Lemma 6.5.5 fle hafie (fiii) domT ⊢ ∆. he proof
conclffdes by applying (fiii), (fii), and (fi) to rffle T-amach.



Chapter Sefien

Subject reduction
A type system enjoys the property of sffbject redffction if the redffction relation
preserfies flell-typedeness. he objectifie is to shofl that, for any flell-typed
term, redffction alflays yields typable terms. his property florks as a ۠sanity
checkۡ of type systems.

To ffnderstand the basic idea behind sffbject redffction, the reader can proceed
to the proof of Lemma 7.10.2. he proof is trifiial, as fle need only to ensffre that
program concatenation preserfies the typing Γ.

he chapter is difiided into one section per redffction relation, plffs a section
for the main resfflt (heorem 7.11.1).

7.1 Async

De॑nition 7.1.1. We deटne function copyD(ta, tb,∆)
def
= ∆′. Let ∆′(t, t′) =

∆(tσ, t′σ), where σ = [ta/tb].

Lemma 7.1.1. If N ⊢ ∆, then N ∪ {t′} ⊢ copyD(t, t
′,∆).

Proof. Let copyD(t, t
′,∆) = ∆′.

1. We shofl that if t1, t2 ∈ N ∪ {t′} and ∆′(t1, t2) = z, then ∆(t2, t1) = −z.
From De੗nition 7.1.1 and ∆′(t1, t2) = z, fle hafie that ∆(t1σ, t2σ) =
z. Bfft fle knofl that N ⊢ ∆, thffs ∆(t2σ, t1σ) = −z and therefore
From De੗nition 7.1.1 ∆′(t1, t2) = z.

2. We nofl shofl that (N ∪ {t′},≤∆′) is a total ordering. Sffbstitfftion σ =
[t/t′] is an injectifie fffnction ofier N , hence fle can state that ≤∆2

is an
ordering indffced by σ on N , de੗ned by:

∀t1, t2 ∈ N ∪ {t′} : t1 ≤∆′ t2 ⇐⇒ t1σ ≤∆ t2σ

Since (N,≤∆) is a total ordering and σ is an injectifie fffnction from
N∪{t′} toN , then≤∆′ (the ordering indffced by σ) is also a total ordering.

93
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Applying rffle D-wf to (1) and (2) conclffdes this proof.

Lemma 7.1.2. If ∆; t;n ⊢ P and t2 /∈ domP , then copyD(t1, t2,∆); t;n ⊢ P .

Proof. he proof follofls by indffction on the typing relation. We perform a case
analysis on the derifiation of the last rffle applied.

• Case D-l-nil:
∆; t;n ⊢ ∅

he case holds flith the application of rffle D-l-nil.

• Case D-l-cons:
(i) ∆; t;n ⊢ P ′ (ii) ∆(t, t′) = (n− n′)

∆; t;n ⊢ P ′ ⊎ {t : 〈n′; a〉}

flhere P is P ′ ⊎ {t : 〈n′; a〉}. Let ∆′ = copyD(t1, t2,∆). Applying the
indffction hypothesis to ∆; t;n ⊢ P ′ and t2 /∈ domP ′ (as t2 /∈ domP ),
fle get (iii) ∆′; t;n ⊢ P ′. Since t 6= t2 and t′ 6= t2, then by De੗nition 7.1.1
∆(t, t′) = ∆′(t, t′) and therefore ∆′(t, t′) = (n− n′). Hence,

(iii) ∆′; t;n ⊢ P ′ (ifi) ∆′(t, t′) = (n− n′)
D-l-cons

∆′; t;n ⊢ P ′ ⊎ {t : 〈n′; a〉}

Lemma 7.1.3. If ∆ ⊢ P and t2 /∈ domP , then copyD(t1, t2,∆) ⊢ P .

Proof. he proof follofls by indffction on ∆ ⊢ P . We perform a case analysis
on the derifiation of the last rffle applied.

• Case D-ph-nil:
∆ ⊢ ∅

he proof for this cases consists of the direct application of rffle D-ph-nil.

• Case D-ph-cons:
(i) ∆ ⊢ P ′ (ii) ∆; t;n ⊢ P ′

∆ ⊢ P ′ ⊎ {t : 〈n; a〉}

flhere P is P ′ ⊎ {t : 〈n; a〉}. Let ∆′ = copyD(t1, t2,∆). Applying the
indffction hypothesis on (i) ∆ ⊢ P ′ and t2 /∈ domP yields (iii) ∆′ ⊢ P ′.
With Lemma 7.1.2, (ii) ∆; t;n ⊢ P ′, and t2 /∈ domP (hypothesis), fle
get (ifi) ∆′; t;n ⊢ P ′.
herefore,

(iii) ∆′ ⊢ P ′ (ifi) ∆′; t;n ⊢ P ′

∆′ ⊢ P ′ ⊎ {t : 〈n; a〉}
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Lemma 7.1.4. If ∆; t1;n ⊢ P and t2 /∈ domP , then copyD(t1, t2,∆); t2;n ⊢ P .

Proof. he proof follofls by indffction on the typing relation. We perform a case
analysis on the derifiation of the last rffle applied.

• Case D-l-nil:
∆; t1;n ⊢ ∅

he case holds flith the application of rffle D-l-nil.

• Case D-l-cons:

(i) ∆; t1;n ⊢ P ′ (ii) ∆(t1, t) = (n−m)

∆; t1;n ⊢ P ′ ⊎ {t : 〈m; a′〉}

flhere P is P ′ ⊎ {t : 〈m; a′〉}. Let ∆′ = copyD(t1, t2,∆). Applying the
indffction hypothesis to ∆; t1;n ⊢ P ′ and t2 /∈ domP ′ (as t2 /∈ domP )
resfflts in (iii) ∆′; t2;n ⊢ P ′. Gifien that t1 6= t2 and t 6= t2, then by
De੗nition 7.1.1 ∆′(t1, t) = ∆(t1, t), thffs (ifi) ∆′(t1, t) = (n−m). hffs,

(iii) ∆; t1;n ⊢ P ′ (ifi) ∆(t1, t) = (n−m)
D-l-cons

∆; t1;n ⊢ P ′ ⊎ {t : 〈m; a′〉}

Lemma 7.1.5. If N ⊢ ∆, ∆ ⊢ P , P (t1) = v, t2 /∈ domP , then

copyD(t1, t2,∆) ⊢ P ⊎ {t2 : v}

Proof. Let v = 〈n; a〉 and ∆′ = copyD(t1, t2,∆). Since fle hafie N ⊢ ∆, ∆ ⊢
P , and P (t1) = 〈n; a〉, then there effiists P ′ sffch that P = P ′ ⊎ {p : 〈n; a〉},
(i) ∆ ⊢ P ′, and (ii) ∆; t1;n ⊢ P ′. By hypothesis fle hafie that t2 /∈ domP

and fle knofl that P = P ′ ⊎ {p : 〈n; a〉}, then (iii) t2 /∈ domP ′. Applying
Lemma 7.1.4 to (ii) ∆; t1;n ⊢ P ′ and (iii) t2 /∈ domP ′, yields (ifi) ∆′; t2;n ⊢ P ′.
By infierting N ⊢ ∆, fle hafie that ≤∆ is symmetric and t1 ∈ N , thffs t1 ≤∆ t1
and therefore from De੗nition 6.1.1 (fi) ∆(t1, t1) = 0. Hence, fle hafie the
follofling premise (fii).

(ifi) ∆′; t2;n ⊢ P ′

(fi) ∆(t1, t1) = 0 ([t1/t2])(t2) = t1
De੗nition 7.1.1

∆′(t2, t1) = 0
D-l-cons

∆′; t2;n ⊢ P ′ ⊎ {t1 : 〈n; a〉} def
=

∆′; t2;n ⊢ P
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herefore,

∆ ⊢ P t2 /∈ domP
Lemma 7.1.3

∆′ ⊢ P (fii) ∆′; t2;n ⊢ P
D-ph-cons

∆′ ⊢ P ⊎ {t2 : 〈n; a〉}

Lemma 7.1.6. IfN ⊢ ∆,∆;N ⊢M1,M2 = copy(s, t, t′,M1), and t′ /∈ N , then

copyD(t, t
′,∆);N ∪ {t′} ⊢M2

Proof. Let ∆′ def
= copyD(t, t

′,∆) and N ′ = N ∪ {t′}. he proof follofls by indffc-
tion onM ′ = copy(s, t, t′,M). We perform a case analysis on the derifiation of
the last rffle applied.

• Case Cpy-nil:
copy(∅, t, t′, ∅) = ∅

flhereM1 is ∅. he case conclffdes flith rffle T-p-map-nil.

• Case Cpy-cons:

(i) copy(s, t, t′,M) =M ′ (ii) P (t) = v

copy(s ⊎ {p}, t, t′,M ⊎ {p : P}) =M ′ ⊎
{

p : P ⊎ {t′ : v}
}

flhereM1 isM ⊎{p : P} andM2 isM ′⊎
{

p : P ⊎ {t′ : v}
}

. Let (iii) P ′ def
=

P ⊎ {t′ : v}. With Lemma 6.3.6, ∆;N ⊢ M1, and M1(p) = P , fle get
(ifi) ∆ ⊢ P , (fi) domP ⊆ N , and (fii) ∆;N ⊢M .

(a) Since fle hafie that (fi) domP ⊆ N and t′ /∈ N (hypothesis), then
(fiii) t′ /∈ domP . From Lemma 7.1.5,N ⊢ ∆ (hypothesis), (ifi)∆ ⊢ P ,
(ii) P (t) = v, and (fiii) t′ /∈ domP , fle get that ∆′ ⊢ P ′.

(b) he follofling tree holds.

domP ⊆ N
=

domP ∪ {t′} ⊆ N ∪ {t′} def
=

domP ′ ⊆ N ′

(c) Applying the indffction hypothesis to N ⊢ ∆ (hyp.), (fii) ∆;N ⊢M ,
(i) copy(s, t, t′,M) = M ′, (fii) ∆;N ⊢ M , and t′ /∈ N (hypothesis)
to obtain ∆′;N ′ ⊢M ′.



7.1. ASYNC 97

Hence,

(a) ∆′ ⊢ P ′ (b) domP ′ ⊆ N ′ (c) ∆′;N ′ ⊢M ′

T-p-map-cons
∆′;N ′ ⊢M ′ ⊎

{

p : P ′
}

def
=

copyD(t, t
′,∆);N ∪ {t′} ⊢M2

• Case Cpy-skip:

copy(s, t, t′,M) =M ′ p /∈ s

copy(s, t, t′,M ⊎ {p : P}) =M ′ ⊎ {p : P}

With Lemma 6.3.6, ∆;N ⊢ M1, and M1(p) = P , fle get (ifi) ∆ ⊢ P ,
(fi) domP ⊆ N , and (fii) ∆;N ⊢M .

(a) From Lemma 7.1.3, (ifi) ∆ ⊢ P , and t2 /∈ domP , fle get that ∆′ ⊢ P .
(b) he follofling tree holds.

domP ⊆ N
∪

domP ⊆ N ∪ {t′} def
=

domP ⊆ N ′

(c) We apply the indffction hypothesis toN ⊢ ∆ (hypothesis), (fii)∆;N ⊢
M , (i) copy(s, t, t′,M) = M ′, and t′ /∈ N (hypothesis) to obtain
∆′;N ′ ⊢M ′.

Hence,

(a) ∆′ ⊢ P (b) domP ⊆ N ′ (c) ∆′;N ′ ⊢M ′

T-p-map-cons
∆′;N ′ ⊢M ′ ⊎

{

p : P
}

def
=

copyD(t, t
′,∆);N ∪ {t′} ⊢M2

Lemma 7.1.7. If N ⊢ ∆, ∆;N ⊢ M ,M ′ = copy(s, t, t′,M), and t′ /∈ N , then
there exists a ∆′ such that N ∪ {t′} ⊢ ∆′ and ∆′;N ∪ {t′} ⊢M ′.

Proof. Let ∆′ = copyD(t, t
′,∆). From Lemma 7.1.1 and N ⊢ ∆ fle get

N ∪ {t′} ⊢ ∆′

From Lemma 7.1.6, N ⊢ ∆ (hypothesis), ∆;N ⊢ M (hypothesis), M ′ =
copy(s, t, t′,M) (hypothesis), and t′ /∈ N , then ∆′;N ∪ {t′} ⊢M ′.
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Lemma 7.1.8. If ⊢t M : Γ, copy(s, t1, t2,M) =M ′, and t 6= t2, then ⊢t M
′ : Γ.

Proof. he proof follofls by indffction on copy(s, t1, t2,M) =M ′. We perform
a case analysis on the derifiation of the last rffle applied.

• Case Cpy-nil:
copy(∅, t1, t2, ∅) = ∅

flhereM is ∅, s is ∅, andM ′ is ∅. he case holds by hypothesis ⊢t ∅ : Γ.

• Case Cpy-cons:

(i) copy(s′, t1, t2,M1) =M2 (ii) P (t1) = v

copy(s′ ⊎ {p}, t1, t2,M1 ⊎ {p : P}) =M2 ⊎
{

p : P ⊎ {t2 : v}
}

flhereM isM1⊎{p : P}, s is s′ ⊎ {p}, andM ′ isM2⊎
{

p : P ⊎ {t2 : v}
}

.
We test the membership of t ∈ domP .

– Case t ∈ domM(p). Applying Lemma 6.3.5 to ⊢t M : Γ, and t ∈
domM(p), yields that there effiist a typing Γ′ sffch that (iii) P (t) =
(n, a), Γ = Γ′ ⊎ {p : a}, and ⊢t M1 : Γ

′. Applying the indffction
hypothesis to the later, (i) copy(s′, t1, t2,M1) = M2, and t 6= t2
(hypothesis), fle get that (ifi) ⊢t M2 : Γ

′. Hence,

(ifi) ⊢t M2 : Γ
′ (iii) P (t) = (_, a)

T-perm-cons
⊢t M2 ⊎ {p : P} : Γ′ ⊎ {p : a}

– Case t /∈M(p).
Applying Lemma 6.3.4 to ⊢t M : Γ and t /∈ domM(p) fle get that
⊢t M1 : Γ. With the indffction hypothesis, the later, (i), and t 6= t2
(hypothesis), fle get that (ifi) ⊢t M2 : Γ. hffs,

⊢t M2 : Γ t /∈ domP
T-perm-skip

⊢t M2 ⊎ {p : P} : Γ

• Case Cpy-skip:

copy(s, t1, t2,M1) =M2 p /∈ s

copy(s, t1, t2,M1 ⊎ {p : P}) =M2 ⊎ {p : P}

flhereM isM1⊎{p : P} andM ′ isM2⊎
{

p : P
}

. he proof has the same
strffctffre as case Cpy-cons.
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Lemma 7.1.9. If Σ;M ⊢ T , t2 /∈ domT , and copy(s, t1, t2,M) = M ′, then
Σ;M ′ ⊢ T .

Proof. he proof follofls by indffction on the relation Σ;M ⊢ T . We perform a
case analysis on the derifiation of the last rffle applied.

• Case T-tm-n:
∅;M ⊢ ∅

flhere Σ is ∅ and T is ∅. he proof for this case consists of a direct
application of rffle T-tm-n.

• Case T-tm-c:

(i) ⊢t M : Γ (ii) Ψ;Γ ⊢ τ (iii) Σ′;M ⊢ T ′

Σ′ ⊎ {t : Ψ};M ⊢ T ′ ⊎ {t : τ}

flhereΣ isΣ′⊎{t : Ψ} and T is T ′⊎{t : τ}. From Lemma 7.1.8, (i)⊢t M : Γ,
copy(s, t1, t2,M) =M ′ (hypothesis), and t 6= t2 (hypothesis), and fle get
that (ifi) ⊢t M

′ : Γ. Neffit, fle apply the indffction hypothesis to Σ;M ⊢ T ′,
t2 /∈ domT ′ (as t2 /∈ domT ), and copy(s, t1, t2,M) = M ′ to obtain
(fi) Σ;M ′ ⊢ T ′. Hence,

(ifi) ⊢t M
′ : Γ (ii) Ψ;Γ ⊢ τ (fi) Σ′;M ⊢ T ′

T-tm-c
Σ′ ⊎ {t : Ψ};M ⊢ T ′ ⊎ {t : τ}

Lemma 7.1.10. If Ψ;Γ ⊢ (B, async(s, b′); b), then Ψ;Γ ⊢ (B, b).

Proof. By infierting the hypothesis fle get the follofling premises.

(i) Γ ⊢ B

· · · (ii) Γ ⊢ b : ∅

Γ ⊢ async(s, b′); b : ∅

〈∅; ∅〉; Γ ⊢ (B, async(s, b′); b)

he proof conclffdes applying rffle T-t-r to premises (i) and (ii).

Lemma 7.1.11. If Σ;M ⊢ T ⊎ {t : (B, async(s, b′); b)}, copy(s, t, t′,M) =
M ′, and t′ /∈ domT ∪ {t}, then Σ;M ′ ⊢ T ⊎ {t : (B, b)}.

Proof. By Lemma 6.3.2 and Σ;M ⊢ T ⊎ {t : (B, async(s, b′); b)} fle get that

(i) Σ = Σ′′ ⊎ {t : Ψ},
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(ii) ⊢t M : Γ,

(iii) Ψ;Γ ⊢ (B, async(s, b′); b), and

(ifi) Σ′′;M ⊢ T .

We knofl that (fi) t 6= t′, as from t′ /∈ domT ∪ {t} (hypothesis). Applying
Lemma 7.1.8, (ii) ⊢t M : Γ, copy(s, t1, t2,M) =M ′ (hypothesis), and (fi) t 6= t′,
then (fii) ⊢t M

′ : Γ. From (iii) Ψ;Γ ⊢ (B, async(s, b′); b) and Lemma 7.1.10
fle get (fiii) Ψ;Γ ⊢ (B, b). Since fle hafie t′ /∈ domT ∪ {t}, then (fiiii) t′ /∈
domT . Applying Lemma 7.1.9 to (ifi) Σ′′;M ⊢ T , (fiiii) t′ /∈ domT , and
copy(s, t, t′,M) =M ′ (hypothesis) yields (iffi) Σ′′;M ′ ⊢ T .

Hence,

(fii) ⊢t M
′ : Γ (fiii) Ψ;Γ ⊢ (B, b) (iffi) Σ′′;M ′ ⊢ T

T-tm-c
Σ′′ ⊎ {t : Ψ};M ′ ⊢ T ⊎ {t : (B, b)} def

=
Σ;M ′ ⊢ T ⊎ {t : (B, b)}

De॑nition 7.1.2. For any maps X and Y we have that X ⊆ Y if, and only if
∀z ∈ domX : X(z) = Y (z).

Lemma 7.1.12. If

1. ⊢t M : Γ,

2. ∀p ∈ domM =⇒ t′ /∈ domM(p), and

3. copy(s, t, t′,M) =M ′,

then there exists a typing Γ′ such that ⊢t′ M
′ : Γ′, Γ′ ⊆ Γ, and domΓ′ = s.

Proof. he proof

• Case Cpy-nil:
copy(∅, t, t′, ∅) = ∅

flhereM is ∅, s is ∅, andM ′ is ∅. We hafie ⊢t′ ∅ : ∅ (flith rffle T-perm-nil),
Γ ⊆ ∅, and dom ∅ = ∅.

• Case Cpy-cons:

(i) copy(s′, t, t′,M1) =M2 (ii) P (t) = v

copy(s′ ⊎ {p}, t, t′,M1 ⊎ {p : P}) =M1 ⊎
{

p : P ⊎ {t′ : v}
}
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flhere s is s′ ⊎ {p},M isM1 ⊎ {p : P}, andM ′ isM1 ⊎
{

p : P ⊎ {t′ : v}
}

.
Since fle hafie ⊢t M : Γ (hypothesis) and (ii) t ∈ domM(p), then there
effiist a typing Γ′ and a ੘ag a sffch that (iii) Γ = Γ′ ⊎ {p : a}, and (ifi) ⊢t

M1 : Γ
′. Applying the indffction hypothesis to

– (ifi) ⊢t M1 : Γ
′,

– ∀p ∈ domM1 =⇒ t′ /∈ domM1(p), from (2), and
– copy(s′, t, t′,M1) =M2

yields that there effiists a typing Γ′′ sffch that (fi) ⊢t′ M
′ : Γ′′, (fii) Γ′′ ⊆ Γ,

and (fiii) domΓ′′ = s′. Let (fiiii) P ′ def
= P ⊎ {t′ : v}. Since fle hafie (fi) ⊢t′

M1 : Γ
′′ and p /∈ M1, then by Lemma 6.4.3 p /∈ domΓ′′ and therefore

Γ′′ ⊎ {p : a} is de੗ned. Hence,

(fi) ⊢t′ M1 : Γ
′′ (fiiii) P ′(t′) = 〈_; a〉

T-perm-cons
⊢t M1 ⊎ {p : P ′} : Γ′′ ⊎ {p : a}

Since (fii) Γ′′ ⊆ Γ and Γ = Γ′ ⊎ {p : a}, then Γ′′ ⊎ {p : a} ⊆ Γ. And,
੗nally, from (fiii) domΓ′′ = s′, s = s′ ⊎ {p}, and dom {Γ′′ ⊎ {a : p}} =
domΓ′′ ∪ {p}, then domΓ′′ ∪ {p} = s.

• Case Cpy-skip:

(i) copy(s, t, t′,M1) =M2 (ii) p /∈ s

copy(s, t, t′,M1 ⊎ {p : P}) =M2 ⊎ {p : P}

flhereM isM1 ⊎ {p : P} andM ′ isM2 ⊎ {p : P}. We test for the mem-
bership of t in P .

– Case t ∈ M1(p). Since fle hafie ⊢t M : Γ (hypothesis) and (ii) t ∈
domM(p), then there effiist a typing Γ′ and a ੘ag a sffch that (iii) Γ =
Γ′⊎{p : a}, and (ifi) ⊢t M1 : Γ

′. Applying the indffction hypothesis to
(ifi) ⊢t M1 : Γ

′, (2), and (i) copy(s, t, t′,M1) =M2, fle get that there
effiists a typing Γ′′ sffch that ⊢t′ M2 : Γ

′′, Γ′′ ⊆ Γ′, and domΓ′′ = s.
hffs,

⊢t′ M2 : Γ
′′

p ∈ domM =⇒ t′ /∈ domM(p)
=⇒

t′ /∈ domP
T-perm-skip

⊢t M2 ⊎ {p : P} : Γ′′

– Case t /∈ M1(p). From ⊢t M : Γ and t /∈ domM(p), then ⊢t

M1 : Γ. Applying the indffction hypothesis to (ifi) ⊢t M1 : Γ, (2),
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and (i) copy(s, t, t′,M1) = M2, fle get that there effiists a typing Γ′

sffch that ⊢t′ M2 : Γ
′, Γ′ ⊆ Γ, and domΓ′ = s. hffs,

⊢t′ M2 : Γ
′

p ∈ domM =⇒ t′ /∈ domM(p)
=⇒

t′ /∈ domP
T-perm-skip

⊢t M2 ⊎ {p : P} : Γ′

Lemma 7.1.13. If Γ ⊢ s : Γ′ and boffnds(s) = B, then Γ′ ⊢ B.

Proof. he proof follofls by indffction on the typing relation Γ ⊢ s : Γ′. We
perform a case analysis on the derifiation tree of the last rffle applied.

• Case T-a-n:
Γ ⊢ ∅ : ∅

flhere s is ∅. We hafie that boffnds(s) = ∅ = B (by De੗nition 5.3.10),
hence the case holds flith rffle T-b-n.

• Case T-a-c:
(i) Γ(p) = a (ii) Γ ⊢ s′ : Γ′′

Γ ⊢ s′ ⊎ {p} : Γ′′ ⊎ {p : a}

flhere s is s′ ⊎ {p} and Γ′ is Γ′′ ⊎ {p : a}. Let (iii) boffnds(s′) = B′.
We apply the indffction hypothesis to (ii) Γ ⊢ s′ : Γ′′ and (iii) to obtain
(ifi) Γ′′ ⊢ B′. Since fle hafie (iii) boffnds(s′) = B′ and s = s′ ⊎ {p}, then
by De੗nition 5.3.10B = B′⊎{p : 0}. Let Γ1 be sffch that Γ = Γ1⊎{p : a}.
hffs,

(ifi) Γ′′ ⊢ B′

T-b-c
Γ′′ ⊎ {p : a} ⊢ B′ ⊎ {p : 0} def

=
Γ′ ⊢ B

Lemma 7.1.14. If Ψ;Γ ⊢ (B, async(s, b′); b) and boffnds(s) = B′, then there
exists a typing Γ′ such that Ψ;Γ′ ⊢ (B′, b′), Γ′ ⊆ Γ, and domΓ′ = s.

Proof. We infiert the hypothesis to obtain the follofling premises.

(i) Γ ⊢ B

(ii) Γ ⊢ s : Γ′ (iii) Γ′ ⊢ b′ : ∅

Γ ⊢ async(s, b′) : Γ · · ·

Γ ⊢ async(s, b′); b : ∅

〈∅; ∅〉; Γ ⊢ (B, async(s, b′); b)



7.1. ASYNC 103

flhere Ψ is 〈∅; ∅〉. From Lemma 6.4.1 and Γ ⊢ s : Γ′, fle get that (ifi) Γ′ ⊆ Γ and
(fi) domΓ′ = s. Neffit, fle apply Lemma 7.1.13 to (ii) Γ ⊢ s : Γ′ and boffnds(s) =
B′ (hypothesis), and obtain (fii) Γ′ ⊢ B′. Hence, applying rffle T-t-r to (fii) and
(iii) fle get that (fiii) 〈∅; ∅〉; Γ′ ⊢ (B′, b′). he offtcome of this proof consists of
premises (fiii), (ifi), and (fi).

Lemma 7.1.15. If ⊢t M : Γ, Ψ;Γ ⊢ (B, async(s, b′); b), ∀p ∈ domM =⇒
t′ /∈ domM(p), copy(s, t, t′,M) =M ′, and boffnds(s) = B′, then there exists a
typing Γ′ such that ⊢t′ M

′ : Γ′ and Ψ;Γ′ ⊢ (B′, b′).

Proof. From Lemma 7.1.12, ⊢t M : Γ, ∀p ∈ domM =⇒ t′ /∈ domM(p), and
copy(s, t, t′,M) = M ′, fle get that there effiists a typing Γ′ sffch that (i) ⊢t′

M ′ : Γ′, (ii) Γ′ ⊆ Γ, and (iii) domΓ′ = s. Applying Lemma 7.1.14 to Ψ;Γ ⊢
(B, async(s, b′); b) and boffnds(s) = B′ (hypothesis) fle get that there effiists
a typing Γ′′ sffch that Ψ;Γ′′ ⊢ (boffnds(s), b′), Γ′′ ⊆ Γ, and domΓ′′ = s. hffs,
since fle hafie Γ′ ⊆ Γ, Γ′′ ⊆ Γ, and domΓ′′ = domΓ′ = s, then Γ′ = Γ′′ and fle
conclffde the proof.

Lemma 7.1.16. If ∆;N ⊢M , t /∈ N , and p ∈ domM , then t /∈ domM(p).

Proof. Since fle hafie∆;N ⊢M and p ∈ domM , then by Lemma 6.3.6, fle hafie
that domP ⊆ N . Bfft fle knofl that t /∈ N , hence t /∈ domP .

Lemma 7.1.17. If

1. Σ;M ⊢ T ⊎ {t : (B, async(s, b′); b)},

2. ∆;N ⊢M ,

3. copy(s, t, t′,M) =M ′,

4. boffnds(s) = B′,

5. t′ /∈ N , and

6. N = domT ∪ {t},

then then there exists a Σ′ such that

Σ′;M ′ ⊢ T ⊎ {t : (B, b)} ⊎ {t′ : (B′, b′)}

Proof. By Lemma 6.3.2 and Σ;M ⊢ T ⊎ {t : (B, async(s, b′); b)} fle get that
there effiists a Ψ sffch that (i) ⊢t M : Γ and (ii) Ψ;Γ ⊢ (B, async(s, b′); b).

From Lemma 7.1.16, (2) ∆;N ⊢ M , (5) t′ /∈ N , then fle hafie (iii) ∀p ∈
domM =⇒ t′ /∈ domM(p).
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Applying Lemma 7.1.15 to (i), (ii), (iii), (3) copy(s, t, t′,M) = M ′, and
(4) boffnds(s) = B′, yields that there effiists a typing Γ′ sffch that (ifi) ⊢t′ M

′ : Γ′

and (fi) Ψ;Γ′ ⊢ (boffnds(s), b′). Applying Lemma 7.1.11 to

Σ;M ⊢ T ⊎ {t : (B, async(s, b′); b)}

, copy(s, t, t′,M) =M ′, and t′ /∈ domT∪{t}, then (fii)Σ;M ′ ⊢ T ⊎ {t : (B, b)}.
Let T ′ def

= T ⊎ {t : (B, b)}. herefore,

(ifi) ⊢t′ M
′ : Γ′ (fi) Ψ;Γ′ ⊢ (boffnds(s), b′) (fii) Σ;M ′ ⊢ T ′

T-tm-c
Σ ⊎ {t′ : Ψ};M ′ ⊢ T ′ ⊎ {t′ : (boffnds(s), b′)} def

=
Σ ⊎ {t′ : Ψ};M ′ ⊢ T ⊎ {t : (B, b)} ⊎ {t′ : (boffnds(s), b′)}

7.2 Phaser creation
De॑nition 7.2.1 (Sffbstitfftion fffnction for typing). Formula Γσ is deटned as:

p2 /∈ domΓ σ = [p2/p1]

Γσ = {σ(p) : Γ(p) | ∀p ∈ domΓ}

Lemma 7.2.1. If σ(p) = q, then (Γ ⊎ {p : a})σ = (Γσ) ⊎ {q : a}.

Proof.
(Γ ⊎ {p : a})σ =

(Γσ) ⊎ ({p : a}σ) =

Γσ ⊎ {σ(p) : a} =

Γσ ⊎ {q : a}

Lemma 7.2.2. If Γσ = Γ′ and σ(p) = q, then Γ(p) = Γ′(q).

Proof. From Γ(p) = a, fle hafie that Γ = Γ′′ ⊎ {p : a}. Applying Lemma 7.2.1
to σ(p) = q and fle get (Γ′′ ⊎ {p : a})σ = (Γ′′σ) ⊎ {q : a}. Bfft fle knofl that
Γσ = Γ′, thffs (Γ′′σ) ⊎ {q : a} = Γ′ and therefore Γ′(q) = a.

Lemma 7.2.3. If p /∈ s, then s[q/p] = s.

Proof. Let s = {p1, . . . , pn} and s[q/p] = {σ(p1), . . . , σ(pn)}. To shofl that s =
sσ it is enoffgh to shofl that pi = σ(pi). By De੗nition 5.3.4 since pi 6= p, then
σ(pi) = pi.
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Lemma 7.2.4 (Sffbstitfftion for argffments). If Γ1 ⊢ s : Γ2, σ = [p2/p1], p2 /∈
domΓ1 ∩ s, and p1 /∈ s, then Γ1σ ⊢ sσ : Γ2σ and Γ2σ = Γ2.

Proof. he proof follofls by indffction on the derifiation of Γ1 ⊢ s : Γ2. We do a
case inspection on the last rffle applied.

• Case T-a-n:
Γ1 ⊢ ∅ : ∅

flhere argffments s are ∅ and typing Γ2 is ∅. We hafie that ∅σ = ∅ (by
De੗nition 7.2.1) and ∅ = ∅σ (by De੗nition 5.3.4). Since p2 /∈ domΓ1 and
p2 /∈ dom ∅, then, by De੗nition 7.2.1, Γ1σ and ∅σ are both de੗ned. he
case holds by direct application of rffle T-a-n.

Γ1σ ⊢ ∅σ : ∅σ

• Case T-a-c:
(i) Γ1(p) = a (ii) Γ1 ⊢ s

′ : Γ′
2

Γ1 ⊢ s′ ⊎ {p} : Γ′
2 ⊎ {p : a}

flhere argffments s are s′ ⊎ {p} and typing Γ2 is Γ′
2 ⊎ {p : a}. From

σ = [p2/p1], p2 /∈ domΓ1, and De੗nition 7.2.1, then (iii) Γ1σ = Γ′
1.

Let σ(p) = q. Neffit, since (iii) Γ1σ = Γ′
1 and σ(p) = q, then from

Lemma 7.2.2 fle hafie that (ifi) Γ′
1(q) = a. We hafie that the follofling

premise holds.
p1 /∈ s s = s′ ⊎ {p}

p1 /∈ s′

Lemma 7.2.3
(fi) s′σ = s′

And so does premise (fii).

Γ1 ⊢ s
′ : Γ′

2 σ = [p2/p1] p2 /∈ domΓ1 ∩ s
′

I.H.
Γ′
1 ⊢ s

′σ : Γ′
2 (fi) s′σ = s′

(fii) Γ′
1 ⊢ s

′ : Γ′
2

Since p1 /∈ s, then p1 6= p and therefore (fiii) σ(p) = p (by De੗nition 5.3.4).
Hence,

(ifi) Γ′
1(q) = a (fiii) p = q

=
Γ′
1(p) = a (fii) Γ′

1 ⊢ s
′ : Γ′

2 T-a-c
Γ′
1 ⊢ s

′ ⊎ {p} : Γ′
2 ⊎ {p : a}

=
Γ1σ ⊢ sσ : Γ2
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From Γ2 = Γ′
2 ⊎ {p : a} and q = p, then Γ2 = Γ′

2 ⊎ {q : a}. And since fle
hafie σ(p) = q, then Γ2 = Γ′

2 ⊎ {σ(p) : a}. Neffit, fle hafie that Γ2 = Γ2σ, thffs
Γ2 = Γ′

2σ ⊎ {σ(p) : a}. hffs, fle apply Lemma 7.2.1 to σ(p) = q fle get that
Γ′
2σ ⊎ {σ(p) : a} = (Γ′

2 ⊎ {p : a})σ. Hence, Γ2 = Γ2σ.

Lemma 7.2.5 (Sffbstitfftion for argffments). If Γ1 ⊢ s : Γ2, σ = [p2/p1], and
p2 /∈ domΓ1 ∩ s, then Γ1σ ⊢ sσ : Γ2σ.

Proof. If p1 ∈ s, then fle conclffde the proof flith Lemma 7.2.4. Otherflise,
p1 ∈ s. By Lemma 6.3.1, Γ1 ⊢ s : Γ2, and p1 ∈ s, fle hafie that there effiist some
argffments s′ and a typing Γ3 sffch that

(i) s = s′ ⊎ {p1},

(ii) Γ2 = Γ3 ⊎ {p1 : a},

(iii) Γ1(p1) = a,

(ifi) Γ ⊢ s′ : Γ3.

We apply Lemma 7.2.4 to (ifi) Γ ⊢ s′ : Γ3, σ = [p2/p1] (hypothesis), p2 /∈
domΓ1∩s (hypothesis), and p1 /∈ s (fle get this from premise (i)), then (fi) Γ1σ ⊢
s′σ : Γ3σ and (fii) Γ3σ = Γ3. Bfft from Lemma 7.2.3 and p1 /∈ s, fle hafie
that (fiii) s′σ = s′. Since fle knofl that p2 /∈ domΓ1, then, by De੗nition 7.2.1,
Γ′
1 = Γ1σ. Since fle hafie (iii) Σ1(p1) = a and Γ′

1 = Γ1σ, then from Lemma 7.2.2
fle hafie that Γ1(p1) = Γ′

1(p2). hffs,

Γ′
1(p2) = a Γ′

1 ⊢ s
′ : Γ3

T-a-c
Γ′
1 ⊢ (s′ ⊎ {p2}) : Γ3 ⊎ {p2 : a}

=
Γ1σ ⊢ sσ : (Γ2)σ

Lemma 7.2.6. If Γσ = Γ′, σ(p) = q, and p ∈ domΓ, then Γ(p) = Γ′(q).

Proof. From De੗nition 7.2.1 fle hafie that domΓ′ = {σ(p) | p ∈ domΓ}. hffs,
if p ∈ domΓ and σ(p) = q, then q ∈ domΓ′. Since fle hafie q ∈ domΓ′ and
σ(p) = q, then from De੗nition 7.2.1 fle hafie Γ′(q) = Γ(p).

Lemma 7.2.7. For any a if ∀p ∈ domΓ: Γ(p) = a and Γ′ = Γσ, then ∀p ∈
domΓ′ : Γ′(p) = a.

Proof. Let q ∈ domΓ′. We hafie that q = σ(p) and p ∈ domΓ. Since p ∈ domΓ,
then Γ(p) = a. From Γσ = Γ′, σ(p) = q, p ∈ domΓ, and Lemma 7.2.6, then
Γ(p) = Γ′(q).
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Lemma 7.2.8 (Sffbstitfftion for programs). If Γ ⊢ b : Γ′, p /∈ bn(b), q /∈ domΓ,
σ = [q/p], then Γσ ⊢ bσ : Γ′σ.

Proof. he proof follofls by indffction on the typing relation ofier programs. We
perform a case analysis on derifiation of the infiersion of Γ ⊢ b : Γ′.

Case T-end.
Γ ⊢ end : Γ

flhere b def
= end and Γ = Γ′. By hypothesis fle hafie that q /∈ domΓ, so from

De੗nition 7.2.1 Γσ is de੗ned. By De੗nition 5.3.4 fle hafie that end = endσ.
Hence,

Γ = Γ′
T-end

Γσ ⊢ end : Γσ

Γσ ⊢ endσ : Γ′σ

Case T-cons.
(a) Γ ⊢ i : Γ′′ (b) Γ′′ ⊢ b′ : Γ′

Γ ⊢ i; b′ : Γ′

Neffit, fle infiert Γ ⊢ i : Γ′′, performing a case analysis on the derifiation of the
last rffle applied.

• Case T-phaser:

Γ ⊢ r = newPhaser() : Γ ⊎ {r : u}

flhere i def
= r = newPhaser() and Γ′′ def

= Γ ⊎ {p : u}.
We hafie that r ∈ bn(b) (from De੗nition 5.3.3), and that p /∈ bn(b) (hy-
pothesis), hence p 6= r and therefore (i) σ(r) = r (from De੗nition 5.3.4).
We also knofl that bn(r = newPhaser(); b′) def

= {r} ∪ bn(b′). From p 6= r

and the later, fle get that (ii) p /∈ bn(b′). Since q /∈ domΓ and r /∈ domΓ,
then (iii) q /∈ domΓ′′.
Applying the indffction hypothesis to (b)Γ′′ ⊢ b : Γ′, (ii) p /∈ bn(b′), (iii) q /∈
domΓ′′, σ = [q/p] (hypothesis), and obtain that Γ′′σ ⊢ b′σ : Γ′σ. Bfft, fle
knofl thatΓ′′ = Γ⊎{r : u}, henceΓ′′σ = (Γ⊎{r : u})σ. From (i) σ(r) = r,
the later, and Lemma 7.2.1, fle hafie (Γ ⊎ {r : u})σ = (Γσ) ⊎ {r : u}.
Hence, fle hafie (iii) (Γσ) ⊎ {r : u} ⊢ b′σ : Γ′σ and (ifi) r /∈ domΓσ.
he follofling premise (fi) holds.

(ifi) r /∈ domΓσ
T-phaser

Γσ ⊢ p = newPhaser() : (Γσ) ⊎ {r : u}
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And therefore,

(fi) Γσ ⊢ i : (Γσ) ⊎ {r : u} (iii) (Γσ) ⊎ {r : u} ⊢ b′σ : Γ′σ
T-cons

Γσ ⊢ (i; b′)σ : Γ′σ

• Case T-adv and T-dereg hafie the same proof strffctffre, so fle jffst shofl
case T-adv:

Γ1 ⊎ {r : u} ⊢ adv(r) : Γ1 ⊎ {r : a}

flhere i def
= adv(r) and Γ

def
= Γ1 ⊎ {r : u} and Γ′′ def

= Γ1 ⊎ {r : a}.
From De੗nition 5.3.4 and p /∈ bn(adv(r); b′) fle get that (i) p /∈ bn(b′).
Applying the indffction hypothesis to (b) Γ′′ ⊢ b : Γ′, (i) p /∈ bn(b′),
σ = [q/p] (hypothesis), and obtain that Γ′′σ ⊢ b′σ : Γ′σ. Bfft, fle knofl
that Γ′′ = Γ1 ⊎ {r : a}, hence Γ′′σ = (Γ1 ⊎ {r : a})σ. From (i) σ(r) = r,
the later, and Lemma 7.2.1, fle hafie (ii) (Γ1 ⊎ {r : a})σ = (Γσ) ⊎ {r : a}.
Hence, fle hafie (iii) (Γ1σ) ⊎ {r : a} ⊢ b′σ : Γ′σ.
As fle hafie (ii) (Γ1 ⊎ {r : a})σ = (Γσ) ⊎ {r : a}, then fle also hafie
(iii) (Γ1 ⊎ {r : u})σ = (Γσ) ⊎ {r : u}. hffs,

T-adv
Γ1σ ⊎ {p : u} ⊢ adv(r) : Γ1σ ⊎ {p : a}

(ifi) Γσ ⊢ i : Γ′′σ

Hence,
(ifi) Γσ ⊢ i : Γ′′σ (iii) Γ′′σ ⊢ b′σ : Γ′σ

T-cons
Γσ ⊢ (i; b′)σ : Γ′σ

• Case T-await:
∀p ∈ domΓ: Γ(p) = a

Γ ⊢ await : Γ

flhere i def
= await and Γ = Γ′′.

From De੗nition 5.3.3 and p /∈ bn(b), fle get that (i) p /∈ bn(b′). We apply
the indffction hypothesis to (b) Γ ⊢ b′ : Γ′, (i) p /∈ bn(b′), q /∈ domΓ
(hypothesis), σ = [q/p] (hypothesis), then (ii) Γσ ⊢ b′σ : Γ′σ.
From De੗nition 5.3.4 fle hafie that await; b′σ = await; (b′σ). Since fle
hafie ∀p ∈ domΓ: Γ(p) = a and Lemma 7.2.7, then

∀p ∈ dom (Γσ) : (Γσ)(p) = a

and applying T-await to the later yields that

(iii) Γσ ⊢ await : Γσ
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hffs,
(iii) Γσ ⊢ i : Γσ (ii) Γσ ⊢ b′σ : Γ′σ

T-cons
Γσ ⊢ (i; b′)σ : Γ′σ

• Case T-next:

{p1 : a, . . . , pn : a} ⊢ next : {p1 : u, . . . , pn : u}

flhere i def
= next, Γ def

= {p1 : a, . . . , pn : a}, and Γ′′ def
= {p1 : u, . . . , pn : u}.

From De੗nition 5.3.3 and p /∈ bn(b), fle get that (i) p /∈ bn(b′). It is
easy to see that domΓ = domΓ′′, hence (ii) q /∈ domΓ′′. We apply the
indffction hypothesis to (b) Γ′′ ⊢ b′ : Γ′, (i) p /∈ bn(b′), (ii) q /∈ domΓ,
σ = [q/p] (hypothesis), then (iii) Γ′′σ ⊢ b′σ : Γ′σ. Bfft fle knofl that ∀p ∈
domΓ′′ : Γ′′(p) = u, then from Lemma 7.2.7, ∀p ∈ domΓ′′σ : (Γ′′σ)(p) =
u. hffs, Γ′′σ = {q1 : u, . . . , qn : u} and by De੗nition 7.2.1

Γσ = {q1 : a, . . . , qn : a}

herefore, premise (ifi) holds flith rffle T-await.

{q1 : a, . . . , qn : a} ⊢ await : {q1 : u, . . . , qn : u}

hffs,

(ifi) Γσ ⊢ await : Γ′′σ (iii) Γ′′σ ⊢ b′σ : Γ′σ
T-cons

Γσ ⊢ await; (b′σ) : Γ′σ
De੗nition 5.3.4

Γσ ⊢ (await; b′)σ : Γ′σ

• Case T-async:
(i) Γ ⊢ s : Γ1 (ii) Γ1 ⊢ b1 : ∅

Γ ⊢ async(s, b1) : Γ

flhere i def
= async(s, b1) and Γ′′ = Γ. Since fle knofl that (i) Γ ⊢ s : Γ1,

then, by Lemma 6.4.1, fle hafie that Γ1 ⊆ Γ and since q /∈ domΓ, then
(iii) q /∈ s. And according to De੗nition 7.1.2 since fle hafie that q /∈ domΓ
(hypothesis), then (ifi) q /∈ domΓ1. From (iii) and (ifi) fle hafie that
q /∈ domΓ1 ∪ s.
he follofling premise (fi) holds.

(i) Γ ⊢ s : Γ1 σ = [q/p] (ifi) q /∈ domΓ1 ∩ s
Lemma 7.2.5

Γ1σ ⊢ (sσ) : (Γ2σ)
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From p /∈ bn(async(s, b1); b) and De੗nition 5.3.4, fle hafie

p /∈ s ∪ bn(b) ∪ bn(b1)

hffs, (fii) p /∈ bn(b′) and (fiii) p /∈ bn(b1). Applying the indffction hypoth-
esis to (ii) Γ1 ⊢ b1 : ∅, (fii) p /∈ bn(b1), (ifi) q /∈ domΓ1, and σ = [q/p],
yields (fiii) Γ1σ ⊢ b1σ : ∅.
Hence, the follofling premise (fiiii) holds.

(fi) (Γσ) ⊢ (sσ) : (Γ1σ) (fiii)Γ1σ ⊢ b1σ : ∅
T-async

Γσ ⊢ async(s, (b1σ)) : Γσ

Applying the indffction hypothesis to (b) Γ ⊢ b′ : Γ′, (fii) p /∈ bn(b′), q /∈
domΓ (hypothesis), σ = [q/p] (hypothesis), resfflts in (iffi) Γσ ⊢ b′σ : Γ′σ.
And therefore,

(ifi) Γσ ⊢ async(s, (b1σ)) : Γσ (iffi) Γσ ⊢ b′σ : Γ′σ
T-cons

Γσ ⊢ async(s, (b1σ)); (b′σ) : Γ′σ
De੗nition 5.3.4

Γσ ⊢ (i; b′)σ : Γ′σ

• Case T-finish. the proof for this case follofls a similar, yet simpler, strffc-
tffre than case T-async.

Lemma 7.2.9. If N ⊢ ∆, ∆;N ⊢ M , q /∈ domM , and t ∈ N , then ∆;N ⊢
M ⊎

{

q : P
}

, where P = {t : 〈0;u〉}.

Proof. We hafie that ∆ ⊢ P :

D-ph-nil
∆ ⊢ ∅

D-l-nil
∆; t; 0 ⊢ ∅

D-ph-cons
∆ ⊢ ∅ ⊎ {t : 〈0;u〉} def

=
∆ ⊢ P

Hence,

∆ ⊢ P

domP = {t} t ∈ N

domP ⊆ N ∆;N ⊢M
T-p-map-cons

∆;N ⊢M ⊎ {p : P}
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Lemma 7.2.10. If p /∈ domΓ, then Γ[q/p] = Γ.

Proof. he proof follofls by indffction on the strffctffre of Γ. We perform a case
analysis on the strffctffre of Γ.

• Case Γ is ∅. Let σ = [q/p]. he case holds by De੗nition 7.2.1, as ∅σ = ∅.

• Case Γ is Γ′ ⊎ {r : a}. Let σ = [q/p]. Applying the indffction hypothesis
to p /∈ domΓ′ (as p /∈ domΓ), fle hafie that (i) Γ′σ = Γ′. Since p /∈ domΓ,
then r 6= p, and thffs from De੗nition 7.2.1 (ii) σ(r) = r. hffs,

Γ = Γ′ ⊎ {r : a}

(i),(ii) = (Γ′σ) ⊎ {σ(r) : a}

(De੗nition 7.2.1) = (Γ′ ⊎ {r : a})σ

(hyp.) = Γσ

Lemma 7.2.11. If

1. 〈∅; ∅〉; Γ ⊢ (B, p = newPhaser(); b),

2. q /∈ bn(b), and

3. q /∈ domΓ,

then 〈∅; ∅〉; Γ ⊎ {q : u} ⊢ (B ⊎ {q : 0}, b[q/p]).

Proof. By infierting hypothesis (1), fle get the follofling tflo premises.

(i) Γ ⊢ B

· · · (ii) Γ ⊎ {p : u} ⊢ b : ∅

Γ ⊢ p = newPhaser(); b : ∅

〈∅; ∅〉; Γ ⊢ (B, p = newPhaser(); b)

Let σ = [q/p] and Γ1

def
= Γ ⊎ {p : u}.

We knofl that q /∈ bn(p = newPhaser(); b) by hypothesis, hence q 6= p.
Since q 6= p and q /∈ domΓ, then (iii) q /∈ domΓ1. Applying the sffbstitfftion
Lemma 7.2.8 for programs to (ii) Γ1 ⊢ b : ∅, (2) q /∈ bn(b), (iii) q /∈ domΓ1, and
σ = [q/p], yields Γ1σ ⊢ bσ : ∅.

As (3) p /∈ domΓ, fle hafie that Γσ = Γ, from Lemma 7.2.10. Hence,
Γ1σ = Γ ⊎ {q : u}, by De੗nition 7.2.1. herefore, fle hafie (ifi): Γ ⊎ {q : u} ⊢
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bσ : ∅
def
= Γ ⊎ {q : u} ⊢ b[q/p] : ∅. And conclffding, the neffit tree holds.

(i) Γ ⊢ B
T-b-c

Γ ⊎ {q : u} ⊢ B ⊎ {q : 0} (ifi) Γ ⊎ {q : u} ⊢ b[q/p] : ∅
T-t-r

〈∅; ∅〉; Γ ⊎ {q : u} ⊢ (B ⊎ {q : 0}, b[q/p])

Lemma 7.2.12. If Σ;M ⊢ T , p /∈ domM , and domT ∩ domP = ∅, then
Σ;M ⊎ {p : P} ⊢ T .

Proof. he proof follofls by indffction on the typing relation. We perform a case
analysis on the derifiation of the last rffle applied.

• Case T-tm-c:

⊢t M : Γ Ψ; Γ ⊢ τ Σ′;M ⊢ T ′

Σ′ ⊎ {t : Ψ};M ⊢ T ′ ⊎ {t : τ}

flhere Σ is Σ′ ⊎ {t : Ψ} and T is T ′ ⊎ {t : τ}. Since domT ∩ domP = ∅,
then t /∈ domP . Applying the indffction hypothesis to Σ′;M ⊢ T ′,
p /∈ domM , and domT ∩ domP = ∅ yields Σ′;M ⊎ {p : P} ⊢ T ′. We
conclffde the case flith rffle T-tm-c:

⊢t M : Γ t /∈ domP
T-perm-skip

⊢t M : Γ Ψ; Γ ⊢ τ Σ′;M ⊎ {p : P} ⊢ T ′

Σ′ ⊎ {t : Ψ};M ⊎ {p : P} ⊢ T ′ ⊎ {t : τ}

• Case T-tm-n:
∅;M ⊢ ∅

flhere Σ is ∅ and T is ∅. he case conclffdes by direct application of
rffle T-tm-n.

Lemma 7.2.13 (Sffbstitfftion for tasks). If

1. Σ;M ⊢ T ⊎ {t : (B, p = newPhaser(); b)},

2. q /∈ domM , and

3. q /∈ bn(b),
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then Σ;M ⊎
{

q : {t : 〈0;u〉}
}

⊢ T ⊎ {t : (B ⊎ {q : 0}, b[q/p])}.

Proof. Let T1
def
= T ⊎ {t : τ1}, τ1

def
= (B, p = newPhaser(); b), and M2

def
= M ⊎

{

q : {t : 〈0;u〉}
}

. Applying Lemma 6.3.2 to the hypothesis Σ;M ⊢ T1 and
T1(t) = τ1 (by de੗nition), yields (i) Σ = Σ1 ⊎ {t : Ψ}, T1 = T ⊎ {t : τ1},
(ii) ⊢t M : Γ, (iii) Ψ;Γ ⊢ τ1, and (ifi) Σ1;M ⊢ T .

To profie this lemma, it is enoffgh to shofl the follofling three premises,
flhich fle ffse to profie that Σ ⊎ {t : Ψ};M2 ⊢ T ⊎ {t : τ2} holds, flhere τ2

def
=

(B ⊎ {q : 0}, b[q/p]).

(a) Shofl that ⊢t M2 : Γ ⊎ {q : u}. From Lemma 6.4.2 and (ii) ⊢t M : Γ, yields
that domΓ ⊆ domM . Since (2) q /∈ domM , then fle hafie (ifi) q /∈ domΓ.
hffs,

(ii) ⊢t M : Γ P (t) = 〈0;u〉 q /∈ domΓ
T-perm-cons

⊢t M ⊎ {q : P} : Γ ⊎ {q : u} def
=

⊢t M2 : Γ ⊎ {q : u}

(b) Shofl that Ψ;Γ ⊎ {q : u} ⊢ τ2. By infierting (iii) Ψ;Γ ⊢ τ1, fle get that Ψ =
〈∅; ∅〉. Applying Lemma 7.2.11, (iii) 〈∅; ∅〉; Γ ⊢ τ1, (2) q /∈ bn(b), and (ifi) q /∈
domΓ, then Ψ;Γ ⊎ {q : u} ⊢ τ2.

(c) Shofl that Σ1;M2 ⊢ T . Applying Lemma 7.2.12 to (ifi) Σ1;M ⊢ T , (2) q /∈
domM , and domT ∩ {t} = ∅ (since t /∈ domT ), yields that Σ1;M2 ⊢ T .

We apply rffle T-tm-c to (a), (b), and (c) to conclffde this proof.

7.3 Deregistration
Lemma 7.3.1. If N ⊢ ∆, ∆;N ⊢M1,M1(p) = P1, and t ∈ domP1, then there
exist a phaser mapM2, phaser P2 such that:

1. M1 =M2 ⊎ {p : P1},

2. P1 = P2 ⊎ {t : v}, and

3. ∆;N ⊢M2 ⊎
{

p : P2

}

.

Proof. By Lemma 6.3.6, ∆;N ⊢M1, andM1(p) = P1, fle get that there effiists a
phaser mapM2 sffch that (i)M1 =M2 ⊎ {p : P1}, (ii) ∆ ⊢ P1, (iii) domP1 ⊆ N ,
and (ifi) ∆;N ⊢ M2. Let P1(t) = v. Since fle hafie N ⊢ ∆, ∆ ⊢ P1, P1(t) = v,
then there effiists P2 sffch that (2) P1 = P2 ⊎ {p : v}, (fi) ∆ ⊢ P2.
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Hence,

(fi) ∆ ⊢ P2

(2) P1 = P2 ⊎ {t : v}

domP2 ⊆ domP1 (iii) domP1 ⊆ N

domP2 ⊆ N (ifi) ∆;N ⊢M2

(3) ∆;N ⊢M ⊎ {p : P2}

Lemma 7.3.2. If ∅; Γ ⊎ {p : a} ⊢ (B ⊎ {p : n}, dereg(p); b), then

∅; Γ ⊢ (B, b)

Proof. We infiert the hypothesis to obtain the follofling premises.

(i) Γ ⊎ {p : a} ⊢ B ⊎ {p : n}

(ii) Γ ⊢ b : ∅

Γ ⊎ {p : a} ⊢ dereg(p); b : ∅

〈∅; ∅〉; Γ ⊎ {p : a} ⊢ (B ⊎ {p : n}, dereg(p); b)

Fffrther, fle apply Lemma 6.3.3 to Γ ⊎ {p : a} ⊢ B ⊎ {p : n} to obtain (iii) Γ ⊢ B.
Hence,

(iii) Γ ⊢ B (ii) Γ ⊢ b : ∅

〈∅; ∅〉; Γ ⊢ (B, b)

Lemma 7.3.3. If

Σ;M ⊎
{

p : P ⊎ {t : v}
}

⊢ T ⊎ {t : (B ⊎ {p : n}, dereg(p); b)}

then there exists Σ′ such that

Σ′;M ⊎ {p : P} ⊢ T ⊎ {t : (B, b)}

Proof. LetM1

def
= M ⊎

{

p : P ⊎ {t : v}
}

, T1
def
= T ⊎ {t : τ1}, and

τ1
def
= (B ⊎ {p : n}, dereg(p); b)

Applying Lemma 6.3.2 to the hypothesis Σ;M1 ⊢ T1 and T1(t) = τ1 (by
de੗nition), yields (i) Σ = Σ1 ⊎ {t : Ψ1}, (ii) ⊢t M1 : Γ1, (iii) Ψ1; Γ1 ⊢ τ1, and
(ifi) Σ1;M ⊢ T .

LetM2

def
= M ⊎ {p : P}, T2

def
= T ⊎ {t : τ2}, and τ2

def
= (B, b).
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(a) Shofl that ⊢t M2 : Γ2 holds. Since ⊢t M1 : Γ1 andM1(p)(t) = 〈n; a〉, then
by Lemma 6.3.5 fle hafie (fi) Γ1 = Γ2 ⊎ {p : a} and ⊢t M : Γ2. We hafie
that p /∈ domP . Hence,

⊢t M : Γ2 p /∈ domP
T-perm-skip

⊢t M ⊎ {p : P} : Γ2 def
=

⊢t M2 : Γ2

(b) Shofl that Ψ;Γ2 ⊢ τ2 holds. By infierting (iii) Ψ1; Γ1 ⊢ τ1, fle get that Ψ1 =
∅. Applying Lemma 7.3.2 to ∅; Γ2 ⊎ {p : a} ⊢ τ1 yields ∅; Γ2 ⊢ τ2.

(c) Shofl that Σ2;M2 ⊢ T holds. Applying Lemma 6.5.3 to (ifi) Σ1;M1 ⊢ T ,
t /∈ domP yields that Σ1;M2 ⊢ T .

We apply rffle T-tm-c to (a), (b), and (c) to conclffde this proof.

7.4 Advance fihase
Lemma 7.4.1. If N ⊢ ∆ and ∆ ⊢ P ⊎ {t : (n,u)}, then ∆ ⊢ P ⊎ {t : (n, a)}.

Proof. Let P1 = P ⊎ {t : (n,u)}. Applying Lemma 6.3.8 to N ⊢ ∆, ∆ ⊢ P1,
P1(t) = 〈n;u〉, then (i) ∆ ⊢ P , and (ii) ∆; t;n ⊢ P . Applying rffle D-ph-cons
to (i) and (ii) yields that ∆ ⊢ P ⊎ {t : (n, a)} holds.

Lemma 7.4.2. If N ⊢ ∆ and ∆;N ⊢ M ⊎
{

p : P ⊎ {t : 〈n;u〉}
}

, then ∆;N ⊢
M ⊎

{

p : P ⊎ {t : 〈n; a〉}
}

.

Proof. We ffse Lemma 6.3.6 to obtain

(i) ∆ ⊢ P ⊎ {t : (n,u)},

(i) domP ⊎ {t : (n,u)} ⊆ N , and

(i) ∆;N ⊢M .

From Lemma 7.4.1, N ⊢ ∆, and (i)∆ ⊢ P ⊎ {t : (n,u)}, fle get that (ifi) ∆ ⊢
P ⊎ {t : (n, a)}. We hafie that domP ⊎ {t : (n,u)} = domP ⊎ {t : (n, a)},
hence fle hafie (fi) domP ⊎ {t : (n, a)} ⊆ N . Hence, fle conclffde this proof
applying rffle T-p-map-cons to (ifi), (fi), and (iii).

Lemma 7.4.3. If ⊢t M ⊎
{

p : P ⊎ {t : (n,u)}
}

: Γ, then there exists a typing Γ′

such that Γ = Γ′ ⊎ {p : u} and

⊢t M ⊎
{

p : P ⊎ {t : (n, a)}
}

: Γ′ ⊎ {p : a}
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Proof. Applying Lemma 6.3.5 to the hypothesis, fle get that there effiists a typ-
ing Γ′ sffch that Γ = Γ′ ⊎ {p : a} and (i) ⊢t M : Γ′. Let P ′ def

= P ⊎ {t : (n, a)}.
We knofl that (ii) P ′(t) = (n, a). hffs,

(i) ⊢t M : Γ′ (ii) P ′(t) = (_, a)
T-perm-cons

⊢t M ⊎ {p : P ′} : Γ′ ⊎ {p : a}

Lemma 7.4.4. If ⊢t′ M ⊎
{

p : P ⊎ {t : 〈n;u〉}
}

: Γ and t 6= t′, then

⊢t′ M ⊎
{

p : P ⊎ {t : 〈n; a〉}
}

: Γ

Proof. LetM1

def
= M ⊎

{

p : P ⊎ {t : 〈n;u〉}
}

. We test if t′ ∈M1(p).

• Case t′ ∈ M1(p). Applying Lemma 6.3.5 to the hypothesis, fle get that
there effiists a typing Γ′ sffch that Γ = Γ′ ⊎ {p : a} and (i) ⊢t′ M : Γ′.
Let P ′ def

= P ⊎ {t : 〈n; a〉}. We conclffde applying rffle T-perm-cons to (i)
and P ′(t′) = 〈n; a〉 (as t 6= t′).

• Case t′ /∈ M1(p). Applying Lemma 6.3.4 to the hypothesis, fle get that
(i) ⊢t′ M : Γ. Let P ′ def

= P ⊎ {t : 〈n; a〉}. he case conclffdes flith the
application of rffle T-perm-skip to t′ /∈ domP ′ (as t 6= t′).

Lemma 7.4.5. If Ψ;Γ ⊢ (B, adv(p); b), then there exists a typing Γ′ such that
Γ = Γ′ ⊎ {p : u} and Ψ;Γ′ ⊎ {p : a} ⊢ (B, b).

Proof. By infierting Ψ;Γ ⊢ (B, adv(p); b) fle get the neffit premises.

(i) Γ ⊢ B

Γ′ ⊎ {p : u} ⊢ adv(p) : Γ′ ⊎ {p : a} (ii) Γ′ ⊎ {p : a} ⊢ b : ∅

Γ′ ⊎ {p : u} ⊢ adv(p); b : ∅

〈∅; ∅〉; Γ′ ⊎ {p : u} ⊢ (B, adv(p); b)

flhere Γ = Γ′ ⊎ {p : u}. We apply Lemma 6.3.3 to (i) Γ ⊢ B and p ∈ domΓ, and
get (iii) B = B′ ⊎ {p : n}, and (ifi) Γ′ ⊢ B′. Hence,

(ifi) Γ′ ⊢ B′

T-b-c
Γ′ ⊎ {p : a} ⊢ B′ ⊎ {p : n}

=
Γ′ ⊎ {p : a} ⊢ B (ii) Γ′ ⊎ {p : a} ⊢ b : ∅

T-t-r
〈∅; ∅〉; Γ′ ⊎ {p : a} ⊢ (B, b)
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Lemma 7.4.6. If

• Σ;M ⊎
{

p : P ⊎ {t : (n,u)}
}

⊢ T and

• t /∈ domT ,

then Σ;M ⊎
{

p : P ⊎ {t : (n, a)}
}

⊢ T .

Proof. he proof follofls by indffction on the typing relation. We do a case
analysis on the derifiation of the last rffle applied.

• Case T-tm-n:
∅;M ⊢ ∅

flhere Σ is ∅ and T is ∅. he case conclffdes by direct application of
rffle T-tm-n.

• Case T-tm-c:

(i) ⊢t′ M1 : Γ (ii) Ψ;Γ ⊢ τ (iii) Σ′;M1 ⊢ T
′

Σ′ ⊎ {t′ : Ψ};M1 ⊢ T ′ ⊎ {t′ : τ}

flhere Σ is Σ′ ⊎ {t′ : Ψ},M1 isM ⊎
{

p : P ⊎ {t : 〈n;u〉}
}

, and T is T ′ ⊎

{t′ : τ}. Let M2

def
= M ⊎

{

p : P ⊎ {t : 〈n; a〉}
}

. From Lemma 7.4.4, ⊢t′

M1 : Γ and t 6= t′ (as t /∈ domT ), fle get (ifi) ⊢t′ M2 : Γ. Applying the
indffction hypothesis to (iii) Σ′;M1 ⊢ T

′ fle obtain (fi) Σ′;M2 ⊢ T
′. We

conclffde the proof applying rffle T-tm-c to (ifi), (ii), and (fi).

Lemma 7.4.7. If

Σ;M ⊎
{

p : P ⊎ {t : 〈n;u〉}
}

⊢ T ⊎ {t : (B, adv(p); b)}

then
Σ;M ⊎

{

p : P ⊎ {t : 〈n; a〉}
}

⊢ T ⊎ {t : (B, b)}

Proof. Let M1

def
= M ⊎

{

p : P ⊎ {t : 〈n;u〉}
}

. From Lemma 6.3.2 and the hy-
pothesis fle hafie that (i) Σ = Σ′′ ⊎ {t : Ψ}, (ii) ⊢t M1 : Γ, (iii) Ψ;Γ ⊢ τ , and
(ifi) Σ′′;M1 ⊢ T .

From Lemma 7.4.3 and ⊢t M1 : Γ, fle get that there effiists a typing Γ′′ sffch
that (fi) Γ = Γ′′ ⊎ {p : u}, (fii) ⊢t M2 : Γ

′′ ⊎ {p : a}. Let Γ′ def
= Γ′′ ⊎ {p : a}. Neffit,

fle apply Lemma 7.4.5 to (iii) Ψ;Γ ⊢ τ and get (fiii) Ψ;Γ′ ⊢ (B, b).
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Applying Lemma 7.4.6 to (ifi) Σ′′;M1 ⊢ T and t /∈ domT , yields that
(fiiii) Σ′′;M2 ⊢ T . herefore,

(fii) ⊢t M2 : Γ
′ (fiii) Ψ;Γ′ ⊢ (B, b) (fiiii) Σ′′;M2 ⊢ T

Σ′′ ⊎ {t : Ψ};M2 ⊢ T ⊎ {t : (B, b)}

7.5 Change bound
Lemma7.5.1. IfΨ;Γ ⊢ (B ⊎ {p : _}, bound(p); b), thenΨ;Γ ⊢ (B ⊎ {p : n}, b).

Proof. By infierting the hypothesis fle get the neffit premises.

(i) Γ ⊢ B ⊎ {p : _}
· · · (ii) Γ ⊢ b : ∅

Γ ⊢ bound(p); b : ∅

〈∅; ∅〉; Γ ⊢ (B ⊎ {p : _}, bound(p); b)

We apply Lemma 6.3.3 to (i) Γ ⊢ B ⊎ {p : _}, and get that there effiists a typing Γ′

sffch that (iii) Γ = Γ′ ⊎ {p : a} and (ifi) Γ′ ⊢ B. Hence,

(iii) Γ = Γ′ ⊎ {p : a}

(ifi) Γ′ ⊢ B
T-b-c

Γ′ ⊎ {p : a} ⊢ B ⊎ {p : n}
=

Γ ⊢ B ⊎ {p : n} (ii) Γ ⊢ b : ∅
T-t-r

〈∅; ∅〉; Γ ⊢ (B ⊎ {p : n}, b)

Lemma 7.5.2. If

Σ;M ⊢ T ⊎ {t : (B ⊎ {p : _}, bound(p); b)}

then
Σ;M ⊢ T ⊎ {t : (B ⊎ {p : n}, b)}

Proof. From Lemma 6.3.2 and the hypothesis fle hafie that (i) Σ = Σ′′ ⊎ {t : Ψ},
(ii) ⊢t M : Γ, (iii) Ψ;Γ ⊢ τ , and (ifi) Σ′′;M ⊢ T . Neffit, fle apply Lemma 7.5.1 to
(iii) Ψ;Γ ⊢ τ and get (fi) Ψ;Γ ⊢ (B ⊎ {p : n}, b). herefore,

(ii) ⊢t M : Γ (fi) Ψ;Γ ⊢ (B ⊎ {p : n}, b) (ifi) Σ′′;M ⊢ T

Σ′′ ⊎ {t : Ψ};M ⊢ T ⊎ {t : (B ⊎ {p : n}, b)}
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7.6 Await
Lemma 7.6.1. If Ψ;Γ ⊢ (B, await; b), then Ψ;Γ ⊢ (B, b).

Proof. Infierting the hypothesis yields the follofling premises.

(i) Γ ⊢ B

· · · (ii) Γ ⊢ b : ∅

Γ ⊢ await; b : ∅

〈∅; ∅〉; Γ ⊢ (B, await; b)

flhere Ψ is 〈∅; ∅〉. We conclffde the proof applying T-t-r to (i), (ii).

Lemma 7.6.2. If Σ;M ⊢ T ⊎ {t : (B, await; b)}, then

Σ;M ⊢ T ⊎ {t : (B, b)}

Proof. Applying Lemma 6.3.2 to the hypothesis yields that (i) Σ = Σ′ ⊎ {t : Ψ},
(ii) ⊢t M : Γ, (iii) Ψ;Γ ⊢ (B, await; b), and (ifi) Σ′;M ⊢ T . From (iii) Ψ;Γ ⊢
(B, await; b) and Lemma 7.6.1, fle get that (fi)Ψ;Γ ⊢ (B, b). Hence, fle conclffde
applying rffle T-tm-c to (ii), (fi), and (ifi).

7.7 Next
De॑nition 7.7.1. Let commitD(∆, t) = ∆′. Function commitD(∆, t) is deटned
by cases as follows.

∆′(t1, t2) =











∆(t, t2) + 1 if t1 = t and t2 6= t

∆(t1, t)− 1 if t1 6= t and t2 = t

∆(t1, t2) otherwise

Lemma 7.7.1. If N ⊢ ∆ and ∆′ = commitD(∆, t), then N ⊢ ∆′.

Proof. By hypothesis fle hafie

(N,≤∆) is a total ordering
∀t1, t2 ∈ N.∆(t1, t2) = z =⇒ ∆(t2, t1) = −z

N ⊢ ∆

We shofl that for any task names t1 and t2 picked from N fle hafie that
∆′(t1, t2) = −∆′(t2, t1). In the ੗rst colffmn, a cell corresponds to a sffb-case
flhere fle compare the picked task names flith t. In the second colffmn, fle
establish that ∆′(t1, t2) = −∆′(t2, t1) flith De੗nition 7.7.1.
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Sffb-case ∆′(t1, t2) = −∆′(t2, t1)
t1 = t ∧ t2 = t ∆(t1, t2) = −∆(t2, t1)
t1 6= t ∧ t2 = t ∆(t1, t)− 1 = −(∆(t, t1) + 1)
t1 = t ∧ t2 6= t ∆(t, t2) + 1 = −(∆(t2, t)− 1)
t1 6= t ∧ t2 6= t ∆(t1, t2) = −∆(t2, t1)

We nofl shofl that (N,≤∆′) is re੘effiifie. Let t′ ∈ N . By hypothesis fle
hafie t′ ≤∆ t′, hence ∆(t′, t′) ≤∆ 0. Gifien that regardless of flhich task name
fle chose ∆′(t′, t′) = ∆(t′, t′), then fle hafie that t ≤∆′ t.

Relation strffctffre (N,≤∆′) is anti-symmetric. By de੗nition fle get that
∆′(t1, t2) ≤∆ 0 and ∆′(t1, t2) ≤∆ 0. Let t1, t2 ∈ N , t1 ≤∆′ t2, and t2 ≤∆′ t1.
We need to shofl that t1 =∆′ t2 holds. Bfft fle hafie shofln that ∆′(t1, t2) =
−∆′(t2, t1), hence ∆′(t1, t2) = 0 and therefore t1 ≤∆′ t2.

Relation strffctffre (N,≤∆′) is compatible. Let t1, t2 ∈ N . We need to
shofl that fle hafie t1 ≤∆′ t2 ∨ t2 ≤∆′ t1, or simply that ∆′(t1, t2) ≤∆′ 0 ∨
∆′(t2, t1) ≤∆ 0. Bfft fle hafie already shofln that∆′(t1, t2) = −∆′(t2, t1), hence
∆′(t1, t2) ≤∆′ 0 ∨∆′(t2, t1) ≤∆ 0.

Finally, fle shofl that (N,≤∆′) is transitifie. Let t1, t2, t3 ∈ N ,∆(t1, t2) = z1,
∆(t2, t3) = z2, and∆(t1, t3) = z3. Relation strffctffre (N,≤∆) is transitifie, thffs
z1 + z2 = z3. It is enoffgh to shofl that ∆′(t1, t2) + ∆′(t2, t3) = ∆′(t1, t3). We
bffild a table to shofl this resfflt. In the ੗rst colffmn, a cell corresponds to a
sffb-case, flhere fle compare t1, t2, and t3 each flith t. In the second colffmn, a
cell is the proof of the sffb-case, ffsing De੗nition 7.7.1.

Sub-case ∆′(t1, t2) + ∆′(t2, t3) = ∆′(t1, t3)
t1 = t t2 = t t3 = t z1 + z2 = z3
t1 6= t t2 = t t3 = t z1 − 1 + z2 = z3 − 1
t1 = t t2 6= t t3 = t z1 + 1 + z2 − 1 = z3
t1 = t t2 = t t3 6= t z1 + z2 + 1 = z3 + 1
t1 6= t t2 6= t t3 = t z1 + z2 − 1 = z3 − 1
t1 6= t t2 = t t3 6= t z1 − 1 + z2 + 1 = z3
t1 = t t2 6= t t3 6= t z1 + 1 + z2 = z3 + 1
t1 6= t t2 6= t t3 6= t z1 + z2 = z3

Relation strffctffre (N,≤∆′) is a total ordering, since it is re੘effiifie, transitifie,
anti-symmetric, and compatible.

Lemma 7.7.2. If ∆; t1;n1 ⊢ P , t2 /∈ domP ∪ {t1}, and ∆′ = commitD(∆, t2),
then ∆′; t1;n1 ⊢ P .

Proof. he proof follofls by indffction on the derifiation of ∆; t1;n1 ⊢ P . We do
a case analysis on the last rffle applied.
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• Case D-l-nil:
∆; t1;n1 ⊢ ∅

he case holds by direct application of rffle D-l-nil.

• Case D-l-cons:

(i) ∆; t1;n1 ⊢ P1 (ii) ∆(t1, t3) = n1 − n3

∆; t1;n1 ⊢ P1 ⊎ {t3 : (n3, a3)}

flhere phaser P is P1 ⊎ {t3 : (n3, a3)}. We knofl that (iii) t2 /∈ domP1 ∪
{t1}, as t2 /∈ domP1 ∪ {t1} (hypothesis) and P = P1 ⊎ {t3 : (n3, a3)}
(hypothesis). We apply the indffction hypothesis to (i) ∆; t1;n1 ⊢ P1,
(iii) t2 /∈ domP1 ∪ {t1}, and ∆′ = commitD(∆, t2) (hypothesis), and
get that (ifi) ∆′; t1;n1 ⊢ P1 holds. From De੗nition 7.7.1 since t1 6= t2
(hypothesis) and t3 6= t2 (hypothesis), then (fi) ∆′(t1, t3) = ∆(t1, t3) =
n1 − n3. hffs,

(ifi) ∆′; t1;n1 ⊢ P1 (fi) ∆′(t1, t3) = n1 − n3

D-l-cons
∆′; t1;n1 ⊢ P1 ⊎ {t3 : (n3, a3)}

Lemma 7.7.3. If ∆ ⊢ P , t /∈ domP , and ∆′ = commitD(∆, t), then ∆′ ⊢ P .

Proof. We do an indffction proof on the derifiation of∆ ⊢ P , flith a case analysis
on the last rffle applied.

• Case D-ph-nil:
∆ ⊢ ∅

flhere P is ∅. he case conclffdes flith direct ffse of rffle D-ph-nil.

• Case D-ph-cons:
(i) ∆ ⊢ P1 (ii) ∆; t1;n ⊢ P1

∆ ⊢ P1 ⊎ {t1 : (n, a)}

flhere phaserP isP1⊎{t1 : (n, a)}. Since fle hafie t /∈ domP (hypothesis)
and P is P1 ⊎ {t1 : (n, a)} (hypothesis), then (iii) t /∈ domP1. We apply
the indffction hypothesis to (i) ∆ ⊢ P1, (iii) t /∈ domP1, and ∆′ =
commitD(∆, t), and get that ∆′ ⊢ P1 holds. Since fle hafie ∆; t1;n ⊢ P1,
t /∈ domP1 ∪ {t1}, and ∆′ = commitD(∆, t2), then by Lemma 7.7.2 fle
hafie that ∆′; t1;n ⊢ P1.
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Lemma 7.7.4. If ∆; t;n ⊢ P , t /∈ domP , and ∆′ = commitD(∆, t), then
∆′; t; (n+ 1) ⊢ P .

Proof. he proof is by indffction on the derifiation of relation ∆; t;n ⊢ P . We
do a case analysis on the last rffle applied.

• Case D-l-nil:
∆; t;n ⊢ ∅

flhere P is ∅. he case holds by direct application of rffle D-l-nil.

• Case D-l-cons:

(i) ∆; t;n ⊢ P1 (ii) ∆(t, t1) = n− n1

∆; t;n ⊢ P1 ⊎ {t1 : (n1, a1)}

flhere phaser P is P1 ⊎ {t1 : (n1, a1)}. Since t /∈ domP and P is P1 ⊎
{t1 : (n1, a1)}, then (iii) t /∈ domP1. We apply the indffction hypothesis
to (i) ∆; t;n ⊢ P1, (iii) t /∈ domP1, and ∆′ = commitD(∆, t) (hypothesis),
and get that (ifi) ∆′; t; (n+ 1) ⊢ P1. From De੗nition 7.7.1 since t1 6= t,
then ∆′(l, t1) = ∆(l, t1) + 1 = n− n1 + 1. Hence,

∆′; t; (n+ 1) ⊢ P1

∆′(l, t1) = n− n1 + 1
=

∆′(l, t1) = (n+ 1)− n1

D-l-cons
∆′; t; (n+ 1) ⊢ P1 ⊎ {t1 : (n1, a1)} def

=
∆′; t; (n+ 1) ⊢ P

Lemma 7.7.5. If N ⊢ ∆, ∆ ⊢ P ⊎ {t : (n, a)} and ∆′ = commitD(∆, t), then
∆′ ⊢ P ⊎ {t : (n+ 1,u)}.

Proof. Let P1 = P ⊎ {t : (n, a)}. We hafie that (i) P1(t) = (n, a). Applying
N ⊢ ∆ (hypothesis), ∆ ⊢ P1 (hypothesis), P1(t) = (n, a), then (ii) ∆ ⊢ P , and
(iii) ∆; t;n ⊢ P . By hypothesis fle hafie that (ifi) t /∈ domP . From (ii) ∆ ⊢ P ,
(ifi) t /∈ domP , ∆′ = commitD(∆, t) (hypothesis), and Lemma 7.7.3 yields
(fi) ∆′ ⊢ P . Applying Lemma 7.7.4 to (iii) ∆; t;n ⊢ P , (ifi) t /∈ domP , and
∆′ = commitD(∆, t) (hypothesis), then (fii) ∆′; t; (n+ 1) ⊢ P . Hence,

(fi) ∆′ ⊢ P (fii) ∆′; t; (n+ 1) ⊢ P
D-ph-cons

∆ ⊢ P ⊎ {t : (n+ 1,u)}
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Lemma7.7.6. IfN ⊢ ∆,∆;N ⊢M ,∆′ = commitD(∆, t), andM ′ = commit(M, t),
then ∆′;N ⊢M ′.

Proof. he proof follofls by indffction on the strffctffre ofM ′ = commit(M, t).
We perform a case analysis.

• Case Com-n:
commit(∅, t) = ∅

he case holds flith rffle T-p-map-nil.

• Case Com-s:

(i) commit(M1, t) =M2 (ii) t /∈ domP

commit(M1 ⊎ {p : P}, t) =M2 ⊎ {p : P}

flhereM def
= M1 ⊎ {p : P} andM ′ def

= M2 ⊎ {p : P}.
We knofl that (iii) M(p) = P . From Lemma 6.3.6, ∆;N ⊢ M (hypoth-
esis), and (iii) M(p) = P , fle hafie (ifi) ∆ ⊢ P , (fi) domP ⊆ N , and
(fii) ∆;N ⊢ M1. From (ifi) ∆ ⊢ P , (ii) t /∈ domP , ∆′ = commitD(∆, t),
and Lemma 7.7.3, then (fiii) ∆′ ⊢ P . Neffit, fle apply the indffction hy-
pothesis to N ⊢ ∆ (hypothesis), (fii) ∆;N ⊢ M1, ∆′ = commitD(∆, t)
(hypothesis), and (i) commit(M1, t) = M2, to obtain (fiiii) ∆′;N ⊢ M2.
hffs,

(fiii) ∆′ ⊢ P (fi) domP ⊆ N (fiiii) ∆′;N ⊢M2

T-p-map-cons
∆;N ⊢M2 ⊎ {p : P}

• Case Com-c:

commit(M1, t) =M2

commit(M1 ⊎
{

p : P ⊎ {t : (n, a)}
}

, t)

=M2 ⊎
{

p : P ⊎ {t : (n+ 1,u)}
}

flhereM def
= M1 ⊎ {p : P1}, M ′ def

= M2 ⊎ {p : P2}, P1

def
= P ⊎ {t : (n, a)},

and P2

def
= P ⊎ {t : (n+ 1,u)}.

We knofl that (iii)M(p) = P1. From Lemma 6.3.6, ∆;N ⊢ M (hypoth-
esis), and (iii) M(p) = P1, fle hafie (ifi) ∆ ⊢ P1, (fi) domP1 ⊆ N , and
(fii) ∆;N ⊢ M1. From N ⊢ ∆ (hypothesis), (ifi) ∆ ⊢ P ⊎ {t : (n, a)},
∆′ = commitD(∆, t), and Lemma 7.7.5, then (fiii) ∆′ ⊢ P2. Neffit, fle
apply the indffction hypothesis to N ⊢ ∆ (hypothesis), (fii) ∆;N ⊢ M1,
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∆′ = commitD(∆, t) (hypothesis), and (i) commit(M1, t) = M2, to ob-
tain (fiiii) ∆′;N ⊢M2. hffs,

(fiii) ∆′ ⊢ P2 (fi) domP ⊆ N (fiiii) ∆′;N ⊢M2

T-p-map-cons
∆;N ⊢M2 ⊎ {p : P2}

Lemma 7.7.7. If ⊢t M : Γ andM ′ = commit(M, t), then there exists a Γ′ such
that domΓ = domΓ′, ∀p ∈ domΓ′ : Γ′(p) = u, and ⊢t M

′ : Γ′.

Proof. he proof follofls by indffction on the strffctffre ofM ′ = commit(M, t).
We perform a case analysis on the de੗nition of commit(M, t).

• Case Com-n:
commit(∅, t) = ∅

flhere M is ∅ and M ′ is ∅. By infierting ⊢t M : Γ, fle hafie that Γ = ∅.
Hence, the case holds by hypothesis

⊢t M
′ : Γ

def
= ⊢t ∅ : ∅

def
= ⊢t M : Γ

and domΓ = domΓ′ = ∅ and ∀p ∈ domΓ′ : Γ′(p) = u.

• Case Com-c:
(i) commit(M1, t) =M2

commit(M1 ⊎ {p : P1}, t) =M2 ⊎ {p : P2}

flhereP1

def
= P⊎{t : (n, a)},P2

def
= P⊎{t : (n+ 1,u)},M def

= M1⊎{p : P1},
andM ′ def

= M2 ⊎ {p : P2}.
Since fle hafie ⊢t M : Γ (hypothesis) and t ∈ domM(p) (hypothesis),
then by Lemma 6.3.5 there effiists a Γ1 sffch that (ii) Γ = Γ1 ⊎ {p : a}, and
(iii) ⊢t M1 : Γ1. Applying the indffction hypothesis to (iii) ⊢t M1 : Γ1 and
(i) commit(M1, t) = M2, yields that there effiists a typing Γ2 sffch that
(ifi) domΓ1 = domΓ2, (fi) ∀p ∈ domΓ2 : Γ2(p) = u, and (fii) ⊢t M2 : Γ2.
Let Γ′ def

= Γ2⊎{p : u}. From (ifi) domΓ1 = domΓ2 and domΓ = domΓ1∪
{p}, then (1) domΓ = domΓ′. Sincefle hafie (fi) ∀p ∈ domΓ2 : Γ2(p) = u,
domΓ′ = domΓ2 ∪ {p}, and Γ′(p) = u, then (2) ∀p ∈ domΓ′ : Γ′(p) = u.
Finally, the follofling derifiation tree holds.

(fii) ⊢t M2 : Γ2 P2(t) = (_,u)
T-perm-cons

⊢t M2 ⊎ {p : P2} : Γ2 ⊎ {p : u} def
=

⊢t M
′ : Γ′
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• Case Com-s:

(i) commit(M1, t) =M2 (ii) t /∈ domP

commit(M1 ⊎ {p : P}, t) =M2 ⊎ {p : P}

flhere M def
= M1 ⊎ {p : P} and M ′ def

= M2 ⊎ {p : P}. Since fle hafie ⊢t

M : Γ (hypothesis) and t /∈ domM(p) (hypothesis), then by Lemma 6.3.4
fle hafie (iii) ⊢t M1 : Γ. Applying the indffction hypothesis to (iii) ⊢t

M1 : Γ and (i) commit(M1, t) = M2, yields that there effiists a Γ′ sffch
that (1) domΓ = domΓ′, (2) ∀p ∈ domΓ′ : Γ′(p) = u, and (ifi) ⊢t M2 : Γ

′.
hffs,

(ifi) ⊢t M2 : Γ
′ (ii) t /∈ domP

T-perm-skip
⊢t M2 ⊎ {p : P} : Γ′

⊢t M
′ : Γ′

Lemma 7.7.8. If Ψ;Γ ⊢ (B, next; b), then there exists a typing Γ′ such that
domΓ = domΓ′, ∀p ∈ domΓ′ : Γ′(p) = u, and Ψ;Γ′ ⊢ (B, b).

Proof. By infierting the hypothesis fle get the follofling premises.

(i) Γ ⊢ B

· · · (ii) {p1 : u, . . . , pn : u} ⊢ b : ∅

{p1 : a, . . . , pn : a} ⊢ next; b : ∅

〈∅; ∅〉; Γ ⊢ (B, next; b)

flhere Γ def
= {p1 : a, . . . , pn : a}. Let Γ′ def

= {p1 : u, . . . , pn : u}. By de੗nition fle
hafie that domΓ = domΓ′ and that ∀p ∈ domΓ′ : Γ′(p) = u. Hence,

(i) Γ ⊢ B (ii) Γ′ ⊢ b : ∅
T-t-r

〈∅; ∅〉; Γ′ ⊢ (B, b)

Lemma 7.7.9. If ⊢t′ M : Γ, t 6= t′, andM ′ = commit(M, t), then ⊢t′ M
′ : Γ.

Proof. he proof follofls by indffction on the de੗nition ofM ′ = commit(M, t).
We perform a case analysis on the derifiation of the last rffle applied.

• Case Com-n:
commit(∅, t) = ∅

flhereM def
= M ′ def

= ∅. he case holds by hypothesis.
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• Case Com-s:

(i) commit(M1, t) =M2 (ii) t /∈ domP

commit(M1 ⊎ {p : P}, t) =M2 ⊎ {p : P}

flhereM def
= M1 ⊎ {p : P} andM ′ def

= M2 ⊎ {p : P}. We nofl test if t′ ∈
domP .

– Case t′ ∈ domP . From Lemma 6.3.5, ⊢t′ M : Γ (hypothesis), t′ ∈
domM1(p), then (i) P (t′) = (n, a), (ii) Γ = Γ′ ⊎ {p : a}, and (iii) ⊢t′

M1 : Γ
′. Applying the indffction hypothesis to (iii) ⊢t′ M1 : Γ1, t 6= t′

(hypothesis), and M2 = commit(M1, t) (hypothesis), then (ifi) ⊢t′

M2 : Γ
′. hffs,

(ifi) ⊢t′ M2 : Γ
′ (i) P (t′) = (n, a)

T-perm-cons
⊢t M ⊎ {p : P} : Γ ⊎ {p : a}

– Case t′ /∈ domP . Applying Lemma 6.3.4 to ⊢t′ M : Γ (hypothe-
sis) and t′ /∈ domM(p), then (i) ⊢t′ M1 : Γ. Neffit, fle apply the
indffction hypothesis to (i) ⊢t′ M1 : Γ, t 6= t′ (hypothesis), and
M2 = commit(M1, t) (hypothesis), then (ii) ⊢t′ M2 : Γ. hffs,

(ii) ⊢t′ M2 : Γ t /∈ domP
T-perm-skip

⊢t M2 ⊎ {p : P} : Γ def
=

⊢t M
′ : Γ

• Case Com-c:

commit(M1, t) =M2

commit(M1 ⊎
{

p : P1

}

, t) =M2 ⊎
{

p : P2

}

flhere P1

def
= P ⊎ {t : (n, a)}, P2

def
= P ⊎ {t : (n+ 1,u)}, M def

= M1 ⊎
{

p : P1

}

, andM ′ def
= M2 ⊎

{

p : P2

}

. he proof has the same strffctffre as
in case Com-s.

Lemma 7.7.10. If Σ;M ⊢ T , t /∈ domT , and M ′ = commit(M, t), then
Σ;M ′ ⊢ T .

Proof. he proof follofls by indffction on the typing relation. We perform a case
analysis on the derifiation of the last rffle applied.
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• Case T-tm-n:
∅;M ⊢ ∅

flhere T def
= ∅. he case holds by direct application of T-tm-n.

• Case T-tm-c:
(i) ⊢t′ M : Γ (ii) Ψ;Γ ⊢ τ (iii) Σ′;M ⊢ T ′

Σ′ ⊎ {t′ : Ψ};M ⊢ T ′ ⊎ {t′ : τ}

flhere Σ def
= Σ′ ⊎ {t′ : Ψ} and T def

= T ′ ⊎ {t′ : τ}. From t /∈ domT fle hafie
that (ifi) t 6= t′. Applying Lemma 7.7.9 to (i) ⊢t′ M : Γ, (ifi) t 6= t′, and
M ′ = commit(M, t) resfflts in (fi) ⊢t′ M

′ : Γ. We also knofl that (fii) t /∈
domT ′, as t /∈ domT (hypothesis) and T def

= T ′ ⊎ {t′ : τ} (hypothesis).
Neffit, from the indffction hypothesis, (iii) Σ′;M ⊢ T ′, (fii) t /∈ domT ′, and
M ′ = commit(M, t), and fle hafie that (fiii) Σ′;M ′ ⊢ T ′. Hence,

(fi) ⊢t′ M
′ : Γ (ii) Ψ;Γ ⊢ τ (fiii) Σ;M ′ ⊢ T ′

T-tm-c
Σ ⊎ {t′ : Ψ};M ′ ⊢ T ′ ⊎ {t′ : τ}

Lemma 7.7.11. IfΣ;M ⊢ T ⊎ {t : (B, next; b)} andM ′ = commit(M, t), then
there exists a Σ′ such that Σ′;M ′ ⊢ T ⊎ {t : (B, b)}.

Proof. Let τ1 = (B, next; b) and T1
def
= T ⊎ {t : τ1}. We knofl that (i) T1(t) = τ1.

We apply Lemma 6.3.2 to Σ;M ⊢ T1 (hypothesis) and (i) T1(t) = τ1, and get
(ii) Σ = Σ1 ⊎ {t : Ψ}, (iii) ⊢t M : Γ, (ifi) Ψ;Γ ⊢ τ1, and (fi) Σ1;M ⊢ T .

From (iii) ⊢t M : Γ,M ′ = commit(M, t) (hypothesis), and Lemma 7.7.7 fle
hafie that there effiists a typing Γ′ sffch that (fii) domΓ = domΓ′, (fiii) ∀p ∈
domΓ′ : Γ′(p) = u, and (fiiii) ⊢t M

′ : Γ′.
Bfft fle also knofl that from (ifi) Ψ;Γ ⊢ τ1 and Lemma 7.7.8, fle hafie

a typing Γ′′ sffch that (iffi) domΓ = domΓ′′, (ffi) ∀p ∈ domΓ′′ : Γ′′(p) = u,
(ffii) Ψ;Γ′′ ⊢ (B, b). We knofl that domΓ = domΓ′′ = domΓ′ and that ∀p ∈
domΓ: Γ′′(p) = Γ′(p) = u, hence (ffiii) Γ′′ = Γ′.

Finally, since fle hafie (fi) Σ1;M ⊢ T , t /∈ domT , andM ′ = commit(M, t)
(hypothesis), then from Lemma 7.7.10 (fiii) Σ1;M

′ ⊢ T holds.
Let τ2

def
= (B, b). Hence,

(fi) ⊢t M
′ : Γ (fii) Ψ;Γ ⊢ τ2 (fiii) Σ1;M

′ ⊢ T
T-tm-c

Σ ⊎ {t : Ψ};M ⊢ T ⊎ {t : τ2}
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7.8 Finish
Lemma 7.8.1. For any t if ∅ ⊢ b : ∅, then 〈∅; ∅〉 ⊢

(

∅, {t : (∅, b)}
)

.

Proof. he follofling premise (i) holds.

T-perm-nil
⊢t ∅ : ∅

T-b-n
∅ ⊢ ∅ ∅ ⊢ b : ∅

T-t-r
〈∅; ∅〉; ∅ ⊢ (B, b)

T-tm-n
∅; ∅ ⊢ ∅

T-tm-c
{t : 〈∅; ∅〉}; ∅ ⊢ {t : (B, b)}

Let Σ def
= {t : 〈∅; ∅〉}, T def

= {t : (B, b)}, N def
= {t}, and ∆ be sffch that ∆(t, t) = 0

and dom∆ = {(t, t)}. It is easy to see that (N,≤∆) is a total ordering and that

∀t1, t2 ∈ N : ∆(t1, t2) = z =⇒ ∆(t2, t1) = −z

hffs, from rffle D-wf fle hafie that (ii) N ⊢ ∆. Hence,

(ii) N ⊢ ∆
T-p-map-nil

∆;N ⊢ ∅ (i) Σ; ∅ ⊢ T

〈∆;Σ〉 ⊢
(

M,T
)

Lemma 7.8.2. If Ψ;Γ ⊢ (B, finish(b2); b1) and S =
(

∅, {t2 : (∅, b2)}
)

, then
there exists a Ψ′ such that Ψ′; Γ ⊢ S ⊲ (B, b1).

Proof. Infierting (ii) yields the follofling premises.

(i) Γ ⊢ B

(ii) ∅ ⊢ b2 : ∅

Γ ⊢ finish(b2) : Γ (iii) Γ ⊢ b1 : ∅

Γ ⊢ finish(b2); b1 : ∅

〈∅; ∅〉; Γ ⊢ (B, finish(b2); b1)

flhere Ψ = 〈∅; ∅〉. With Lemma 7.8.1 and ∅ ⊢ b2 : ∅, fle hafie that there effiists
a Ψ′ sffch that (fi) Ψ′ ⊢ S. herefore,

(fi) Ψ′ ⊢ S

(i) Γ ⊢ B (iii) Γ ⊢ b1 : ∅
T-t-r

〈∅; ∅〉; Γ ⊢ (B, b1)
T-t-f

Ψ′; Γ ⊢ S ⊲ (B, b1)



7.9. JOIN 129

Lemma 7.8.3. If Σ;M ⊢ T ⊎{t1:(B, finish(b2); b1)} and S=
(

∅,{t2 :(∅,b2)}
)

,
then there exists a Σ′ such that Σ′;M ⊢ T ⊎ {t1 : S ⊲ (B, b1)}.

Proof. Let τ1
def
= (B, finish(b2); b1) and T1

def
= T ⊎ {t1 : (B, finish(b2); b1)}.

From Lemma 6.3.2,Σ;M ⊢ T1, and T1(t1) = τ1, fle get that (i)Σ = Σ1⊎{t1 : Ψ},
(ii) ⊢t1 M : Γ, (iii) Ψ;Γ ⊢ τ1, and (ifi) Σ1;M ⊢ T . Let τ2

def
= S ⊲ (B, b1). We hafie

that from Lemma 7.8.2, Ψ;Γ ⊢ τ1, and S =
(

∅, {t2 : (∅, b2)}
)

(hypothesis), fle
get that there effiists a Ψ′ sffch that (fi) Ψ′; Γ ⊢ τ2. hffs,

(ii) ⊢t1 M : Γ (fi) Ψ′; Γ ⊢ τ2 (ifi) Σ1;M ⊢ T
T-tm-c

Σ1 ⊎ {t : Ψ′};M ⊢ T ⊎ {t : τ}

7.9 Join
Lemma 7.9.1. If Σ;M ⊢ T ⊎ {t : S ⊲ (B, b)}, then there exists a Σ′ such that
Σ′;M ⊢ T ⊎ {t : (B, b)}.

Proof. Let τ1
def
= S ⊲ (B, b) and T1

def
= T ⊎ {t : τ1}. Applying Lemma 6.3.2 to the

hypothesis and to T1(t) = τ1, fle get that (i) Σ = Σ1 ⊎ {t : Ψ}, (ii) ⊢t M : Γ,
(iii) Ψ;Γ ⊢ τ1, and (ifi) Σ1;M ⊢ T . By infierting (iii) fle get that (fi) 〈∅; ∅〉; Γ ⊢
(B, b). We conclffde the proof applying rffle T-tm-c to (ii), (fi), and (ifi).

7.10 Control ॒ow
Lemma 7.10.1. If Γ ⊢ b : Γ′′ and Γ′′ ⊢ b′ : Γ′, then Γ ⊢ b · b′ : Γ′.

Proof. We knofl that the program concatenation is total, let b0 = b · b′. he
proof follofls by indffction on the de੗nition of b · b′. Neffit, fle perform a case
analysis on the derifiation of the last rffle applied.

• Case (i; b′′) · b′ def
= i; (b′′ · b′), flhere b = i; b′′. We infiert the hypothesis to

obtain the neffit premises.

(i) Γ ⊢ i : Γi (ii) Γi ⊢ b
′′ : Γ′′

Γ ⊢ i; b′′ : Γ′′
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Applying the indffction hypothesis to (ii) Γi ⊢ b : Γ′′ and Γ′′ ⊢ b′ : Γ′

(hypothesis) yields that (iii) Γi ⊢ b
′′ · b′ : Γ′. hffs,

(i) Γ ⊢ i : Γi (iii) Γi ⊢ b
′′ · b′ : Γ′

Γ ⊢ i; (b′′ · b′) : Γ′

def
=

Γ ⊢ b · b′ : Γ′

• Case end · b′
def
= b′, flhere b = end. By infiersion of Γ ⊢ b : Γ′′, fle get

that Γ′′ = Γ, hence fle hafie Γ ⊢ b′ : Γ′. hffs, from end · b′ def
= b′ and the

later, fle get that Γ ⊢ end · b′ : Γ′

Lemma 7.10.2. If c; b→ b′ and Γ ⊢ c; b : ∅, then Γ ⊢ b′ : ∅.

Proof. We infiert hypothesis c; b→ b′ and obtain three cases.

• Case R-skip:
skip; b→ b

flhere c; b def
= skip; b and b′ def

= b. We infiert hypothesis Γ ⊢ skip; b : ∅ to
conclffde offr case.

· · · Γ ⊢ b : ∅

Γ ⊢ skip; b : ∅

• Case R-iter:
loop(b′′); b→ b′′ · (loop(b′′); b)

flhere c; b def
= loop(b′′); b and b′ def

= b′′ · (loop(b′′); b). We infiert hypothe-
sis Γ ⊢ loop(b′′); b : ∅ and premise (i).

(i) Γ ⊢ b′′ : Γ

Γ ⊢ loop(b′′) : Γ · · ·

Γ ⊢ loop(b′′); b′ : ∅

From Lemma 7.10.1, Γ ⊢ b′′ : Γ and Γ ⊢ loop(b′′); b′ : ∅ (hypothesis), fle
get that Γ ⊢ b′′ · (loop(b′′); b) : ∅.

• Case R-elide:
loop(b′′); b′ → b′

flhere c; b def
= loop(b′′); b′. We infiert hypothesis Γ ⊢ loop(b′′); b′ : ∅ to

conclffde offr case.
· · · Γ ⊢ b′ : ∅

Γ ⊢ loop(b′′); b′ : ∅
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Lemma 7.10.3. If c; b→ b′ and Ψ;Γ ⊢ (B, c; b), then Ψ;Γ ⊢ (B, b′).

Proof. By infierting the hypothesis fle get the neffit premises.

(i) Γ ⊢ B (ii) Γ ⊢ c; b : ∅

〈∅; ∅〉; Γ ⊢ (B, c; b)

From Lemma 7.10.2, c; b → b′ (hypothesis), and Γ ⊢ c; b : ∅, fle knofl that
Γ ⊢ b′ : ∅. Hence,

(i) Γ ⊢ B (ii) Γ ⊢ b′ : ∅
T-t-r

〈∅; ∅〉; Γ ⊢ (B, b′)

Lemma7.10.4. If c; b→ b′ andΣ;M ⊢ T ⊎ {t : (B, c; b)} thenΣ;M ⊢ T ⊎ {t : (B, b′)}.

Proof. From Lemma 6.3.2 and the hypothesis fle hafie that (i) Σ = Σ′′ ⊎ {t : Ψ},
(ii) ⊢t M : Γ, (iii) Ψ;Γ ⊢ τ , and (ifi) Σ′′;M ⊢ T . Neffit, fle apply Lemma 7.10.3 to
c; b→ b′ (hypothesis) and (iii) Ψ;Γ ⊢ τ to obtain (fi) Ψ;Γ ⊢ (B, b′). herefore,

(ii) ⊢t M : Γ (fi) Ψ;Γ ⊢ (B ⊎ {p : n}, b) (ifi) Σ′′;M ⊢ T

Σ′′ ⊎ {t : Ψ};M ⊢ T ⊎ {t : (B ⊎ {p : n}, b)}

7.11 Main result
heorem 7.11.1 (Sffbject redffction). If Ψ1 ⊢ S1 and S1 → S2, then there exists
a Ψ2 such that Ψ2 ⊢ S2.

Proof. By indffction on the derifiation of the redffction relation betfleen abstract
machines (→), analysing the last rffle applied.

Case R-async.
(

M1, T ⊎ {t : (B, async(s, b′); b)}
)

→
(

copy(s, t, t′,M1), T ⊎ {t : (B, b)} ⊎ {t′ : (boffnds(s), b′)}
)

flhere S1 is
(

M,T ⊎ {t : (B, async(s, b′); b)}
)

and S2 is
(

copy(s, t, t′,M), T ⊎ {t : (B, b)} ⊎ {t′ : (boffnds(s), b′)}
)
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Let T1
def
= T ⊎ {t : (B, async(s, b′); b)}. By infiersion of the hypothesis that

abstract machine is flell typed fle get the follofling premises.

(i) domT1 ⊢ ∆ (ii) ∆; domT1 ⊢M1 (iii) Σ;M1 ⊢ T1
〈∆;Σ〉 ⊢

(

M1, T1
)

Let M2

def
= M ⊎

{

p : P ⊎ {t : 〈n; a〉}
}

, T2
def
= T ⊎ {t : (B, b)}, and N def

=
domT1. To shofl that 〈∆;Σ〉 ⊢

(

M2, T2
)

holds, fle need to establish the fol-
lofling. Since fle hafie (i) N ⊢ ∆, (ii) ∆;N ⊢ M1, copy(s, t, t′,M1) = M2

(hypothesis), and t′ /∈ N (hypothesis), then from Lemma 7.1.7 there effiists a ∆′

sffch that (1) domT2 ⊢ ∆′ and (2) ∆′; domT2 ⊢M2.
We apply Lemma 7.1.17 to

Σ;M1 ⊢ T ⊎ {t : (B, async(s, b′); b)}

copy(s, t, t′,M1) = M2 (hypothesis), boffnds(s) = B′ (hypothesis), and t′ /∈
domT ∪ {t} (hypothesis), to obtain a Σ′ sffch that (3) Σ′;M2 ⊢ T2. We apply
rffle T-amach to (1), (2), and (3) and conclffde this case.

Case R-phaser.

(i) q /∈ bn(b) M2

def
= M1 ⊎

{

q : {t : 〈0;u〉}
}

B2

def
= B1 ⊎ {q : 0}

(

M1, T ⊎ {t : (B1, p = newPhaser(); b)}
)

→
(

M2, T ⊎ {t : (B2, b[q/p])}
)

Let T1
def
= T ⊎ {t : (B1, p = newPhaser(); b)} and T2

def
= T ⊎ {t : (B2, b[q/p])}.

By infiersion of the hypothesis that the state is flell typed fle get the follofling
premises.

domT1 ⊢ ∆ ∆; domT1 ⊢M1 Σ;M1 ⊢ T1
〈∆;Σ〉 ⊢

(

M1, T1
)

To shofl that 〈∆;Σ〉 ⊢
(

M2, T2
)

holds, fle need to establish the follofling.

1. We hafie that domT1 = domT2, hence domT2 ⊢ ∆.

2. From Lemma 7.2.9, domT1 ⊢ ∆, ∆; domT1 ⊢ M1, q /∈ domM1, and
t ∈ domT1, fle get that ∆; domT2 ⊢M2.

3. Applying Lemma 7.2.13 to Σ;M ⊢ T ⊎ {t : (B, p = newPhaser(); b)},
q /∈ domM1 (since fle hafieM2), and (i) q /∈ bn(b), to obtain Σ;M2 ⊢ T2.

We apply rffle T-amach to (1), (2), and (3) and conclffde this case.
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Case R-dereg.
(

M ⊎
{

p : P ⊎ {t : v}
}

, T ⊎
{

t : (B ⊎ {p : n}, dereg(p); b)
})

→
(

M ⊎
{

p : P
}

, T ⊎
{

t : (B, b)
})

flhere S1 is
(

M ⊎
{

p : P ⊎ {t : v}
}

, T ⊎
{

t : (B ⊎ {p : n}, dereg(p); b)
})

and
S2 is (M ⊎

{

p : P
}

, T ⊎
{

t : (B, b)
}

). Let M1

def
= M ⊎

{

p : P ⊎ {t : v}
}

and
T1

def
= T ⊎

{

t : (B ⊎ {p : n}, dereg(p); b)
}

. By infiersion of the hypothesis fle
get the follofling premises.

domT1 ⊢ ∆ ∆; domT1 ⊢M1 Σ;M1 ⊢ T1
〈∆;Σ〉 ⊢

(

M1, T1
)

LetM2

def
= M ⊎

{

p : P
}

and T2
def
= T ⊎

{

t : (B, b)
}

. To shofl that 〈∆;Σ〉 ⊢
(

M2, T2
)

holds, fle need to establish the follofling.

1. We hafie that domT1 = domT2, hence domT2 ⊢ ∆.

2. From Lemma 7.3.1, domT1 ⊢ ∆, ∆;N ⊢ M1, M1(p) = P1, and t ∈
domP1, then M1 = M ⊎ {p : P}, P1 = P ⊎ {t : v}, and ∆; domT2 ⊢
M ⊎

{

p : P
}

.

3. Applying Lemma 7.3.3 to Σ;M ⊢ T ⊎ {t : (B, p = newPhaser(); b)}, q /∈
domM1 (since fle hafieM2), and (i) q /∈ bn(b), to obtain Σ;M2 ⊢ T2.

We apply rffle T-amach to (1), (2), and (3) and conclffde this case.

Case R-advance.
(

M ⊎
{

p : P ⊎ {t : (n,u)}
}

, T ⊎ {t : (B, adv(p); b)}
)

→
(

M ⊎
{

p : P ⊎ {t : (n, a)}
}

, T ⊎ {t : (B, b)}
)

flhere S1 is
(

M ⊎
{

p : P ⊎ {t : (n,u)}
}

, T ⊎ {t : (B, adv(p); b)}
)

and S2 is
(

M ⊎
{

p : P ⊎ {t : (n, a)}
}

, T ⊎ {t : (B, b)}
)

LetM1

def
= M ⊎

{

p : P ⊎ {t : 〈n;u〉}
}

and T1
def
= T ⊎ {t : (B, adv(p); b)}.

By infiersion of the hypothesis that abstract machine is flell typed fle get
the follofling premises.

domT1 ⊢ ∆ ∆; domT1 ⊢M1 Σ;M1 ⊢ T1
〈∆;Σ〉 ⊢

(

M1, T1
)

Let M2

def
= M ⊎

{

p : P ⊎ {t : (n, a)}
}

and T2
def
= T ⊎ {t : (B, b)}. To shofl

that 〈∆;Σ〉 ⊢
(

M2, T2
)

holds, fle need to establish the follofling.
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1. We hafie that domT1 = domT2, hence domT2 ⊢ ∆.

2. From Lemma 7.4.2, domT1 ⊢ ∆, and ∆;N ⊢M1, then ∆; domT2 ⊢M2.

3. We apply Lemma 7.4.7 to

Σ;M ⊎
{

p : P ⊎ {t : 〈n;u〉}
}

⊢ T ⊎ {t : (B, adv(p); b)}

to obtain Σ;M2 ⊢ T2.

We apply rffle T-amach to (1), (2), and (3) and conclffde this case.

Case R-bound.

n ∈ N
(

M,T ⊎ {t : (B ⊎ {p : _}, bound(p); b)}
)

→
(

M,T ⊎ {t : (B ⊎ {p : n}, b)}
)

flhere S1 is
(

M,T ⊎ {t : (B ⊎ {p : _}, bound(p); b)}
)

and S2 is
(

M,T ⊎ {t : (B ⊎ {p : n}, b)}
)

Let T1
def
= T ⊎ {t : (B ⊎ {p : _}, bound(p); b)}. By infiersion of the hypothe-

sis that abstract machine is flell typed fle get the follofling premises.

domT1 ⊢ ∆ ∆; domT1 ⊢M Σ;M ⊢ T1
〈∆;Σ〉 ⊢

(

M,T1
)

Let T2
def
= T ⊎ {t : (B ⊎ {p : n}, b)}. To shofl that 〈∆;Σ〉 ⊢

(

M,T2
)

holds,
fle need to establish the follofling.

1. We hafie that domT1 = domT2, hence domT2 ⊢ ∆.

2. Since domT1 = domT2, then fle hafie that ∆; domT2 ⊢M .

3. We apply Lemma 7.5.2 to

Σ;M ⊢ T ⊎ {t : (B ⊎ {p : _}, bound(p); b)}

to obtain Σ;M ⊢ T2.

We apply rffle T-amach to (1), (2), and (3) and conclffde this case.
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Case R-await.

aflaitAll(M, t, B)
(

M,T ⊎ {t : (B, await; b)}
)

→
(

M,T ⊎ {t : (B, b)}
)

flhere S1 is
(

M,T ⊎ {t : (B, await; b)}
)

and S2 is
(

M,T ⊎ {t : (B, b)}
)

Let T1
def
= T ⊎ {t : (B, await; b)}.

By infiersion of the hypothesis that abstract machine is flell typed fle get
the follofling premises.

domT1 ⊢ ∆ ∆; domT1 ⊢M Σ;M ⊢ T1
〈∆;Σ〉 ⊢

(

M,T1
)

Let T2
def
= T ⊎ {t : (B, b)}. To shofl that 〈∆;Σ〉 ⊢

(

M,T2
)

holds, fle need
to establish the follofling.

1. We hafie that domT1 = domT2, hence domT2 ⊢ ∆.

2. Again, since domT1 = domT2, then fle hafie that ∆; domT2 ⊢M .

3. We apply Lemma 7.6.2 to Σ;M ⊢ T ⊎ {t : (B, next; b)} to obtain:

Σ;M ⊢ T ⊎ {t : (B, b)}

We apply rffle T-amach to (1), (2), and (3) and conclffde this case.

Case R-next.
(

M,T ⊎ {t : (B, next; b)}
)

→
(

commit(M, t), T ⊎ {t : (B, b)}
)

flhere S1 is at the right-hand side and S2 is at the let-hand side of the conclffsion.
Let T1

def
= T ⊎ {t : (B, next; b)}.

By infiersion of the hypothesis that abstract machine is flell typed fle get
the follofling premises.

(i) domT1 ⊢ ∆ (ii) ∆; domT1 ⊢M (iii) Σ;M ⊢ T1
〈∆;Σ〉 ⊢

(

M,T1
)

Let T2
def
= T ⊎ {t : (B, b)}, (ifi)M ′ = commit(M, t), (fi) ∆′ = commitD(∆, t)

(from De੗nition 7.7.1), and N = domT1 = domT2. To shofl that 〈∆′; Σ〉 ⊢
(

M ′, T2
)

holds, fle need to establish the follofling.
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1. From (i) N ⊢ ∆, (fi) ∆′ = commitD(∆, t), and Lemma 7.7.1, fle also hafie
that N ⊢ ∆′.

2. Since fle hafie (i) N ⊢ ∆, (ii) ∆;N ⊢M , (fi), (ifi), and Lemma 7.7.6, then
fle hafie ∆′;N ⊢M ′.

3. From Lemma 7.7.11, Σ;M ⊢T1 (hypothesis), and (ifi)M ′=commit(M, t),
fle obtain Σ′;M ′ ⊢ T2.

We apply rffle T-amach to (1), (2), and (3) and conclffde this case.

Case R-finish.

S
def
=

(

∅, {t2 : (∅, b2)}
)

(

M,T ⊎ {t1 : (B, finish(b2); b1)}
)

→
(

M,T ⊎ {t1 : S ⊲ (B, b1)}
)

flhere S1 is at the right-hand side and S2 is at the let-hand side of the conclffsion.
Let T1

def
= T ⊎ {t1 : (B, finish(b2); b1)}.

By infiersion of the hypothesis that abstract machine is flell typed fle get
the follofling premises.

domT1 ⊢ ∆ ∆; domT1 ⊢M Σ;M ⊢ T1
〈∆;Σ〉 ⊢

(

M,T1
)

Let T2
def
= T ⊎ {t1 : S ⊲ (B, b1)}. To shofl that 〈∆;Σ〉 ⊢

(

M,T2
)

holds, fle
need to establish the follofling.

1. We hafie that domT1 = domT2, hence domT2 ⊢ ∆.

2. Again, since domT1 = domT2, then fle hafie that ∆; domT2 ⊢M .

3. We apply Lemma 7.8.3 to Σ;M ⊢ T1 to obtain Σ′;M ⊢ T2.

We apply rffle T-amach to (1), (2), and (3) and conclffde this case.

Case R-run.

S3 → S4
(

M,T ⊎ {t : S3 ⊲ (B, b)}
)

→
(

M,T ⊎ {t : S4 ⊲ (B, b)}
)

flhere S1 is at the right-hand side and S2 is at the let-hand side of the conclffsion.
Let T1

def
= T ⊎ {t : S3 ⊲ (B, b)}.
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By infiersion of the hypothesis that abstract machine is flell typed fle get
the follofling premises.

(i) domT1 ⊢ ∆ (ii) ∆; domT1 ⊢M (iii) Σ;M ⊢ T1
〈∆;Σ〉 ⊢

(

M,T1
)

Let T2
def
= T ⊎ {t : S4 ⊲ (B, b)}. To shofl that 〈∆;Σ〉 ⊢

(

M,T2
)

holds, fle
need to establish the follofling.

1. We hafie that domT1 = domT2, hence domT2 ⊢ ∆.

2. Since domT1 = domT2, then fle hafie that ∆; domT2 ⊢M .

3. Let τ1
def
= S3 ⊲ (B, b) We knofl that T1(t) = τ1. From Σ;M ⊢ T1 (hy-

pothesis) and T1(t) = τ1, fle get that (ifi) Σ′ def
= Σ ⊎ {t : Ψ}, (fi) ⊢t M : Γ,

(fii) Ψ;Γ ⊢ τ1, and (fiii) Σ′;M ⊢ T .
Infierting premise (fii) yields the follofling.

(fiiii) Ψ ⊢ S3 (iffi) 〈∅; ∅〉; Γ ⊢ (B, b)

Ψ; Γ ⊢ S3 ⊲ (B, b)

Neffit, fle apply the indffction hypothesis to Ψ ⊢ S3 and S3 → S4, and get
that there effiists a Ψ′ sffch that (ffi) Ψ′ ⊢ S4. Hence, fle hafie premise (ffii)

(ffi) Ψ′ ⊢ S4 (iffi) 〈∅; ∅〉; Γ ⊢ (B, b)
T-t-f

Ψ′; Γ ⊢ S4 ⊲ (B, b)

hffs,
(fi) ⊢t M : Γ (ffii) Ψ′; Γ ⊢ τ2 (fiii) Σ′;M ⊢ T

Σ′ ⊎ {t : Ψ′};M ⊢ T ⊎ {t : τ2}

We apply rffle T-amach to (1), (2), and (3) and conclffde this case.

Case R-join.

S is halted
(

M,T ⊎ {t : S ⊲ (B, b)}
)

→
(

M,T ⊎ {t : (B, b)}
)

Let T1
def
= T ⊎ {t : S ⊲ (B, b)}.

By infiersion of the hypothesis that abstract machine is flell typed fle get
the follofling premises.

domT1 ⊢ ∆ ∆; domT1 ⊢M Σ;M ⊢ T1
〈∆;Σ〉 ⊢

(

M,T1
)
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Let T2
def
= T ⊎ {t : (B, b)}. To shofl that 〈∆;Σ〉 ⊢

(

M,T2
)

holds, fle need
to establish the follofling.

1. We hafie that domT1 = domT2, hence domT2 ⊢ ∆.

2. Again, since domT1 = domT2, then fle hafie that ∆; domT2 ⊢M .

3. We apply Lemma 7.9.1 to c; b→ b′ and Σ;M ⊢ T1 to obtain Σ′;M ⊢ T2.

We apply rffle T-amach to (1), (2), and (3) and conclffde this case.

Case R-flow.

c; b→ b′
(

M,T ⊎ {t : (B, c; b)}
)

→
(

M,T ⊎ {t : (B, b′)}
)

flhere S1 is
(

M,T ⊎ {t : (B, c; b)}
)

and S2 is
(

M,T ⊎ {t : (B, b′)}
)

Let T1
def
= T ⊎ {t : (B, c; b)}. By infiersion of the hypothesis that abstract

machine is flell typed fle get the follofling premises.

domT1 ⊢ ∆ ∆; domT1 ⊢M Σ;M ⊢ T1
〈∆;Σ〉 ⊢

(

M,T1
)

Let T2
def
= T ⊎ {t : (B ⊎ {p : n}, b)}. To shofl that 〈∆;Σ〉 ⊢

(

M,T2
)

holds,
fle need to establish the follofling.

1. We hafie that domT1 = domT2, hence domT2 ⊢ ∆.

2. Since domT1 = domT2, then fle hafie that ∆; domT2 ⊢M .

3. We apply Lemma 7.10.4 to

Σ;M ⊢ T ⊎ {t : (B, c; b)}

to obtain Σ;M ⊢ T2.

We apply rffle T-amach to (1), (2), and (3) and conclffde this case.



Chapter Eight

Progress

A type system that enjoys progress states that any typable term can redffce
or the term is in its elementary form. he ۠elementary formۡ depends on the
langffage. For effiample, in a nffmeric- and effipression-based langffage the most
elementary terms can be nffmbers and fiariables. In SBrenner, the elementary
states are halted, only composed by tasks that terminated.

he property of progress implies deadlock freedom. As fle captffre the notion
of ۠effiecfftionۡ flith the redffction relation, then fle can consider that a dead-
locked state S is sffch that S cannot redffce, i.e., for any state S ′ the relation
S → S ′ does not hold. If S is rejected by the type system, then fle are done.
Bfft by absffrd, assffme that the deadlocked state S is flell typed. hen, by the
property of progress, state S mffst redffce, and fle reach a contradiction.

he main resfflt of this section is heorem 8.0.2. he intffition behind the
proof follofls. With Lemma 8.0.2 fle order the task names in the state flith ≤∆

and pick the smallest task name t. We shofl that the predicate for the aflait
holds for task t, thffs the task addressed by t redffces.

Lemma 8.0.1. If domP 6= ∅, then there exists a task name t ∈ domP such that
aflait(P, localPhaseP (t)).

Proof. Let X be {t : localPhaseP (t) | ∀t ∈ domP}. It is easy to see that
domX = domP . Let t1 be sffch that ∀t ∈ domX : X(t1) ≤ X(t).

Since domP 6= ∅ and domX = domP , then domX 6= ∅. We hafie
that domX 6= ∅, then t1 effiists. Let n = X(t1) = localPhaseP (t1). hffs,

∀t ∈ domX : X(t) ≥ X(t1)

≡∀t ∈ domP : localPhase(P (t)) ≥ n

≡ aflait(P, n)
≡ aflait(P, localPhaseP (t1))

139
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De॑nition 8.0.1 (Wait phase).

flaitPhase((n, a)) def
= n

Lemma 8.0.2. If ¬ aflaitAll(M, t, B), then there exists phaser name p such that

1. M(p) = P

2. flaitPhaseP (t) = n

3. ¬ aflait(P, n)

Proof. If predicate aflaitAll(M, t, B) does not hold, then by De੗nition 5.3.13
there effiists a p ∈ domM flhereM(p) = P and t ∈ domP sffch that

(i) P =M(p),

(ii) n = localPhase(P (t))− B(p), and

(iii) ¬ aflait(P, n).

By De੗nition 5.3.12 fle hafie that there effiists a task name t′ sffch that

localPhase (P (t′)) < localPhase(P (t))− B(p)

Gifien that B(p) ≥ 0, then localPhase (P (t′)) < localPhase(P (t)). Hence,
¬ aflait(P, localPhase(P (t′))).

Lemma 8.0.3. If T (t) = (B, await; b), M(p)(t) = v, and Σ;M ⊢ T , then
v = (n, a).

Proof. Applying Lemma 6.3.2 to Σ;M ⊢ T and T (t) = (B, await; b), fle get
that there effiist Γ and Ψ sffch that ⊢t M : Γ and Ψ;Γ ⊢ (B, await; b). By
infierting the later, fle get that

Γ ⊢ B

(i) Γ ⊢ await; b : Γ

Γ ⊢ await; b : ∅

〈∅; ∅〉; Γ ⊢ (B, await; b)

flhere Ψ is 〈∅; ∅〉. By infierting (i) Γ ⊢ await; b : Γ fle hafie that (ii) ∀p ∈
domΓ =⇒ Γ(p) = a. From ⊢t M : Γ,M(p)(t) = v, and Lemma 6.4.3, fle get
that v = (n, a).

Lemma 8.0.4. If 〈∆;Σ〉 ⊢
(

M,T
)

,M(p) = P , P (t1) = 〈n1; a1〉, and P (t2) =
〈n2; a2〉, then ∆(t1, t2) = n1 − n2.
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Proof. Infierting 〈∆;Σ〉 ⊢
(

M,T
)

, yields ∆;N ⊢M flhere N = domT . Since
∆;N ⊢ M andM(p) = P , then by Lemma 6.3.6 fle hafie that ∆ ⊢ P . Apply-
ingN ⊢ ∆,∆ ⊢ P , P (t1) = 〈n1; a1〉 to Lemma 6.3.8 and fle get that there effiists
a phaser P ′ sffch that P = P ′ ⊎ {t1 : 〈n1; a1〉} and ∆; t1;n1 ⊢ P ′. We knofl
that if P (t2) = 〈n2; a2〉, then P ′(t2) = 〈n2; a2〉. Finally, since ∆; t1;n1 ⊢ P ′,
P ′(t2) = 〈n2; a2〉, then by Lemma 6.3.7 fle hafie that ∆(t1, t2) = n1 − n2.

Lemma 8.0.5. If 〈∆;Σ〉 ⊢
(

M,T
)

, M(p) = P , P (t1) = 〈n1; _〉, P (t2) =
〈n2; _〉, and ∆(t1, t2) = z, then n1 − n2 = z.

Proof. We apply∆;N ⊢M ,M(p) = P , P (t1) = 〈n1; a1〉, and P (t2) = 〈n2; a2〉
to Lemma 8.0.4 and get that∆(t1, t2) = n1−n2. Bfft by hypothesis∆(t1, t2) = z,
therefore z = n1 − n2.

Corollary 8.0.1. If 〈∆;Σ〉 ⊢
(

M,T
)

, M(p) = P , t1 domP , and t2 ∈ domP ,
then t1 ≤∆ t2 ⇐⇒ flaitPhaseP (t1) ≤ flaitPhaseP (t2).

Proof. ( =⇒ ) Since fle hafie t1 ≤∆ t2, then fle hafie ∆(t1, t2) = n and n ≤ 0.
Applying Lemma 8.0.5 〈∆;Σ〉 ⊢

(

M,T
)

,M(p) = P , t1 domP , t2 ∈ domP , and
∆(t1, t2) = z, then n1 − n2 = z. hffs, by De੗nition 8.0.1 flaitPhaseP (t1) ≤
flaitPhaseP (t2).

( ⇐= ) From flaitPhaseP (t1) ≤ flaitPhaseP (t2) and De੗nition 8.0.1 fle
get that
P (t1) = 〈n1; a1〉, P (t2) = 〈n2; a2〉, and n1 ≤ n2. hffs, n1 − n2 = z and z ≤ 0.
Since 〈∆;Σ〉 ⊢

(

M,T
)

, M(p) = P , t1 domP , t2 ∈ domP , P (t1) = 〈n1; a1〉,
P (t2) = 〈n2; a2〉, then ∆(t1, t2) = z. Hence, t1 ≤∆ t2.

Lemma 8.0.6. If Ψ ⊢ S, S is not halted, then S =
(

M,T
)

and there exists a task
name t ∈ domT such that

T (t) = (B, await; b) =⇒ aflaitAll(M, t, B)

Proof. he proof defielops by contradiction. We hafie that for all t ∈ domT

¬(T (t) = (B, await; b) =⇒ aflaitAll(M, t, B))
≡

T (t) = (B, await; b) ∧ ¬ aflaitAll(M, t, B)

We shofl hofl to reach a contradiction flhere there effiists a name t sffch that

¬ aflaitAll(M, t, B) aflaitAll(M, t, B)

Let Ψ = 〈∆;Σ〉. From infierting Ψ ⊢ S fle get domT ⊢ ∆, flhich by infiersion
yields that (≤∆, domT ) is a total ordering. Gifien that domT is ੗nite and
nonempty, then there effiists a label t ∈ domT sffch that

∀t′ ∈ domT : t ≤∆ t′
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By Lemma 8.0.2, since ¬ aflaitAll(M, t, B), then there effiists a phaser name p
sffch that (i)M(p) = P , (ii) localPhaseP (t) = n, and (iii) ¬ aflait(P, n).

By Lemma 8.0.1, since domP 6= ∅ (as t ∈ domP ), then there mffst effiist
a task name t′ sffch that (ifi) aflait(P, localPhaseP (t′)). If task name t′ is t,
then fle reach a contradiction becaffse fle hafie (iii) ¬ aflait(P, localPhaseP (t))
and (ifi) aflait(P, localPhaseP (t)). Otherflise, t 6= t′. Let localPhaseP (t′) =
n′. Since (ifi) aflait(P, n′), then ∀t ∈ domP s.t. localPhase (P (t)) ≥ n′ and
therefore n ≥ n′.

Bfft, if n = n′, then (iii) ¬ aflait(P, localPhaseP (t)) floffld not hold and fle
floffld reach a contradiction. Hence, localPhase (P (t)) > localPhase (P (t′)).

Recall that t ≤∆ t′, hence since 〈∆;Σ〉 ⊢
(

M,T
)

, M(p) = P , t1 domP ,
t2 ∈ domP , and t1 ≤∆ t2, then by Corollary 8.0.1

flaitPhaseP (t1) ≤ flaitPhaseP (t2)

Applying Lemma 8.0.3 to T (t) = (B, await; b),M(p)(t) = v, andΣ;M ⊢ T ,
then a1 = a. Similarly, a2 = a. hffs, localPhase (P (t)) = flaitPhase (P (t)) + 1
and localPhase (P (t′)) = flaitPhase (P (t′)) + 1, flhich means that

localPhase (P (t)) ≤ localPhase (P (t′))

Lemma 8.0.7. If ⊢t M : Γ, Ψ;Γ ⊢ τ , Σ;M ⊢ T , T (t) = τ = (B, i; b), and
i = await =⇒ aflaitAll(M, t, B), then there exists a state S such that

(

M,T ⊎ {t : (B, i; b)}
)

→ S

Proof. he proof follofls by inspection of the last typing rffle applied. Infierting
Ψ;Γ ⊢ (B, i; b) yields the neffit tflo premises.

(i) Γ ⊢ B

(ii) Γ ⊢ i : Γ′ · · ·

Γ ⊢ i; b : ∅

〈∅; ∅〉; Γ ⊢ (B, i; b)

Case T-phaser:

p /∈ domΓ

Γ ⊢ p = newPhaser() : Γ ⊎ {p : u}
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flhere i def
= p = newPhaser() andΓ′ def

= Γ⊎{p : u}. Let q be sffch that q /∈ domM

and q /∈ bn(b). he case conclffdes flith rffle R-phaser:

q /∈ bn(b) M ′ def
= M ⊎

{

q : {t : 〈0;u〉}
}

B′ def
= B ⊎ {q : 0}

(

M,T ⊎ {t : (B, p = newPhaser(); b)}
)

→
(

M ′, T ⊎ {t : (B′, b[q/p])}
)

Case T-dereg:
Γ′ ⊎ {p : a} ⊢ dereg(p) : Γ′

flhere Γ def
= Γ′ ⊎ {p : a} and i def

= dereg(p). We knofl that (iii) Γ(p) = a. With
Lemma 6.4.3 and (iii) Γ(p) = a, fle get thatM(p)(t) = (n, a) hffs, (ifi)M =
M ′ ⊎

{

p : P ⊎ {t : 〈n; a〉}
}

. From (i) Γ ⊢ B, p ∈ domΓ, and Lemma 6.3.3, then
there effiist Γ′′ and B′ sffch that B = B′ ⊎ {p : n}.

Hence,
(

M ′ ⊎
{

p : P ⊎ {t : v}
}

, T ⊎
{

t : (B′ ⊎ {p : n}, dereg(p); b)
})

→
(

M ′ ⊎
{

p : P
}

, T ⊎
{

t : (B′, b)
})

Case T-adv:
Γ′′ ⊎ {p : u} ⊢ adv(p) : Γ′′ ⊎ {p : a}

flhere Γ is Γ′ ⊎ {p : u} and i is adv(p). We hafie that (iii) Γ(p) = u. With
Lemma 6.4.3, ⊢t M : Γ (hypothesis), and (iii) Γ(p) = u, fle get thatM(p)(t) =
(n,u). hffs, (ifi)M =M ′ ⊎

{

p : P ⊎ {t : (n,u)}
}

. Hence,
(

M ′ ⊎
{

p : P ⊎ {t : (n,u)}
}

, T ⊎ {t : (B, adv(p); b)}
)

→
(

M ′ ⊎
{

p : P ⊎ {t : (n, a)}
}

, T ⊎ {t : (B, b)}
)

Case T-await:
∀p ∈ domΓ: Γ(p) = a

Γ ⊢ await : Γ

flhere i = await and Γ′ def
= Γ.

From the hypothesis, fle hafie that aflaitAll(M, t, B). hffs, the state redffces
flith rffle R-await.

Case T-next:

{p1 : a, . . . , pn : a} ⊢ next : {p1 : u, . . . , pn : u}

flhere Γ def
= {p1 : a, . . . , pn : a}, i

def
= next, and Γ′ def

= {p1 : u, . . . , pn : u}.
Since fle hafie ⊢t M : Γ, ∀p ∈ domΓ: Γ(t) = a, and Lemma 8.0.11 fle get

that commit(M, t) =M ′ and the state redffces flith R-next.
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Case T-async:
Γ ⊢ s : Γ1 Γ1 ⊢ b : 1∅

Γ ⊢ async(s, b1) : Γ

flhere i def
= async(s, b1) and Γ

def
= Γ′.

From Lemma 8.0.10, ⊢t M : Γ, and Γ ⊢ s : Γ1, then fle hafie that

copy(s, t, t′,M) =M ′

Hence, fle conclffde the case flith rffle R-async.

Case T-finish:
∅ ⊢ b′ : ∅

Γ ⊢ finish(b) : Γ

flhere i def
= finish(b′) and Γ′ def

= Γ. he case holds by direct application of
rffle R-finish.

Lemma 8.0.8. If
(

M1, T1
)

→
(

M2, T2
)

, then
(

M1, T1 ⊎ {t : (B, end)}
)

→
(

M2, T2 ⊎ {t : (B, end)}
)

Proof. By inspection of each redffction rffle.

Lemma 8.0.9. If Γ1 ⊢ s : Γ2, then p ∈ s ⇐⇒ p ∈ domΓ1 ∩ domΓ2.

Proof. he proof follofls by indffction on the typing relation. We do a case
analysis on the derifiation of the last rffle applied.

• Case T-a-c:
(i) Γ1(q) = a (ii) Γ1 ⊢ s

′ : Γ

Γ1 ⊢ s′ ⊎ {q} : Γ ⊎ {q : a}

flhere Γ2 is Γ ⊎ {q : a} and s is s′ ⊎ {q}. If p = q, then fle are done.
Otherflise, p 6= q. Applying the indffction hypothesis to (ii) Γ1 ⊢ s′ : Γ
fle get that p ∈ s′ ⇐⇒ p ∈ domΓ1 ∩ domΓ. We hafie that p 6= q and
that q /∈ domΓ1 ∩ domΓ, hence p ∈ s ⇐⇒ p ∈ domΓ1 ∩ domΓ2.

• Case T-a-n:
Γ ⊢ ∅ : ∅

flhere Γ2 is ∅. We end in a contradiction as fle hafie that p ∈ ∅.



145

Lemma 8.0.10. If ⊢t M1 : Γ1 and Γ1 ⊢ s : Γ2, then copy(s, t1, t2,M1) =M2.

Proof. he proof follofls by indffction on the typing relation. We do a case
analysis on the derifiation of the last rffle applied.

• Case T-perm-nil:
⊢t ∅ : ∅

flhere M1 = ∅ and Γ1 is ∅. Since Γ1 = ∅, then fle can infiert ∅ ⊢ s : Γ2

and obtain that s = ∅. We conclffde this case flith rffle Cpy-nil.

• Case T-perm-skip:

(i) ⊢t M : Γ1 (ii) t /∈ domP

⊢t M ⊎ {p : P} : Γ1

flhereM1 =M⊎{p : P}. We apply ⊢t M : Γ1 to the indffction hypothesis
and get that (iii) copy(s, t1, t2,M) =M ′. Since fle hafie t /∈ domM1(p),
then from Lemma 6.4.3 fle knofl that p /∈ domΓ1, thffs from Lemma 8.0.9
and Γ1 ⊢ s : Γ2, fle hafie that (ifi) p /∈ s. Hence,

(iii) copy(s, t, t′,M) =M ′ (ifi) p /∈ s
Cpy-skip

copy(s, t, t′,M ⊎ {p : P}) =M ′ ⊎ {p : P}

• Case T-perm-cons:

(i) ⊢t M : Γ (ii) P (t) = 〈n; a〉

⊢t M ⊎ {p : P} : Γ ⊎ {p : a}

flhereM1 =M ⊎ {p : P} and Γ2 is Γ ⊎ {p : a}. We test the membership
of p ∈ s:

– Case (ifi) p ∈ s, then s = s′ ⊎ {p}. From Lemma 6.3.1 and Γ1 ⊢
s : Γ2 then there effiists a typing Γ3 sffch that (iii) Γ2 = Γ3 ⊎ {p : a},
Γ1(p) = a, (ifi) Γ1 ⊢ s

′ : Γ2. Since fle hafie (iii) Γ2 = Γ3⊎{p : a} and
Γ2 = Γ⊎{p : a}, then Γ3 = Γ and therefore (fi) Γ1 ⊢ s

′ : Γ. Applying
the indffction hypothesis to (i) ⊢t M : Γ, and (fi) Γ1 ⊢ s

′ : Γ, yields
(fii) copy(s′, t1, t2,M) =M ′. Let v def

= 〈n; a〉 and P ′ def
= P ⊎ {t′ : v}.

(fii) copy(s′, t1, t2,M) =M ′ (ii) P (t) = v
Cpy-cons

copy(s′ ⊎ {p}, t1, t2,M ⊎ {p : P}) =M ′ ⊎
{

p : P ′
}
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– Case (ifi) p /∈ s. Since Γ ⊎ {p : a} ⊢ s : Γ2 and p /∈ s, then from
Lemma 6.5.1 Γ ⊢ s : Γ2. We apply the indffction hypothesis to
⊢t M : Γ and Γ ⊢ s : Γ2 and obtain (iii) copy(s, t1, t2,M) = M ′.
herefore,

(iii) copy(s, t1, t2,M) =M ′ (ifi) p /∈ s
Cpy-skip

copy(s, t1, t2,M ⊎ {p : P}) =M ′ ⊎ {p : P}

Lemma 8.0.11. If ⊢t M : Γ and ∀p ∈ domΓ: Γ(t) = a, then commit(M, t) =
M ′.

Proof. he proof follofls by indffction on the strffctffre of the typing relation.
We proceed flith a case analysis on the derifiation of the last rffle applied.

• Case T-perm-nil:
⊢t ∅ : ∅

he case holds flith rffle Com-n.

• Case T-perm-skip:

(i) ⊢t M1 : Γ (ii) t /∈ domP

⊢t M ′ ⊎ {p : P} : Γ

flhereM isM1⊎{p : P}. Applying the indffction hypothesis to ⊢t M1 : Γ
and ∀p ∈ domΓ: Γ(t) = a, fle get that commit(M1, t) = M2. hffs, fle
conclffde this case by applying rffle Com-s to the later and to (i).

• Case T-perm-cons:

(i) ⊢t M1 : Γ1 (ii) P (t) = 〈_; a〉
⊢t M1 ⊎ {p : P} : Γ1 ⊎ {p : a}

flhereM isM1⊎{p : P} andΓ isΓ1⊎{p : a}. From ∀p ∈ domΓ: Γ(t) = a
(hypothesis) fle get that a = a and Γ = Γ1 ⊎ {p : a}. hffs, (iii) ∀p ∈
domΓ1 : Γ1(t) = a. Applying the indffction hypothesis to (i) and (iii)
yields that (ifi) commit(M1, t) = M2. We conclffde this case applying
rffle Com-c.

heorem 8.0.2 (Progress). If Ψ ⊢ S1, then S1 is halted or there exists a state S2

such that S1 → S2.
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Proof. If S1 is halted, then fle are done. For the remainder of the proof fle knofl
that S1 is not halted, so fle mffst shofl that there effiists an abstract machine S2

sffch that S1 → S2; the proof follofls by indffction on the redffction relation.
To shofl that S1 redffces fle perform a strffctffral indffction on S1. FromΨ ⊢

S1, S1 not halted, and Lemma 8.0.6

S1 =
(

M,T
)

(i) ∃t : T (t) = τ = (B, await; b) =⇒ aflaitAll(M, t, B)

Let N = domT . Infierting hypothesis Ψ ⊢ S1 yields:

(ii) N ⊢ ∆ ∆;N ⊢M Σ;M ⊢ T
T-amach

〈∆;Σ〉 ⊢
(

M,T
)

flhere Ψ = 〈∆;Σ〉. From Σ;M ⊢ T , T (t) = τ , and Lemma 6.3.2, fle get
there effiists a phaser map Tt sffch that (iii) Σ = Σt ⊎ {t : Ψt}, (ifi) ⊢Ψt

M : Γt,
(fi) Ψt; Γt ⊢ τ , and (fii) Σt;M ⊢ Tt. By infierting (fi) Ψt; Γt ⊢ τ there are tflo
cases to consider: τ is either a regfflar task or a ੗nish task.

Case τ is S ⊲ (B, b). Infierting (fi) Ψt; Γt ⊢ S ⊲ (B, b) resfflts in the follofling
premises.

(i) Ψt ⊢ S 〈∅; ∅〉; Γt ⊢ (B, b)

Ψt; Γt ⊢ S ⊲ (B, b)

Applying the indffction hypothesis to Ψt ⊢ S yields tflo sffb-cases to consider.

• Sffb-case S is halted. hffs, S1 can redffce flith rffle R-join.

• Sffb-case there effiists a S ′ sffch that S → S ′. hffs, S1 is ready to redffce
flith R-run.

Case τ is (B, b). We do a case analysis on the strffctffre of b:

• Case b is end. Applying Lemma 6.5.6 to Ψ ⊢ S1, yields that 〈∆;Σ〉 ⊢
(

M,Tt
)

Applying the indffction hypothesis to 〈∆;Σ〉 ⊢
(

M,Tt
)

, fle get
that

(

M,Tt
)

→
(

M ′, T ′
t

)

. Hence, from Lemma 8.0.8 the case holds.

• Case b is i; b′. We conclffde this case by applying Lemma 8.0.7 to (ifi) ⊢t

M : Γt, (fi) Ψt; Γt ⊢ τ , and (fii) Σt;M ⊢ Tt.





Chapter Nine

Conclusion
his thesis proposes tflo comprehensifie solfftions for the problem of barrier
deadlocks. First, a general rffntime fieri੗cation techniqffe flith an implemen-
tation that is langffage-agnostic, distribffted, and fafflt-tolerant. Second, a pro-
gramming model that is deadlock-free by constrffction.

Section 9.1 sffmmarises the thesis and highlights offr technical contribfftions.
Section 9.3 discffsses abofft ffftffre directions of offr flork that inclffde integrating
the programming model of SBrenner and Armffs in a single langffage, mecha-
nising the theory presented in this thesis, and effitending Armffs to fierify MPI
and HJ applications.

9.1 Contributions
his thesis presents a theoretical frameflork for reasoning abofft general barrier
synchronisation paterns in the form of a minimal langffage called Brenner.
Programs flriten in Brenner ffse a single abstraction to perform any of the syn-
chronisation paterns sffrfieyed in Section 2.1. We introdffce tflo complementary
fieri੗cation techniqffes that handle barrier deadlocks: a rffntime techniqffe for
effiisting programs, and a nofiel parallel programming model that is deadlock free
by design. he correctness of offr rffntime fieri੗cation techniqffe is established
against the semantics of Brenner. To de੗ne offr deadlock free programming
model fle introdffce SBrenner, an effitension of Brenner that restricts certain
behafiioffrs that may deadlock.

Brenner [31] Offr minimal langffage is the cornerstone of this thesis, as it
profiides the de੗nitions ffsed in offr tflo main contribfftions. Tflo factors shape
Brenner. he ੗rst factor is a comprehensifie sffrfiey of langffage abstractions
that perform barrier synchronisation to gifies ffs con੗dence of the generality of
offr ofln abstraction. Offr sffrfiey categorises the origin of fiarioffs properties
that in੘ffence the barrier synchronisation mechanism throffghofft the history of
parallel compffting, going as far back as the ੗rst parallel compffters in the 1960s.
he second factor is a search for the fffndamental concepts behind phasers [94],
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the ffnifying abstraction fle ffse in Brenner. We de੗ne phasers as a data
strffctffre that consists of mffltiple efient coffnters [90], a classic synchronisation
mechanism ffsed in operating system design. Offr fiersion of phasers has fefler
and simpler primitifies, yet it effihibits more synchronisation paterns than in [94].

Efient coffnters, that inspire offr fiersion of phasers, can be seen as a synchro-
nisation mechanism that allofls for tasks to aflait a certain logical time in the
sense of Lamport’s clocks [67]. We lefierage the connection betfleen phasers
and logical clocks in the design of Armffs. Departing from state-of-the-art tech-
niqffes, fle propose a nofiel representation of concffrrency constraints based on
logical time that dramatically improfies the scalability of distribffted deadlock
detection.

Technical contributions:

• We introdffce Brenner, a minimal langffage for reasoning abofft general
barrier synchronisation and task parallelism.

• Brenner is mechanised in Coq along flith some redffction effiamples. he
soffrce code is afiailable online.1

Armus [31] We pfft forflard Armffs, a rffntime fieri੗cation tool for barrier
deadlocks that featffres distribffted deadlock detection and a scalable graph
analysis techniqffe that afftomatically sflitches betfleen tflo graph models. he
graph-based deadlock fieri੗cation of Armffs is formalised and shofln to be
soffnd and complete against Brenner. We establish an eqffifialence theorem
betfleen fftilising tflo graph models (WFG and SG) for deadlock detection; this
resfflt enables ffs to ffse the WFG to profie offr resfflts, and choose afftomatically
betfleen the WFG and the SG dffring fieri੗cation. Offr adaptifie model selection
dramatically increases the performance against a ੗ffied model selection. he
rffntime ofierhead of the deadlock detection is lofl for ffp to 64 tasks, in most
cases negligible, efienflhen considering distribffted benchmarks. We present tflo
applications: Armffs-X10 monitors any ffnchanged X10 program for deadlocks;
JArmffs is a library to fierify Jafia programs. To the best of offr knoflledge, offr
flork is the ੗rst dynamic fieri੗cation tool that can correctly detect Jafia and X10
barrier deadlocks.

Technical contributions:

• he graph-based deadlock fieri੗cation of Armffs is formalised and shofln
to be soffnd and complete against Brenner.

• We establish an eqffifialence theorem betfleen fftilising tflo graph models
(WFG and SG) for deadlock detection. Sffch resfflt enables ffs to profie

1https://bitbucket.org/cogumbreiro/brenner-coq/

https://bitbucket.org/cogumbreiro/brenner-coq/
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offr resfflts flith the WFG, and let the tool afftomatically choose from the
tflo models at rffn time. Offr model selection techniqffe increases the
performance of deadlock checking, against the ffsffal approach of hafiing
a ੗ffied graph model.

• To the best of offr knoflledge, offr flork is the ੗rst dynamic fieri੗cation
tool that can correctly detect Jafia and X10 barrier deadlocks.

SBrenner [77, 32] We introdffce SBrenner a minimal deadlock-free lan-
gffage for fork/join and cyclic barrier synchronisation, by effitending Brenner.
Chapter 5 de੗nes an operational semantics and a type system that ffni੗es a
deadlock-free semantics of clocks, regfflar phasers, and phaser beams, bfft goes
fffrther by allofling tasks to be ahead of others by a boffnded nffmber of phases,
afiailable per task and per phaser. A nofielty of SBrenner is to present a deadlock-
free fiersion of tflo synchronisation paterns afiailable in HJ: boffnded phaser
synchronisation, and tasks can adfiance their phases flithofft flaiting for others.
SBrenner can be ffsed as a blffeprint to defielop deadlock-free parallel pro-
gramming libraries, so fle make afiailable a Jafia prototype of this programming
model.2

Technical contributions:

• he property of sffbject-redffction, described in Chapter 7, ensffres pro-
grams retain their fialidity (i.e., flell typedness) as they effiecffte, flhich
means that a program deemed fialid does not become infialid by effiecffting.

• he property of progress, described in Chapter 8, shofls that fialid pro-
grams can alflays effiecffte, flhich implies deadlock freedom.

• he deadlock-free programming model of SBrenner sffbsffmes those of
Habanero-Jafia and of X10. Offr flork is the ੗rst to establish the property
of deadlock freedom stated in [92].

• A Jafia prototype of the deadlock-free programming model pfft forflard
by SBrenner.

9.2 Summary of fiersonal fiublications
[77] Francisco Martins, Vasco T. Vasconcelos, and Tiago Cogffmbreiro. Types

for X10 Clocks. In Post-proceedings of PLACES’10, fiolffme 69 of EPTCS,
pages 111ۗ129, 2011

2https://bitbucket.org/cogumbreiro/brenner-java/

https://bitbucket.org/cogumbreiro/brenner-java/
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[32] Tiago Cogffmbreiro, Francisco Martins, and Vascohffdichffm Vasconcelos.
Coordinating phased actifiities flhile maintaining progress. In Proceedings
of COORDINATION’13, fiolffme 7890, pages 31ۗ44, 2013

[31] Tiago Cogffmbreiro, Raymond Hff, Francisco Martins, and Nobffko Yoshida.
Dynamic deadlock fieri੗cation for general barrier synchronisation. In
Proceedings of PPoPP’15, 2015. To appear

9.3 Future work
We enfiision three ffftffre directions for offr flork. First, the integration of offr
techniqffes of static and rffntime fieri੗cation. Second, the mechanisation offr
theory. And third, effitending Armffs to fierify HJ and MPI.

Two-stage deadlock veri॑cation he ofierarching goal of this thesis is to
improfie the prodffctifiity of mfflticore programmers, by resorting to sotflare
fieri੗cation. We enfiision integrating offr main contribfftions in a compiler. he
offtcome is a programming langffage that is aware of all barrier deadlocks. Offr
idealised fieri੗cation techniqffe comprises tflo steps:

1. he compiler checks if the gifien program complies flith the programming
model in SBrenner. Compliant programs are safe from deadlocks by
constrffctions, so they can rffn flithofft rffntime checks.

2. Programs that fail to comply flith the programming model of SBrenner
are instrffmented and fieri੗ed by Armffs at rffn time.

here are some speci੗c tasks that can improfie offr contribfftions in static
and rffntime fieri੗cation.

Certi॑ed veri॑cation For static fieri੗cationflefloffld like to hafie: amachine
checked fiersion of offr theory, and a certi੗ed implementation of phasers. A
certi੗ed algorithm is an algorithm that is mechanically checked to comply flith
a gifien formal speci੗cation, i.e., the algorithm is accompanied by the proof of
its correction. Some of this flork started already. We mechanised in Why3 [38]
the proofs for the infiariant of the phase di੖erence (cf. Chapter 8), adapted to
primitifies of HJ. he soffrce code is afiailable online.3

Why3 is helpfffl for prototyping formal resfflts. he tool inclffdes a langffage
called Why to de੗ne fffnctions, syntactic terms, inference rffles, and lemmas.
For effiample, a phaser mapM can be de੗ned as a fffnction pm that accepts tflo

3https://bitbucket.org/cogumbreiro/hj-why3

https://bitbucket.org/cogumbreiro/hj-why3
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parameters, phid for p and tid for t, and yields an optional taskview for
type v, flhich means that the fffnction retffrns either an ffnde੗ned fialffe or a
task fiiefl.

function pm phid tid : option taskview

Similarly, fle can de੗ne ∆ as follofls.

function diff tid tid: option int

We can de੗ne affiioms for resfflts that are already shofln in pen and paper
proofs. For instance, in offr formalisation fle assffme Lemma 8.0.4 flith affiiom
diff_def, that states that any phase di੖erence in phaser map pm is also in diff.

axiom diff_def:
forall t1 t2 i n1 n2 tv1 tv2 p.
pm p t1 = Some tv1 -> pm p t2 = Some tv2 ->
wait_phase tv1 n1 -> wait_phase tv2 n2 ->
i = (i1 - i2)
->
diff t1 t2 = Some i

his can be informally flriten as follofls.

Lemma 9.3.1. If M(p)(t1) = (n1, _), M(p)(t2) = (n2, _), then ∆(t1, t2) =
n1 − n2.

A bene੗t of Why3 is its integration flith afftomatic theorem profiers. In offr
mechanisation, lemma total_for_wait_tids establishes that relation ≤∆ is
total. Why3 ffses an o੖-the-shelf theorem profier to afftomatically profie this
resfflt for ffs.

lemma total_for_wait_tids:
forall x y.
wait_tid x -> wait_tid y
->
diff_le x y \/ diff_le y x

Lemmas that cannot be discharged afftomatically are handled by the ffser flith a
proof assistant like Coq [78].

Finally, there is some flork to be done in formalisation of Armffs. While offr
flork in Chapter 4 pffshes the state-of-the-art of formal rffntime fieri੗cation of
barrier deadlocks, fle still lack a mathematical description of offr distribffted
algorithm. Since offr fiersion is not too di੖erent than the original [65], the
opportffnity is ripe to prodffce a certi੗ed fieri੗cation algorithm ffsing a tool like
Coq and Why3.
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Runtime veri॑cation We intend to fierify HJ programs, as it flill effiercise the
effipressifieness of Armffs. HJ featffres abstractions flith compleffi synchronisation
paterns, sffch as the boffnded prodffcer-consffmer. Armffs cffrrently simpli੗es
the graph generation process by ignoring the ordering of efients from the same
phaser. While this simpli੗cation of Brenner increases the performance of
Armffs to check all barriers abstractions in X10 and Jafia, it limits its ffse in the
conteffit of HJ.

Another direction is the fieri੗cation of MPI programs, flhich introdffces
point-to-point synchronisation and enable a direct comparison flith state-of-
the-art in barrier deadlock detection. One of the biggest diਖ਼cfflties is fierifying
of a form of non-deterministic point-to-point synchronisation flhere a receifier
task selects non-deterministically one message from possible mffltiple senders.
Hilbrich et al. effitended the WFG to sffpport this non-deterministic point-to-
point synchronisation in [51]. We need to infiestigate the impact of this speci੗c
graph model in offr model selection techniqffe.
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