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Resumo

Actualmente, a generalidade dos dispositivos de computacao inclui um pro-
cessador multicore. As aplicacdes que correm em processadores multicore s6
aumentam o seu desempenho se computarem em paralelo, aproveitando assim
o poder computacional dos nticleos disponiveis. Para este efeito, as linguagens
de programacao mais populares, tal como Java e Cf, adoptaram, nos ultimos
anos, varias técnicas de programacao paralela. Esta tese lida com uma classe
de falhas que origina da utilizacdo de uma técnica de programacio paralela,
chamada barreira, cuja funcionalidade ¢ a de sincronizar grupos de tarefas. Uma
barreira coordena a ordem de execucdo de um grupo de tarefas, disponibilizando
um ponto de execugdo em que as varias tarefas dum grupo podem esperar
umas pelas outras. As tarefas que usam barreiras sdo vulneraveis ao problema
de impasse, em que pelo menos duas tarefas estdo (indirectamente) a espera
uma da outra em barreiras diferentes sem que qualquer uma das tarefas possa
avancar. Os impasses constituem uma classe de falhas, da area de concorréncia,
com grande impacto em programas paralelos. O nosso objectivo é aumentar
a produtividade da programacao paralela tratando do problema de impasses
em barreiras. Nesta tese propomos duas técnicas complementares para lidar
com o problema de impasses: uma ferramenta de verificacio especializada em
impasses sobre barreiras que é distribuida, tolerante a falhas e verifica aplicacdes
X10 e Java; um modelo de programacio isento de impasses.

Palavras-chave: impasse, barreira, sincronizacéo, verificacao, programacao
paralela, programacao distribuida, Java, X10.






Resumo estendido

Actualmente, a generalidade dos dispositivos de computacao inclui um proces-
sador multicore, constituido por varios elementos de processamento (chamados
nucleos). As aplicacgdes feitas ignorando multiplos nucleos, s6 aumentam o
desempenho com o aumento da velocidade de cada nicleo. No entanto, por
restri¢des fisicas, os fabricantes de processadores multicores deixaram de au-
mentar a velocidade dos nucleos e, ao invés disso, aumentam o nimero nucleos
disponiveis em cada processador. As aplicacdes que correm em processadores
multicore s6 aumentam o seu desempenho se computarem em paralelo, aprovei-
tando assim o poder computacional dos nicleos disponiveis. Para este efeito, as
linguagens de programacio mais populares, tal como Java e Ct, adoptaram, nos
ultimos anos, varias técnicas de programacéo paralela.

Esta tese lida com uma classe de falhas que origina da utilizacdo de uma
técnica de programacio paralela, chamada barreira, cuja funcionalidade é a de
sincronizar grupos de tarefas. Uma barreira coordena a ordem de execucio
de um grupo de tarefas, disponibilizando um ponto de execugdo em que as
varias tarefas dum grupo podem esperar umas pelas outras. Isto é, a tarefa
bloqueia ao executar a instrugédo barreira até que todos os membros do grupo
executem a mesma barreira (“cheguem” a barreira). As tarefas que usam barreiras
sdo vulneraveis ao problema de impasse, em que pelo menos duas tarefas estdo
(indirectamente) a espera uma da outra em barreiras diferentes sem que qualquer
uma das tarefas possa avangar. Os impasses constituem uma classe de falhas, da
area de concorréncia, com grande impacto em programas paralelos.

O nosso objectivo é aumentar a produtividade da programacio paralela
tratando do problema de impasses em barreiras. Com o intuito de tratar rig-
orosamente este problema, surge a necessidade de caracterizar matematicamente
(i.e., formalizar) o mecanismo de sincronizacio existente numa barreira. Nesta
tese, fazemos um levantamento de primitivas de sincronizagdo baseadas em
barreiras. Com esta pesquisa concluimos que o construtor phaser, que origina
da linguagem Habanero Java, consegue ser adaptado para representar os varios
padrdes de sincronizagdo por nés documentado. A nossa primeira contribuigao
¢ a linguagem de programacio paralela BRENNER que define as operacdes essen-
ciais para representar os varios padrdes de sincronizacao capturados por phasers.
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Propomos duas técnicas complementares para lidar com o problema de
impasses. A primeira técnica, considerada dindmica, consiste numa analise
continua da execugao do programa, com o objetivo de identificar situa¢des de
impasse. A segunda técnica, considerada estatica, propde um modelo de progra-
macao isento de impasses. Técnicas dindmicas sdo mais gerais que as técnicas
estaticas, podendo ser aplicadas a mais programas existentes, mas incorrem
numa degradacdo da velocidade de execucgdo. Técnicas estaticas, embora menos
gerais, garantem propriedades—neste caso a auséncias de impasses—sem influ-
enciar o desempenho do programa. Qualquer programa que respeite o nosso
modelo de programacio niao sofrera de impasses causados por barreiras.

Verificacao dinamica Propomos a ferramenta Armus que é capaz de ver-
ificar aplicacoes Java e X10, e que incorpora a nossa técnica de verificagdo
dindmica. Utilizamos a linguagem BRENNER e as operagdes sobre phasers como
base da nossa técnica de verificacdo. Com esta base conseguimos identificar mais
padrdes de sincronizacio que as técnicas disponiveis em trabalho relacionado.
Adicionalmente, Armus é a primeira ferramenta de verificacido que identificas
impasses sobre barreiras nas linguagens Java e X10.

O problema da verificagdo dindmica de impasses pode ser visto como um
sistema de restri¢des em que quando nao existe solucdo, estamos na situagdo
indesejada de impasse. As restri¢cdes correspondem a dependéncias de concor-
réncia existentes entre tarefas e mecanismos de sincronizagido. Por exemplo,
podemos representar uma dependéncia entre a tarefa bloqueada numa barreira e
as tarefas participantes nessa barreira que ainda nio a executaram. No contexto
da verificacdo dindmica de impasses, a teoria de grafos é a mais utilizada para
modelar dependéncias de concorréncia. No nosso caso, resolver as dependéncias
de concorréncia equivale a encontrar um ciclo num grafo. O Armus escolhe
entre duas representacdes de dependéncias para gerar grafos mais pequenos, que
demoram menos tempo a serem analisados. Para isso mostramos formalmente
que a existéncia de um ciclo num grafo da primeira representacio implica a
existéncia de um ciclo no grafo da segunda representacio, e vice-versa. Uma
das representacdes favorece situacdes em que ha mais tarefas do que barreiras, a
outra representacdo favorece a situacdo oposta. Mostramos mais dois resultados
cruciais para garantir a correccio da nossa técnica de verificacdo: (i) a verificacdo
é fidedigna, visto que qualquer situacdo de impasse corresponde a uma situacdo
de impasse no programa; (ii) a verificagdo é completa, visto que qualquer caso
em que o programa esteja num impasse ¢ identificado pela analise.

A linguagem de programacao X10 permite o desenvolvimento de programas
distribuidos. Um programa distribuido corre simultaneamente em varios com-
putadores, utilizando os seus recursos. A nossa técnica de analise melhora o



estado da arte na verificacdo dindmica de programas distribuidos. O trabalho
relacionado s6 inclui informacéao sobre as tarefas bloqueadas, o que ¢ insuficiente
para verificar padroes de sincronizagdo em que os participantes de uma barreira
nao sao conhecidos a priori. Para suplantar esta limitacao, a nossa técnica regista
adicionalmente as barreiras a que cada tarefa bloqueada ainda ndo chegou. Uma
implicagdo desta novidade é que com esta informacao extra, a analise consegue
ser efectuada em qualquer computador da rede sem sincronizacédo adicional. Em
contraste, o trabalho relacionado necessita de introduzir sincronizagao adicional
entre as varias maquinas que estdo a ser analisadas.

Avaliamos o Armus usando trés conjuntos de benchmarks, em cenarios
locais e distribuidos numa maquina com 64 nucleos. No primeiro conjunto de
benchmarks avaliamos o impacto que a verificacdo tem no tempo de execucao
de programas Java paralelos, num contexto local. O impacto de verificacdo é
na maioria nulo e no pior dos casos a aplicacdo demora mais 15% to tempo
a terminar. No segundo conjunto de benchmarks avaliamos o impacto que a
verificagdo tem no tempo de execugio de programas X10 distribuidos. O impacto
de verificagdo é nulo. No terceiro conjunto de benchmarks avaliamos o impacto
que a escolha de um modelo de grafos tem na anélise, num contexto local. Os
resultados da avaliacdo mostram que a nossa técnica de selec¢do automatica
de modelos de grafos pode aumentar encurtar o tempo da analise até 7 vezes,
versus a técnica efectuada por trabalho relacionado que s6 utiliza um modelo de
grafos.

Verificagio estatica Este trabalho visa criar um modelo de programacao isento
de impasses adaptando a linguagem BRENNER. Usamos como ponto de partida o
modelo de programacio isento de impasses existente na linguagem X10, que
¢ mais limitada em termos de padrdes de sincronizacdo do que BRENNER. Os
padrdes de sincronizacdo extra na linguagem BRENNER sdo o produtor-consumi-
dor com e sem limite, necessario para representar o paralelismo streaming e o
paralelismo pipeline. O nosso trabalho também pode ser visto como uma adap-
tacdo da linguagem Habanero-Java para um modelo de programacéo isento de
impasses, que adicionalmente unifica as varias funcionalidades propostas para os
phasers. O modelo de programacéao é formalizado na linguagem SBRENNER, que
¢ composto por uma defini¢do de uma sintaxe, de uma semantica operacional e
dum sistema de tipos. A semantica operacional caracteriza matematicamente o
estado da computacio e o efeito que cada instrucdo tem neste estado. Um sistema
de tipos consiste num conjunto de regras que especificam o comportamento
valido da linguagem, identificando estados validos e invalidos de computacéao.
Os dois resultados principais que mostramos sdo: a preservacao de tipos
e o progresso. A preservagdo de tipos garante que: dado um estado valido
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identificado pelo sistema de tipos, se alguma tarefa executar uma instrugéo,
entdo o resultado do estado de computacdo também é considerado valido pelo
sistema de tipos. Este resultado mostra que, partindo dum estado valido, a
computacio nio “chega” a um estado invalido.

O resultado de progresso garante que, para qualquer estado valido, existe
um passo de computacdo ou entdo que a computagdo termina. O progresso
garante a auséncia de impasses, pois nesse caso a computagao nao termina mas
€ impossivel dar um passo de computacéo. Para conseguir provar que ha sempre
uma tarefa que esta pronta a executar, e visto estarmos na presenca do padrao de
sincronizagdo de produtor-consumidor limitado, introduzimos uma invariante
em sistemas que sincronizam com phasers. Uma tarefa a dista n fases de uma
tarefa b se e so se para qualquer phaser em que ambas tarefas participem a
diferenca da fase local entre a tarefa a e b é de n. Um phaser pode ser visto como
uma série de barreiras, a fase local n representa a n-ésima barreira desta série. A
invariante do sistema de phasers é que, embora a diferenca de fases entre tarefas
possa alterar a medida que o programa executa, existe sempre uma diferenca de
fases entre quaisquer duas tarefas. Desta invariante conseguimos estabelecer
uma ordem total sobre as tarefas que executam e mostramos que a menor destas
tarefas ndo esta bloqueada em qualquer phaser.



Abstract

Nowadays, most produced computing devices include multicore processors.
Applications that run on these devices only scale if they can compute in parallel.
To this end, mainstream programming languages, like Java and Cf, adopted
various parallel programming techniques.

This thesis focuses on a parallel technique, called barrier, used for synchroni-
sation. A barrier coordinates the execution order of parallel activities, by letting
them wait for each other. Tasks using barriers are susceptible to the problem of
deadlocks, where at least two activities are (indirectly) in a stalemate because of
a conflicting ordering of some barriers. Deadlocks are a class of concurrency
failures with a big impact in parallel programs.

To help make parallel programming more productive, we propose two com-
plementary techniques that handle deadlocks caused by barriers: a runtime
verification tool, and a deadlock-free programming model. We present Armus,
a runtime verification tool specialised in barrier deadlocks that is distributed,
fault-tolerant, and verifies X10 and Java programs. Our technique verifies more
barrier synchronisation patterns than existing state-of-the-art techniques. We
improve deadlock verification based on graph analysis: our technique selects
from two alternative graph representations of concurrency dependencies to
hasten deadlock checking. Armus is evaluated with three benchmark suites in
local and distributed scenarios.

To handle barrier deadlocks at design time we propose a language called
SBRENNER that extends and formalises a programming model that originates
from the Habanero-Java and the X10 languages. The outcome is a deadlock-free
programming model that leverages pipeline parallelism. We present an opera-
tional semantics and a type system for SBRENNER. Our type system enjoys the
properties of progress and subject reduction.

Keywords: deadlock, barrier, synchronisation, verification, parallel program-
ming, distributed programming, Java, X10.
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Chapter One

Introduction

We want to improve the productivity of multicore programmers, by reducing
program failures. Recently, mainstream languages incorporated parallel pro-
gramming techniques that introduced new forms of failures. Our work studies a
technique called barrier synchronisation and a form of failure called a deadlock.
We propose two different strategies to solve barrier deadlocks and implement
one of these strategies as a tool.

1.1 Problem statement

This thesis centres on the impact of the “multicore revolution” on programming
languages. Physical restrictions made chip manufacturers develop multicore
processors composed of multiple processing units, called cores. The execution
model of these processors is parallel: all cores work at the same time and
communicate through a main memory. Each core executes sequentially, running
a sequence of instructions, one after the other. The trend of processor design
for the past decade has been to increase the number of cores linearly and to
stabilise the execution speed [98].

Applications stopped scaling with multicores because they were not de-
signed to compute in parallel [83]. The reaction of mainstream programming
languages, like Java, and Cf, was to incorporate parallel programming tech-
niques. Surveys [20, 82] analyse the usage parallel programming techniques in
Java and Cf. At the foundation of parallel programming is task parallelism [27],
which is both a programming model that defines a an interface for programming
a system, and also an execution model that defines how actions are executed by
the system. Tasks correspond to a logical unit of work that is composed of a
series of actions that are executed sequentially, while sharing and manipulating
memory. The system executes multiple tasks concurrently, i.e., at the same time.

With parallelism comes the need to synchronise the concurrent execution of
multiple tasks. A barrier [55] coordinates the execution of a group of tasks: it
can ensure all members wait for each other before advancing to their next action.
Barrier synchronisation was developed in 1978 and rapidly became a cornerstone
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of parallel programming. The most popular choices for parallel programming
are MPI [40] and OpenMP [36], through C or Fortran. The performance of
barrier synchronisation is of such high importance that active research exists
on implementing this mechanism in hardware [2, 54, 93].

Mainstream programming languages provide a multitude of abstractions
that perform barrier synchronisation [20, 82]. Java 5.0-7.0 (2004-2011) and Cf
(2010) introduced four abstractions that use barrier synchronisation: latches,
cyclic barriers, futures [48], and the fork/join programming model. Futures are
also a novelty of C++ version 2011. A latch, or countdown event, is a counter
that can only be decreased until it reaches zero. Besides decreasing the value
of the latch, tasks can also wait (once) for the latch to reach zero. The wait
on the latch represents a barrier synchronisation. A cyclic barrier can be used
for synchronisation repeatedly. A future, or promise, is a placeholder for a
value that is computed asynchronously (concurrently). Any task holding the
future can wait for its value to be computed in what can be seen as a barrier
synchronisation. Stream programming [100] also includes a form of reusable
barrier synchronisation and is included in Java, Cf, and there is a proposal for
OpenMP [87].

High-performance computing (HPC) champions the development of parallel
programming to solve complex scientific problems. There is a recent interest
in two well-studied aspects of mainstream languages [45, 71, 74]: language
usability and application robustness. To address language usability, new task
parallel languages were proposed: Chapel [26], Habanero-Java (HJ) [24], Tita-
nium [110], UPC [37], and X10 [28]. All five languages include abstractions to
perform barrier synchronisation. There many proposals to tackling the problem
of concurrency-related failures: structured abstractions [28, 94], source code
analysis [106, 76], and program monitoring [34, 51, 52].

Parallel programming techniques introduce concurrency-related bugs, no-
tably difficult to track and reproduce. Deadlocks [114] are a class of nefarious con-
currency failures that have a wide expression in task parallel programs [39, 72].
Barrier deadlocks arise from a cyclic-dependency among tasks that participate
on multiple barriers. An example of a deadlock is when two tasks block on
distinct barriers and are (indirectly) waiting for each other. Techniques that
handle deadlocks for mainstream languages cannot cope with ad hoc synchroni-
sation mechanisms [57]. In particular, these techniques cannot handle barrier
deadlocks.

Literature considers four strategies to handle deadlocks [58]: ignoring, pre-
venting, avoiding, and detecting. The plainest strategy is to just ignore the error,
a useful strategy when the deadlock only shows up rarely, and the effort of
handling it is steep. Barrier deadlocks are usually deterministic, because the
arrival order does not disturb barrier synchronisation. It is often the case that if
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the program can deadlock, it does deadlock, which renders impractical, ignoring
these class of failures.

Prevention reduces the expressiveness of the abstraction in such a way that
any program that runs is known beforehand to be free of deadlocks. To achieve
prevention there are syntactic and semantic approaches. The fork/join program-
ming model of OpenMP and of X10 uses syntactic scoping to ensure that there
are no deadlocks while tasks join their execution, i.e., there is no syntax to write
a program that deadlocks just by joining the execution of tasks. The fork/join
programming model is also available in many languages as a library, but in such
cases deadlocks are not prevented syntactically. The X10 language [28] provides
a limited programming model that prevents all barrier deadlocks, although
any use of synchronisation codes outside of this programming model voids the
deadlock freedom guarantee. An alternative approach is to perform source code
analysis to predict deadlocks. Promising work from Le et al. [69] annotates C
code to verify some safety properties of barriers. Prevention is too limiting to be
applied to the whole system, so language designers use this strategy to eliminate
some deadlock patterns.

Avoidance and detection happen at run-time. With avoidance, the system
proactively compensates calls that lead to a deadlock, e.g., by delaying a call, or
aborting execution. Some systems, such as MPI [40], deadlock if a barrier partic-
ipant forgets to synchronise and terminates. The synchronisation algorithm of
X10 disregards terminated participants to avoid this class of deadlocks. The HJ
language dynamically avoids deadlocks that arise from the interference between
cyclic barriers and the fork/join programming model at a cost of expressiveness.
Avoiding deadlocks caused by misaligned barriers is usually too expensive as
every call that uses barrier synchronisation must be monitored, so language
designers opt for deadlock detection instead.

The strategy of detection requires a system that is capable of introspecting its
state to identify deadlocked states. This monitoring does not interfere with the
program execution, so the system must break—or just inform the user of—any
deadlock it identifies. Works on barrier deadlock detection are largely concerned
with the idiosyncrasies of the system and with the performance of the tool at
hand. For example, works on deadlock detection for MPI, e.g., [52], are not
applicable to UPC, nor vice versa [34], because neither has a barrier construct
capable of encoding the other. In the context of parallel programming, there is
a need for run-time error detection [74] and a need for formalisation [45]. The
programming language and formal methods community payed little attention
to runtime strategies that handle deadlocks, i.e., to detection and to avoidance.
A notable exception is the work from Boudol [21] that presents a language
equipped with locks along with a formal semantics that avoids deadlocks.

There is a lack of a precise, mathematical description of what barrier synchro-
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nisation actually is. Throughout its 30 years of existence, there are many different
ways of employing barrier synchronisation but no surveys on its fundamental
semantics. Formal methods can help assess the correctness of the design early
on and acts as a crucial guide to a more accurate implementation [19]. In par-
ticular, runtime techniques cannot verify existing barrier-based abstractions and
prevention techniques are too limited to be useful.

1.2 Objectives

We want improve the productivity of parallel programming, by reducing the
number of faults caused by concurrency. This thesis revisits the classical problem
of deadlocks in the point of view of programming languages, in particular we
focus on a comprehensive approach to handle deadlocks caused by barriers. Our
objectives can be summarised in five topics:

1. Survey the usual barrier properties. We study the origins of parallel pro-
gramming and associated programming models to identify the abstractions
that use this synchronisation mechanism. We catalogue the properties
found and illustrate them with programming examples.

2. Propose a general theoretical framework to reason about barriers. The idea
is to distil the semantics of the surveyed properties into a single, unifying
abstraction that can then be used as the cornerstone of our techniques to

handle deadlocks.

3. Introduce techniques that handle deadlocks at runtime. We show how to
detect (or avoid) deadlocks on our general barrier framework. Dynamic
techniques are the only ones that can cope with the full expressiveness of
barrier synchronisation.

4. Present deadlock-free techniques. We restrict our initial model to include
the prevention techniques used by X10 and HJ. Our proposal pushes the
limits of expressiveness set forth by X10 and HJ while maintaining the
deadlock-free guarantee, that we prove to be hold.

5. Develop tools that can help programmers avoid barrier deadlocks. We
implement the synchronisation mechanism behind our theoretical frame-
work and build two tools that detect or avoid barrier deadlocks for Java
and X10.
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1.3 Thesis outline

Chapter 2 surveys the properties of abstractions that use barrier synchronisation.
We give a brief historical context of the evolution and the different uses of this
synchronisation mechanism. Each barrier idiom is accompanied with code
listings and an informal description of its semantics. We conclude the chapter
discussing related work on the formalisation of barrier synchronisation and on
handling barrier deadlocks.

Chapter 3 presents a minimal task parallel language that contains a general
barrier abstraction. The language is defined by a syntax and a formal semantics.
We describes the semantics operationally: so we characterise the state of a
program, and specify how each primitive alters this state.

Chapter 4 explores the detection and avoidance of barrier deadlocks. The
basic idea is to abstract the state of a program as a graph, and then reduce the
problem of deadlock detection and avoidance to finding a cycle in a graph. We
introduce some basic notions of graph theory, then show how to obtain a graph
from a program state, and finally establish the soundness and completeness of our
detection algorithm. The realisation of the theory are two runtime verification
tools: one for Java, and another for one X10. The tools can perform deadlock
avoidance, and fault-tolerant and distributed deadlock detection.

Chapter 5 explores the prevention of barrier deadlocks. We restrict the
language introduced in Chapter 3 in such a way that programs are deadlock-free
by construction, i.e., there is no syntax to write programs that deadlock. The
syntactic and semantic limitations we impose to achieve deadlock freedom
are taken from the languages X10 and H]J. Our contributions of this chapter
are: pushing the limits of expressiveness under a deadlock-free setting, and
establishing the properties of subject reduction and of progress.

Chapter 9 summarises the thesis, outlines our technical contributions and
key findings, and presents future directions of our work.






Chapter Two

Barriers and its applications

Parallel programming includes several abstractions that perform barrier synchro-
nisation. We examine common properties of this synchronisation mechanism
with the objective of identifying a single unifying abstraction to reason about
barrier deadlocks.

Section 2.1 highlights the different uses of barrier synchronisation in pro-
gramming languages through the history of computing. The outcome is a survey
on different barrier properties. In Section 2.2, we examine the state-of-the-art
on handling barrier deadlocks to identify our research opportunities.

2.1 Historical background

The importance of coordinating the execution of independent processing units
(tasks, processors, or even computers) can be traced back to the first computers
ever designed. The 1960’s brings into play the simplest form of barrier synchro-
nisation, the fork/join programming model. The Gamma 60 computer [18] is
announced in 1958, a machine that includes multiple processing units that can
synchronise upon the completion of an instruction. Any processing unit can run
an instruction on another unit with a “fork” instruction and then wait for that
instruction to complete with a “join” instruction. In 1963, Melvin E. Conway
proposes a multiprocessor design [33] based the fork/join programming model,
where the join instruction can wait for multiple instructions to conclude, instead
of just one. John A. Gosden presents a historical survey of this subject in [46].

In 1965, Ascher Opler elevates the fork/join programming model to a lan-

Listing 2.1: Matrix multiplication in Fortran.

do LOOP I=1,21
do LOOP J=1,21
do LOOP K=1,21
LOOP: C(I,J) = C(I,J) + A(I,K) * B(K,J)
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Listing 2.2: Matrix multiplication programmed with do-together.

do together BLOCK1, BLOCK2, (END)
BLOCK1: do LOOP1 I1=1,21,2

do LOOP1 J1=1,21

do LOOP1 K1=1,21

LOOP1: C(I1,J1) = C(I1,J1) + A(I1,K1) * B(K1,J1)
BLOCK2: do LOOP2 I2 = 2,20,2

do LOOP2 J2 = 1,21

do LOOP2 K2 = 1,21
LO0OP2: C(12,J2) = C(I12,J2) + A(I2,K2) * B(K2,J2)
END: hold

guage abstraction [84] called do-together. Listing 2.1 is a sequential program
that multiplies matrices A and B and places the result in matrix C. The matrices
are 21 rows by 21 columns. Listing 2.2 is the parallel version of the sequential
algorithm. Instruction D0 TOGETHER receives the instruction sequences to be
executed in parallel and an instruction label between parenthesis that marks
the end of the block—the language used in the example lacks the concept of
structured code. Here, there are two instruction sequences: BLOCK1, that ranges
from lines 2-5, and BLOCK2, that ranges from lines 6-9. The instruction se-
quence BLOCK1 multiplies cells with odd rows, and instruction sequence BLOCK2
multiplies cells with even rows. Instruction hold is a join barrier that waits for
the completion of both instruction sequences.

Listing 2.3: Matrix multiplication using Lamport’s concurrent-do.

do LOOP conc I=1,21

do LOOP J=1,21

do LOOP K=1,21

LOOP: C(I,J) = C(I,J) + A(I,K) * B(K,J)

The late 1960’s bring the 1LLIAC 1V [17], a computer with multiple processors
that execute a single instruction stream. Leslie Lamport proposes two language
constructs to coordinate the execution of parallel loops [66]. Any po-loop that
includes the keyword conc schedules each iteration to a different processor.
Listing 2.3 revisits the matrix multiplication, but assigns the computation of each
row to a different processor. Similarly to the bo TOGETHER, there is an implicit
barrier at the end of the outermost cycle, where all processors synchronise.
A po-loop with the keyword sim also schedules each iteration to a different
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Listing 2.4: An iterative averaging algorithm.

for (i=1;i<=N;i++) do par
for (k=1;k<=M;k++) do seq
P[i] = (P[(i+1) % N] + P[(i-1) % N1)/2;

processor, but differently than conc, it makes every processor executing the
parallel cycle to synchronises at each instruction. This is the first time the
notion of a reusable barrier synchronisation appears in a programming language,
although in this case it is an implicit notion. A reusable barrier can also be seen
as a stream of barriers. We call phase to each barrier of a stream of barriers.

Harry F. Jordan coins the term “barrier synchronisation” in 1978 [55], in the
context of the design of a parallel machine that performs finite element analysis.
The author proposes a primitive to perform reusable barrier synchronisation.
The intent of this synchronisation mechanism is to separate two phases of the
element analysis algorithm. The processors must wait for each other at the
barrier before advancing to the second phase of the algorithm.

The 1980’s are marked, at the software level, by the exploration of paral-
lelising compilers that take a sequential program and make it parallel [108].
Parallelising compiler introduce barriers in the generated code to enforce data
dependence. Programmers can provide source code annotations to improve
the work of the compiler. The programming languages Force [56]—initiated by
Harry F. Jordan, among others—and PISCES [89] included a reusable barrier
primitive.

Listing 2.4 shows a typical smoothing algorithm picked from [47], a pattern
seen, for example, in computing a partial differential equation. The array P
holds N numbers. Each value in the array is calculated by using its neighbours
from the previous iteration. The outer loop iterates over the contents of the
array and executes its steps in parallel (hence the keyword par). The inner loop
performs the smoothing and executes sequentially.

A parallelising compiler must notice the data dependency between iteration 7
and iteration ¢ + 1, or otherwise there is a race condition. In Listing 2.5, the
compiler adds two (reusable) barriers. Every task waits for the others to read
the neighbouring values into tmp, and then all tasks wait for each other after
updating their own cell.

Rajiv Gupta introduces fuzzy barriers [47], in 1989, as an optimisation tech-
nique to overlap synchronisation with computation. A similar technique, called
split-phase communication, is used to hide communication latency [25, 29, 113],
so nowadays fuzzy barriers are also known as split-phase barriers. A split-phase
barrier consists of two primitives: initBarrier initiates the synchronisation
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Listing 2.5: Iterative averaging programmed with barrier synchronisation.

for (i=1;i<=N;i++) do par
for (k=1;k<=M;k++) do seq {
tmp = (P[(i+1) % N] + P[(i-1) % NJ1)/2;
barrier;
P[i] = tmp;
barrier;}

mechanism concurrently, and primitive waitBarrier waits for the synchroni-
sation to happen. A task blocks on waitBarrier until all other participants
execute initBarrier. Listing 2.6 rewrites the smoothing algorithm with a
split-phase barrier. With split-phase barriers Line 5 can be run concurrently
with Line 7.

Listing 2.6: Iterative averaging programmed with barrier synchronisation.

for (i=1;i<=N;i++) do par
for (k=1;k<=M;k++) do seq {

1 =P[@i-1) % N]; r = P[(i+1) % NI;
initBarrier;
tmp = (1 + r)/2;
waitBarrier;
P[i] = tmp;
barrier;}

At the time, research is mostly geared towards the performance of the
synchronisation algorithm [9, 22, 49]. Rajiv Gupta also introduces the notion
of barrier synchronisation in a subset of tasks in the system, in contrast with a
global barrier that affects all tasks.

In the 1980’s, there are also some advances related to the fork/join program-
ming model. The parallel functional languages Multilisp [48] and Id [11] include
abstractions that mix communication with a barrier synchronisation. Multilisp
introduces futures, or promises, that can be seen as a placeholder for the out-
come of a function that is being computed concurrently, possibly in parallel. An
arbitrary number of consumer tasks can be awaiting a result to be produced on
the placeholder (the barrier). Once the function evaluates, the waiting tasks can
resume their work and have access to the outcome of the function. The language
Id proposes I-structures as a simplification of futures. An I-structure can also be
seen as a placeholder for the outcome of a computation, yet, unlike futures, this
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Listing 2.7: A deadlock using synchrons.

(let ((a (synchron)) (b (synchron)))
(par
(begin (wait a) (wait b))
(begin (wait b) (wait a)))

mechanism does not spawn any tasks. Tasks can observe and consume values
written in an I-structure. Writing to the I-structure is synchronised with all the
pending reads. Writing is a non-blocking operation, so the writer task does not
wait for the readers tasks.

In the 1990’s there is an ongoing exploration of (explicit) task parallelism,
a continued work on the fork/join programming model, and barriers appear
as first-class values and varying participation is introduced. Two notable lan-
guages based on the fork/join programming are announced: Cilk [41] (asa C
extension) and OpenMP [36] (as a Fortran extension). As barriers make their
appearance in more programming languages, their semantics become richer.
This decade introduces barrier synchronisation where the group of participants
varies over time. In 1990, varying participation appears first in hardware barrier
synchronisation [81]. In 1996, Franklyn Turbak proposes synchrons [102]: the
barrier abstraction is a first-class value that can be stored in any data structure.
Furthermore, synchrons also allow for varying participation, the first time such
property appears in software-based barriers. In Listing 2.7 two tasks wait for
two synchrons in a alternative order, rendering them in a deadly embrace. A
main task creates two synchrons, in line 1, and then uses primitive par to spawn
two new tasks. One of the spawned tasks, in line 3, waits first on synchron a
and then on synchron b. The other spawned task, in line 4, waits on b first and
on synchron a second.

MPI [40], an extension of C or of Fortran, is announced in 1992. There
is support for collective operations and the possibility to group tasks. Collec-
tive operations must be executed by every member of a group of tasks, intro-
ducing an implicit barrier at each operation. For example, if a task executes
an MPI_Broadcast while another task executes a MPI_Scatter, then we have
a deadlock caused by misaligned barriers. Additionally, any task that shares
(transitively) a group with any of the deadlocked tasks also becomes deadlocked.

The 2000’s give rise to a new family of parallel programming languages
called PGAS (Partitioned Global Address Space) for task parallel languages with
access to a hierarchic shared memory. Some languages that are part of this
family include Chapel, Titanium, UPC, and X10. In 2001, Jung et al. promotes
the split-phase barrier synchronisation to a first-class synchronisation mech-
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anism [59], in contrast with Gupta’s view of split-phase barrier as a compiler
optimisation. MPI, UPC, and X10 offer split-phase barrier synchronisation. X10
includes a fork/join programming model and a barrier abstraction called clock,
that is a first-class value and supports group synchronisation with a varying
number of participants.

Only in the 2000’s do mainstream languages start incorporating barrier syn-
chronisation in their libraries. Java and the language family behind the NET
framework did not change their syntax to accommodate barrier synchronisation;
all abstractions that perform barrier synchronisation are first-class values. Java
5.0, in 2005, include three abstractions that perform barrier synchronisation:
latches, cyclic barriers, and futures. A latch performs one-shot barrier syn-
chronisation for a fixed number of participants. The cyclic barrier performs
reusable barrier synchronisation, also for a fixed number of participants. The
NET framework 4.0, in 2010, includes latches, a cyclic barrier that supports
varying participation, futures, and a fork/join programming model.

HJ is a derivation of X10, so they share the programming model and most
language constructs. A novelty of HJ is the proposal of phasers [94] to replace
clocks. The semantic novelty in this abstraction is the way tasks can influence
barrier synchronisation, which resembles latches and I-structures. A task can
observe a phaser and just await participants, without others waiting for it. A task
can cross the barrier (i.e., arrive and proceed without waiting), yet others still
need to wait for it to arrive at the barrier. A task can still use a phaser for regular
reusable barrier synchronisation, by arriving and waiting. Phasers can be used
to perform producer/consumer synchronisation, usually done with condition
variables [53], whose deadlocks are known to be very difficult to handle [4,
57]. Later, there is a phaser extension to support bounded producer/consumer
synchronisation patterns, called phaser beams [96]. Finally, in 2011, Java 7.0
adds an abstraction inspired by phasers, but that does not support observers; a
Java phaser is essentially a clock but, confusingly, it is also called a phaser.

To summarise, the barrier properties we consider are:

Group synchronisation: A subset of the available tasks can synchronise to-
gether as a group. Examples: clocks, cyclic barriers, join barriers, latches,
MPI collective operations, phasers, and synchrons.

Reuse: Participants may use the same abstraction to perform more than one
barrier synchronisation. Examples: clocks, cyclic barriers, MPI/UPC col-
lective operations, phasers, and synchrons.

Split-phase synchronisation: The synchronisation mechanism must be able
to be commenced asynchronously. Examples: clocks, latches, MPI/UPC
collective operations, and phasers.
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Varying participation: A task can join and leave a group that is synchronised
with a barrier. Examples: clocks, MPI collective operations, phasers, and
synchrons.

Phase observing: A task can observe the barrier without influencing it. In the
case of a reusable barrier, the task must be able to observe a specific phase.
A task can arrive without needing to await any participant. Examples:
futures, I-structures, join barriers, latches, and phasers.

2.2 Related work

The seminal work from Peter J. Landin [68] along with the programmer’s man-
ual of LISP 1.5 [79] pioneered the idea of reasoning in terms of families of
programming languages, called calculi. The goal of a calculus is to unify multi-
ple programming languages by abstracting mere syntactic variations. Examples
of calculi include the A-calculus [30] for functional programming languages,
process algebras (e.g., the m-calculus [80]) for concurrent languages, and the
object calculus [1] for object-oriented languages.

Calculi that include barrier synchronisation are usually limited to a specific
barrier idiom. SPMD languages usually have global collective operations, so a
calculus that targets this family of languages only concerns with global barrier
synchronisation. Similarly, a calculus that deals with futures, or with join
barriers, only concerns with one-shot barrier synchronisation. Yet HJ, Java, the
NET framework, OpenMP, and X10 are just some examples of languages that
comprise varied barrier idioms.

Deadlock prevention. The literature around source code analysis to prevent
global barrier deadlocks is vast: MPI [76, 85, 97, 111], OpenMP [112], OpenSH-
MEM [88], and Split-C [7] (a predecessor of UPC). It is worth noting that MPI
supports group barrier synchronisation, but works on deadlock prevention can
only cope with global synchronisation.

The fork/join programming model is easily restricted syntactically to prevent
deadlocks from happening. The Ag-calculus by Arvind et al. [10] and the calculus
by Aditya et al. [3] study the fork/join programming model in the context of
functional programming languages. Lee and Palsberg presented a calculus
for a fork/join programming model [70], suited for inter-procedural analysis
through type inference, and establishes the deadlock freedom property. The
work by Lee and Palsberg also includes a type system that is used to identify
may-happen-parallelism, further explored by Agarwal et al. in [5].
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There is some work surrounding the formalisation of barrier semantics with
complex properties of barrier synchronisation, but do not establish deadlock-
freedom. Saraswat and Jagadeesan formalise a subset of X10 that prevents
deadlocks [92], comprising join barriers and clocks. Le et al. devise a verifi-
cation for the correct use of a cyclic barrier in a fork/join programming lan-
guage [69]. Vasudevan et al. have a similar approach on verifying the correct
use of clocks [104].

The tool X10X [44] is a model checker for X10. Model checkers perform
source code analysis and can be used to discover potential deadlocks. This
class of tools suffers from the state explosion problem: the analysis grows
exponentially with the possible interleaves of the program. Thus, X10X may not
be able to verify complex programs.

There is a research opportunity on formal techniques that prevent general
barrier deadlocks.

Deadlock avoidance and detection. To our best knowledge, techniques that
avoid deadlocks in the context of barrier synchronisation are incomplete, i.e.,
only handle a few situations of barrier deadlocks. For instance, in X10 and HJ,
tasks deregister from all barriers upon termination; this mitigates deadlocks
that arise from missing participants. H]J avoids deadlocks that originate from
the interaction between phasers and finish blocks by limiting the use of phasers
to the scope of finish blocks. Deadlock detection tools for Titanium [60] and
UPC-CHECK [91] can only handle global barrier synchronisation. Literature
concerning MPI deadlock detection is still not general enough for languages
like Java and X10 and lacks formal specifications. DAMPI [105], Marmot [64],
and MPI-CHECK [73] report a programs as deadlocked after a period of inactiv-
ity, so it can misidentify a slow program as a being deadlocked. Umpire [51]
and MUST [52] (a successor of Umpire) use a graph-based deadlock detection
algorithm, but omit a formal description on how the graph is actually generated
from the language. Furthermore, MUST is incapable of verifying split-phase
synchronisation, known in MPI as non-blocking collective operations.

There is a research opportunity on deadlock avoidance and detection for general
barrier synchronisation.



Chapter Three

BRENNER: a calculus for parallel
programming

We present phasers and a core-language to reason about task parallelism with
this abstraction. The following section revisits some examples to introduce the
primitives that comprise a phaser. Section 3.1 presents the syntax of BRENNER.
We discuss the operational semantics in Section 3.2.

The definitions and examples in this chapter are mechanised in Coq [78] and
available online'.

3.1 Syntax

A phaser is used to count and observe events generated by a group of tasks,
similarly to a collective event counter [90]. The primitives we introduce distil the
semantics cf. [94, 96]. Each participant is registered with an event counter, called
a local phase, that is a non-decreasing, non-negative integer. Instruction adv
increments the local phase of the issuing task. Instruction await(p, n) blocks
until all members of phaser p reach phase n, i.e., their local phase is at least n.
Instruction newPhaser creates a phaser.

Tasks are referred by task names. Instruction newTid creates a task name.
To dynamically create and launch a named task there is instruction fork. The
members of a phaser are controlled with reg to add (register) a participant to
a phaser, and dereg to remove (deregister) a participant from a phaser. Data
transfers and data-related computation are abstracted and in their place we use
instruction skip. Similarly, we represented structured control flow instructions,
like for-loops and conditionals, with instruction loop that unfolds its body an
arbitrary number of times.

Join barriers Listing 3.1 describes an one-shot barrier synchronisation as seen
in the fork/join programming model. Our example revisits Listing 2.3, matrix

'https://bitbucket.org/cogumbreiro/brenner-coq/
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Listing 3.1: Matrix multiplication programmed with a phaser.

p = newPhaser ();
loop( // for (i = 0; i < 21; i++) {
t = newTid ();
reg(t, p);
fork(t,
loop( // for (j = 0; j < 21; i++)
loop( // for (k = 0; k < 21; k++)
skip; // C[il[j]l += A[i][k] = B[k][j]1;
end); // inner loop
end); // outer loop
adv(p); // signal termination
end); // fork
end); // loop
adv (p);
await(p, 1); // join
end

multiplication programmed with a task processing each row of the matrix.
A driver task executes the code in Listing 3.1; it is responsible for forking the
worker tasks processing the rows, and for joining their execution with a phaser p.
In detail, the driver tasks creates phaser p, in Line 1, with instruction newPhaser,
automatically registering the driver at phase 0. The driver uses reg to register t
with p (Line 4); the registered task will inherit the phase of their registrant, in
this case it is phase 0. The workers (Lines 6 to 12) advance their phase, in Line 11,
to notify the driver that awaits their terminus, in Line 15. Since the driver is
also registered with p, it advances its local phase before awaiting phase 1, in
Line 14, otherwise it deadlocks all tasks.

Cyclic barriers Listing 3.2 revisits the split-phase synchronisation example
seen in Listing 2.6. To encode a cyclic barrier, every participant advances its
phase and then awaits at its local phase in Line 13, so that all members await
each other. There are two variants of instruction await, when a task omits the
phase number, await(p), then this task awaits at its local phase. Split-phase
synchronisation commences with a phase advance in Line 8, and terminates
with an await in Line 10.

Pipeline parallelism Phasers enable distinct synchronisation patterns when
compared to other barrier-based abstractions. A case in point is the producer-
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Listing 3.2: Split-phase synchronisation with a phaser.

p = newPhaser(); // ¢ = new Clock();
loop( // for (i = 0; i < N; i++)
t = newTid ();
reg(t, p);
fork(t, // async clocked(p)
loop( // for (k=1; k <= M; k++)

skip; // 1=P[(i-1) % Nl;r=P[(i+1) % NI;
adv (p); // c.resume () ;

skip; // tmp = (1 + r) / 2;

await (p); // c.advance () ;

skip; // PLi] = tmp;

adv (p);

await (p); // c.advance () ;

end); // for
end); // task
end); // outer loop
dereg(p); // revoke participation
end // program

consumer synchronisation pattern, sketched in Listing 3.3. Two groups of tasks,
the producers and the consumers, synchronise their execution with a phaser p.
Producer tasks only advance the phaser, while consumer tasks await consecutive
phases of that phaser. Cyclic barriers cannot be used effectively to describe the
producer-consumer pattern: since all participants of a cyclic barrier must wait
for each other, then the execution of producers is constrained by the execution
of consumers, which does not happen in Listing 3.3.

Pipeline parallelism is a parallel programming model based on the producer-
consumer synchronisation pattern. In this programming model, computation
is divided in stages that can run concurrently, where barrier synchronisation
coordinates the execution order of different stages. Recent proposals of pipeline
parallelism in the context of parallel programming languages include: Open-
Stream [87] for OpenMP, StreamX10 [107] and clocked variables [12] for X10,
and phaser beams [96] for HJ.
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Listing 3.3: Producer-consumer synchronisation with phasers.

p = newPhaser(); // c = new Phaser();
loop( // producers
tl = newTid (); reg(tl, p); // producer

fork(til,
loop( // for (i = 0; i < N; i++)
skip; // B[i] = produce(i);
adv(p); // signal consumer

end); // loop
end); // ti
end) ;
loop( // consumers
t2 = newTid(); reg(t2, p); // consumer
fork(t2,
loop( // for (i = 0; i < N; i++)
adv(p); await(p);
skip; // consume (B[i]);
end); // loop
end); // t2
end) ;
dereg(p);
end // program

Syntax We propose the core language BRENNER? to reason about task paral-
lelism with phasers. The language itself is very basic—not even Turing-comple-
te!—but provides a sufficient programming model to reason about the barrier
abstractions surveyed in Chapter 2. We abstain from adding constructs unre-
lated to synchronisation, like data types, since such additions only complicates
the semantics without bringing into play any novelty.

Definition 3.1.1 (Language syntax). The grammar in Fig. 3.1 defines our lan-
guage.

The grammar specifies how to construct a program in BRENNER in an abstract
syntax based cf. [86]. A term can be elementary or composed of other terms.
A grammar defines categories (i.e., sets) of terms. The set of all programs is

? Originating from the Star Trek television series, the minor character Brenner [8] is referred
as a phaser specialist on the script for the episode “Balance of Terror”. Brenner serves under
the command of Captain James T. Kirk and is responsible for coordinating and maintaining the
phaser weapons of the USS Enterprise.
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b = Programs
| end end program
| ;0 construct program
v o= Instructions
| ¢ =newTid() new task identifier
fork(t,b) spawns the execution of a task

p = newPhaser() create a phaser

|
|
| reg(t,p) register task with phaser
| dereg(p) deregister current task from phaser
| adv(p) advance local phase
| await(p,n) await for phase n
| await(p) await current phase
| ¢ control the flow
c = Control flow
| skip internal action
| loop(b) non-deterministic loop

Figure 3.1: Top-level syntax.

an example of a category of terms. In BRENNER, a program is composed by
instructions, which are themselves other terms. Notation ::= declares a term
category: in the left-hand side there is a meta-variable (a letter) that ranges
over the terms of that category; in the right-hand side the declaration of the
alternative terms, separated by a vertical bar |, that reads as “or”

The grammar of BRENNER consists of two categories of terms: programs
ranged over by b, and instructions ranged over by . The definition of a program b
has two possible terms: it is either (i) an elementary term end, or (ii) a construct
program term that is composed of an instruction 7 followed by the continuation
program b. The alternatives in the right-hand side of ::= work as templates, so
any meta-variable that appears in the right-hand side of ::= does not represent
a specific instance, but a placeholder for a term of that category. For instance,
term b that appears in ; b represents a placeholder for any program term that
can be constructed using the grammar Fig. 3.1.

The grammar relies on a base set of phaser names P, ranged over by p and by
q; a base set of task names 7, ranged over by ¢; and a set /' of natural numbers,
ranged over by n and by m.
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S = (M,T) State

M == {p1: P1,...,pn: P,} Phaser maps
T = {t1:by,...,t,: by}  Task maps
P = {ty:n1,...,tm: ny} Phaser value
b u= --- | idle

Figure 3.2: Syntax of the abstract machine.

3.2 Operational Semantics

The formalism that specifies the meaning of BRENNER is known as operational
semantics, and it describes how computation develops. Operational semantics
can be divided into two categories: small-step semantics that describes the
individual steps of computation, and big-step semantics that describes how the
overall results are obtained (i.e., given an input state, what is the final outcome
state). Concurrent languages are usually specified in small-step semantics since
big-step semantics “hides” the intermediate steps that lead to a result. The gist of
small-step operational semantics is to define (i) the state of an abstract machine
(or abstract computer), and (ii) the effects of each possible action on a given state.
A grammar specifies the state of an abstract machine. A (binary) reduction
relation (—) defines (ii), by relating the state of the machine before execution
with the state of the machine after execution of a single indivisible action.

Definition 3.2.1 (Abstract machine). Fig. 3.2 depicts the syntax of the abstract
machine.

An abstract machine has a state S that pairs a phaser map M with a task
map 7. The phaser map M stores the available phasers, mapping addresses to
phasers. A phaser P maps task identifiers to naturals. The task map 7" holds
programs b, labelled by task names . We extend the syntax of programs, by
adding the runtime-only instruction idle, to represent a task that is ready to
be started (a side effect of instruction newTid).

The following function loads a program into the abstract machine. We use

notation & for the definition of functions and constants. The initial state consists
of an empty phaser map and a single task ¢;. The program is loaded into task ¢,
which commences without being registered with any phaser.

Definition 3.2.2 (Load function).

load(b) & (0, {tq: b})
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(M, TW{t: ¢ =newTid();b}) — (M, T W {t: b} w{t': idle}) (R-NEW-T)
(M, T {t: fork(t',V');b} w{t': idle}) — (M, Tw {t: b} w{t': b'})
(R-FORK)

c;b— b

(M, Tw{t: (B,c;b)}) = (M, Tw{t: (B,V)}) (R-rLOW)

Figure 3.3: The small-step semantics of BRENNER (tasks).

Let b be the program in Listing 3.2. An abstract machine running b has an
initial state load(b), defined as follows.

(0, {ts: p = newPhaser(); Loop(h;); dereg(p); end}) (3.1)

Definition 3.2.3 (Domain, empty map, and update.). Given a map, we write
dom M for the domain of map M. We use notation () for the empty map, such that
no element is in its domain. When x is not in the domain of map M, we write
My w{x: y} for map My such that dom My = dom M; U {z}, Ms(z) = y, and
My(z) = My(2) forall z € dom M;.

The reduction relation (—) for BRENNER is defined by a set of inference rules
in Figs. 3.3 to 3.5. The rules are syntax-oriented, which means that there is
only one rule per instruction i, e.g., rule R-NEw-P describes the behaviour of
instruction newPhaser.

An inference rule defines a conclusion C' that follows from some premises
Py, P, ..., P,. The general notation of an inference rule is

PP - P
C

considering that symbol A is the logical conjunction and symbol = is the
logical implication the above notation is equivalent to

PNPoAN---NP, = C

When there are no premises (n = 0), the rule is called an axiom and we omit
the over bar, as in rule R-FORK.

Given a reduction S — 5’, state S is an input parameter and state S’ an
output parameter. A system of inference rules, such as an operational semantics,
matches any input parameters and infers, or produces, any output parameters.
Henceforth, we say task ¢ (phaser p) as short for the task (phaser) labelled by t.
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(M,T W {t: p=newPhaser();b}) — (M W {p: {t: 0} }, T W {t: b})
(R-NEW-P)
T(t) = idle P(t)=n P =Pw{t:n}
(MW {p: P}, T {t: reg(t’,p);b}) = (M W {p: P}, T w{t: b})

(R-REG)

(Mw{p: P {t: n}},TW{t: dereg(p);b}) —» (M W{p: P}, T W {t: b})

(R-DEREG)
(Mw{p: P {t: n}},TW{t: adv(p);b}) (ReaDY)
—(Mu{p: Po{t:n+1}}, Tw{t: b})
M(p)=P Vt' € dom P: P(t') > n
(M, Tw{t: awvait(p,n);b}) — (M, T {t: b}) (R-suc)
Mp)(t) = n (R-AWAIT)

(M, Tw{t: awvait(p);b}) — (M, T W {t: await(p,n);b})
Figure 3.4: The small-step semantics of BRENNER (phasers).

Recall the initial state of program 0, defined in Formula 3.1, and let it be
state Sj.

(0, {ts: p = newPhaser();¢; = newTid();reg(t1, p); fork(ts, b1); ba})
If we can construct a state S5 that is in the reduction relation with S;
Sl — SQ

then we say that state S reduces to state Ss. Yet, not all states reduce. In
particular, since all reduction rules expect a task map with at least one task,
state (0, ) does not reduce.

To check that S; — S5 holds, we match the syntax of S with every reduction
rule. Multiple rules may match the syntax, so it is possible to have more than one
state S5 that is in relation with S;—in fact, that is how we encode concurrency!

The inference rules have implicit universal quantification on every meta-
variable that appears in an input parameter. In the case of rule R-NEw-P there is
an implicit VM, T, t, p, b:

(M,Tw{t: p=newPhaser();b}) — (M W {p: {t: 0}}, T w{t: b})
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skip;b — b (R-sk1p)
loop(b);b" — b - (Loop(b); b') (R-ITER)
loop(b); ) — ¥ (R-ELIDE)

Figure 3.5: Small step semantics for control flow instructions .

Hence, applying rule R-NEwW-p to S; — S5 yields

(0, {ts: p = newPhaser(); Loop(h;); dereg(p); end})
—({p: {ta: 0}}, {ta: Loop(h); dereg(p); end})
with M & 0,7 ¢ ¢+ tg, p &f p, and b & loop(b;); dereg(p); end.
Rule R-NEw-P allocates a new phaser, with a single registered task (the cre-
ator of the phaser).
Let S5 be such that relation S, — S5. The relation holds with rule R-FLow,
but we must show that the control flow instruction loop b; reduces. Reduction

for control flow instructions is defined in Fig. 3.5. Program concatenation is
defined as expected.

Definition 3.2.4 (Sequence concatenation).
(i0) -0 i (b 0)
end- b b
Applying rule R-1TER yields
loop(b;); dereg(p); end — t; = newTid(); reg(t1, p); fork(t1, by); by
where
b, - Loop(b;); dereg(p); end = newTid(); reg(t1,p); fork(ty,by); by

Hence, with rule R-rLow we have that S, — S5.

({p: {ta: 0}}, {t4: Loop(b;); dereg(p);end})
—({p: {ta: 0}}, {ta: t1 = newTid();reg(t1,p); fork(ti,bys);ba})
Let S, be such that relation S5 — S, holds. With rule R-NEW-T we get the
following formula
({p: {ta: 0}}, {ta: t, = newTid(); reg(t1,p); fork(ts, by); by })
—>({p: {ta: O}}, {td: reg(t,p); fork(ty, by); by, t1: idle})
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Rule R-NEW-T extends the task map with an idle task ;. At the syntax level,
newTid only displays a task name, but at the operational semantics level the
instruction creates a special “idle” task to ensure that there are no task-name
clashes. An idle task becomes a running one with a fork.

Let S5 be such that relation S; — S5 holds. With rule R-reG we get the
following formula

({p: {ta: 0} }, {ta: reg(t1,p); fork(t1,by); by, t1: idle})
—>({p: {tqg: 0,;: O}}, {td: fork(ty, by);ba, ty: idle})

Rule R-REG extends the phaser addressed by p with the new participant ¢;. The
local phase of the registered task is inherited from the registrant, so in this case
both are at the local phase 0. The configuration of the phaser map indicates that
the task invoking R-REG is registered with the phaser.

Let S5 be such that relation Sy — S5 holds. With rule R-Fork we get the
following formula

({p: {tq: 0,ty: O}}, {td: fork(ty, by); ba, ti: idle})
—>({p: {tq: 0,ty: O}}, {td: bg,t1: bf})

Rule R-FORK simply replaces the body of idle task ¢; with the parameter of fork,
program b;. The parameter of idle identifies the creator of the task name. The
syntactic restriction in the rule ensures that only task ¢, can fork a task named ¢;.

Recall that

by & loop(b;); dereg(p); end

and

by & adv(p); await(p); adv(p); await(p); end

There are two possible reductions for state S5, one uses rule R-rFLow, an-
other uses rule R-ADVANCE. Such nondeterminism represents the concurrency
present in parallel execution. We continue reducing with task ¢, to conclude the
discussion of task membership. We place the rule next to the reduction operator
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to help the reader.

({p: {ta: 0,t1: 0}},
{ts: 1oop(b;); dereg(p); end, t;: by })
R-rrow — ({p: {ta: 0,¢1: 0}},
{ta: t = newTid(); reg(ts, p); fork(ta, by); ba, t1: by })
R-NEw-T — ({p: {t4: 0,¢1: 0}},
{td: reg(te, p); fork(te, br);ba, t1: by, to: idle})
R-REG — ({p: {tq: 0,t1: 0,1s: O}},
{ta: fork(ts,by); by, t1: by, to: idle})
R-FORK — ({p: {tq: 0,t1: 0,1s: O}},
{ta: Loop(b;); dereg(p); end, t1: by, ts: bs})
R-FLOW — ({p: {tq: 0,t1: 0,1s: O}},
{td: dereg(p);end,t;: by, to: bf})

Let S¢ — S7 hold With rule R-DEREG.

({p: {tg: 0,t1: 0,t5: 0}}, {td: dereg(p);end,t;: by, ts: bf})
— ({p: {t1: 0,t: O}}, {td: end, ty: by, ty: bf})

Rule R-DEREG removes the issuer task ¢, from the phaser addressed by p. The
syntactic configuration of the phaser after reduction indicates that ¢, revoked
its membership with phaser p.

We proceed by reducing state S7. Let by o adv(p); await(p); end. At this
point we can reduce term with either task ¢, or task ¢,. We choose to reduce
with task ¢;. With rule R-aDvANCE and then with R-awaIT we get the following
formula.

({p: {t1: 0,ts: 0}}, {td: end, t1: adv(p); await(p); be, to: bf})
— ({p: {t1: 1,t: O}},

{td: end, t;: await(p); by, to: adv(p); await(p); bg})
— ({p: {t1: 1,t: O}},

{td: end, t;: await(p, 1); b, t2: adv(p); await(p); bg})

Rule R-ADVANCE increments the local phase of the registered task ¢;, enforced
by the syntactic structure of the phaser. Rule R-awAIT rewrites the await by
making the wait explicit at the local phase of task ¢;.
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The only rule that can be applied to the state above is R-apvaNCE, which
executes task t,. Task ¢; must wait for task ¢, to advance its phase to 1. With
rule R-ADVANCE we get the next formula.

({p: {t:: 1,t2: 0}},

{td: end, t;: await(p, 1);be, to: adv(p);await(p);bg})
— ({p: {t1: 1,ts: 1}}, {td: end, t1: await(p, 1);be, to: await(p);bg})

Synchronisation happens with rule R-sync.

({p: {t1: 1,t5: 1}}, {td: end, t;: await(p, 1); bo, ta: await(p);bg})
— ({p: {t1: 1,t5: 1}}, {td: end,tq: by, to: await(p);bg})

Rule R-syNc consumes the await when its premise is enabled, by checking that
every registered task is at least at phase 1.

Coq mechanisation The definitions and examples of this chapter are all
formalised in Coq?. The interested reader can exercise our definitions and alter
the examples in this section.

Shttps://bitbucket.org/cogumbreiro/brenner-coq/
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Chapter Four

Runtime deadlock verification

The purpose of a runtime deadlock verification tool is to continuously check
whether the concurrency constraints of the running tasks are unsatisfiable, in
which case there is a deadlock. Runtime verification tools obtain concurrency
constraints from concurrency dependencies among tasks and blocking oper-
ations, e.g., task A waits in a phaser p for tasks B and C, or task A impedes
tasks B and C' from synchronising with phaser ¢q. Graph-based techniques
check the unsatisfiability of concurrency constraints by analysing a graph of
concurrency dependencies. We propose and implement a graph-based technique
that performs cycle detection to check for deadlocks.

The following section proposes an intermediate general abstraction called
a resource-dependency state to capture the relationship between tasks and
resources, and defines a translation from a BRENNER state .S to a resource-de-
pendency state. Section 4.2 discusses some necessary graph-theoretical notions.
Section 4.3 describes two graph models that can be extracted from a resource-
dependency state. Section 4.4 that puts forward two important results: (i) cycle
detection is equivalent in the two graph models, and (ii) the deadlock verification
is sound and complete, against a BRENNER program. Section 4.5 presents Armus,
a deadlock verification tool capable of fault-tolerant and distributed detection,
and also of deadlock avoidance. Armus to performs a novel graph model se-
lection to dramatically improve the performance of deadlock verification. The
chapter closes with an evaluation of the performance of Armus in local and
distributed settings.

4.1 Resource dependencies

State-of-the-art runtime verification tools gather concurrency dependencies
between tasks and barriers by monitoring the status of blocked tasks and by
bookkeeping the participants of each barrier. Tracking the latter poses a problem
to distributed verification, as the information about the participants of a barrier
can be distributed among various computation nodes [6, 50]. Instead, we propose

27
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gathering dependencies among timestamps, in the sense of Lamport’s logical
clocks [67], as it improves the performance of our verification algorithm.

A logical clock orders events by associating a different timestamp (a mono-
tonic integer) per event. We consider a phaser to be a logical clock, and a phase
to be a timestamp. When tasks synchronise on a phase number n of a phaser p
each participant observes a synchronisation event that occurred at timestamp n
of the logical clock associated with phaser p. Under this view, blocked tasks
wait for a specific event to be observed. But since a waiting task cannot arrive
at other registered phasers, then waiting tasks also impede the observation of
events. Thus, any event a task awaits precedes all events that this task impedes.
A deadlock corresponds to any circular dependencies found in such ordering of
events.

Resource-dependency states A resource-dependency state D describes the
relationship between tasks ¢t € T and resources' r € R. Let p be the power set
function. Let W: T — p(R) be a function from tasks into sets of resources.
The set W (t) contains the resources that task ¢ is blocked on. In the case of
BRENNER, tasks can be blocked at most on one phaser at a time.

Tasks can impede the synchronisation of another task. Let /: R +— o(7) be
a function from barriers into sets of tasks. The set I(r) contains the tasks that
impede the synchronisation of any task using resource r, e.g., the set of tasks
that remain to arrive at a barrier.

Definition 4.1.1 (Resource-dependency). A resource-dependency D consists of
a pair (I,W).

For example, consider the deadlocked state (M 1, Tl) defined below, where
tasks 1, t2, and t3 wait on a phaser p at phase 2 for task ¢4, which waits on a
phaser q at phase 3 for tasks ¢y, t5, and 3.

M, = {p: {t1:2,t4: 1}, q: {t1: 1,t2: 2,15: 1}}7
Ty = {t,: await(p,2); b1, ty: await(p,2); bo,
t3: await(p,2);bs,ts: await(q,3); by, }

To construct a resource-dependency (I, ;) from (M 1, 1} 1) we look into any
task awaiting on a phaser to identify a resource. Let resource r; represent
awaiting on phaser p at phase 2 and resource 7, represent awaiting on phaser ¢
at phase 3. Hence, Wy = {t1: {ri},to: {ri},ts: {ri},ts: {r2}}. To construct
the structure of impeding tasks we inspect the phaser map. Resource r; (phaser p

"We use term “resource” to be consistent with the accompanying literature [58, 62]. A better
suiting term in our context would be “event”
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at phase 2) is an impediment (for synchronisation) because of task ¢, and not
because of ¢; (whose phase is at least 2). Similarly, resource 75 (phase ¢ at
phase 3) is an impediment because of tasks 1, t2, and 3, since all are registered
with a phase below 3. Thus,

Il = {7’12 {t4},7“23 {tl,tg,tg,}}

We put forward this notion in the following definition. Let y be a bijection
that maps pairs of phaser names and naturals (the phase) to resources.

Definition 4.1.2 (Resource-dependency construction). Let 1) be a function from
states into resource-dependencies.

o (M, T) € (1, W)
= {r-{t| M(p)(t) <n} | T(t') = await(p,n);_ andy(p,n) = r}
W {t:{r} | T(t) = await(p,n); _ andv(p,n) = r}

By Definition 4.1.2 we have that ¢ (Ml, Tl) = (I, Wy).

4.2 Basic graph theory

Following are some graph theory concepts based on [15].

Definition 4.2.1 (Graph, vertex, and edge.). A (directed) graph G = (V, E)
consists of a nonempty finite set of vertices V' (wherer € V'), and of a finite set of
edges E (wheree € F). An edge e = (r,r’) directs from the head r to the tail '

For instance, the following graph has two vertices, r; and r5, and two edges,
edge (r1,72) from ry to ro and edge (73, 71) from 75 to ry.

Gr= ({r1,r2}, {(r1,m2), (r2,71)})

For the graphical notation we can construct the depiction in two steps. The
first step is to depict vertexes, by drawing a circle around each vertex. In the
case of GG1, we get the following illustration.

O O

The second step is to depict edges, by drawing an arrow directed from the
circle representing the head to the circle representing the tail. For instance, an
edge (11, 72) yields the next depiction.
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The graphical representation of (G; follows.

Definition 4.2.2 (Subgraph relation). Graph (V, E) is a subgraph of graph
(VIUEYif@V C V', (i) E C E', and (ii))V(r,7") e E = re VAr eV.

For example, graph (G} is a subgraph of
({Tb T2, Tg}, {(Tla 7“2), (T27 761)7 (T17 Td)})

Definition 4.2.3 (Walk, cycle, and length.). A walk w on graph (V, E) is an
alternating sequence 1175 - - - 1,17y, Of vertices r; € V such thatn > 1 and
(riyriz1) € E foreveryi =1,2,... ,n — 1. We may specify the first and last ver-
tices of a walk by saying a r-r' walk, for the walkr ---1'. Acycle isa walkr-- -1’
where v = 1. We may specify the first and last vertex of a cycle by saying a
r-cycle, for the cycler - - - r. The length of a walk corresponds to the number of its
edges. We say that r € w if, and only if, w = 1, - - - ,, and there exists a r; such
thatr = r; and 1 < i < n. We say that (r,r’) € w if, and only if, w = ry -+ -1,
and there exists ar; and r; 1 such thatr =r;, v’ =r;;1,and 1 < i < n.

An example of a walk on G is wy = ry7rori7ror;. Walk wy is a cycle with
length 4. We have that vertex 1 € w; and edge (r1,72) € w;. Note that, by
definition, any cycle has a positive length.

Definition 4.2.4 (In-degree and out-degree). The in-degree n of a vertexr counts
the number of edges whose tail is r. The out-degree n of a vertex r counts the
number of edges whose head is r.

Definition 4.2.5 (Reachable). We say that vertexr’ is reachable fromr, or vertexr
reaches 1/, if there exists a r-r’ walk on graph G.

4.3 Graph-based deadlock identification

Graph-based approaches perform cycle detection on the concurrency dependen-
cies between tasks and synchronisation events. The Wait-For Graph [63] (WFG)
only models dependencies between tasks. The State Graph [58] (SG) only models
dependencies between synchronisation events. Since the performance of cycle
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detection depends on the size of the graph, the ratio between the number of
synchronisation events and the number of tasks impacts the graph model choice.
We discuss three scenarios of applications that use barrier synchronisation.

Parallel applications designed following the Single Program Multiple Data
(SPMD) programming model share two characteristics: there is a fixed number of
tasks and a fixed number of cyclic barriers throughout the whole computation;
and the number of tasks is a parameter of the program, yet the number of
cyclic barriers is not. All of the benchmarks found in Section 4.6 share these
characteristics. Scaling a parallel program usually involves adding more tasks,
whilst maintaining the same number of cyclic barriers; hence SG becomes
beneficial at a larger scale.

The appropriate graph model for fork/join applications is harder to predict.
For instance, in nested fork/join programming models, such as in X10, where
join barriers (finishes) are lexically scoped, each task is registered with all
join barriers that are enclosing its spawn location, e.g., an X10 task spawned
within the scope of three finishes is registered with three join barriers. The case
complicates when join barriers are created dynamically in a recursive function
call. For instance, languages with futures turn each function call into a join
barrier, so it can happen that there are as many join barriers (resources) as there
are tasks. In general, it is not possible to statically predict the ratio between
resources and tasks in fork/join (and future) applications.

Java and X10 include multiple barrier abstractions to let applications choose
from different programming models. Recent proposals of abstractions that use
barrier synchronisation, in the context of X10 programming, make the case
difficult for a fixed graph representation (be it the WFG or the SG). Atkins et al.
design and implement clocked variables [13] that mediate the access of shared
memory cells with barrier synchronisation in the context of X10. We benchmark
three parallel algorithms that use clocked variables in Section 4.6 and the average
edge count of each is different: in SE the edge count is similar between WFG
and the SG; in FI the SG is on average twice as smaller; and in FT the average
edge count of the WFG is ten times as smaller. Additionally, in the context of HJ,
Shirako et al. propose using phasers for point-to-point synchronisation [94], so
we expect the WFG to be more beneficial, and for the implementation of parallel
reduction operations [95] that should favour the SG model.

The WFG and the SG We now rigorously define the WFG and the SG. The
WEG is task-centric, so an edge (¢, t) represents that task ¢; waits for task ¢,
to synchronise, meaning that there exists a resource r such that r € W(t¢;)
and to € I(r). Fig. 4.1a illustrates the WFG for state (I;,W;). The SG is
resource-centric, so an edge (71, 73) represents that resource r; impedes any
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LD

(a) A WEG representation. (b) An SG representation.

Figure 4.1: Two different graphs representing a deadlocked system.

task from synchronising via resource 75, meaning that there exists a task ¢ such
that ry € W (t) and ¢t € I(ry). Fig. 4.1b depicts the SG for state (11, 7).

Next, we formalise the notions of constructing a WFG and an SG from a
resource-dependency.

Definition 4.3.1 (WFG construction). Let wfg be a function from resource-de-
pendencies into WFG’s:

def

wig (I, W) = (T, {(t1,t2) | r € W(t1) Ata € I(r)})

Formula wfg (I;, W) yields the graph in Fig. 4.1a:

(Tv {(tlv t4)7 (tQ’ t4)7 (t37 t4)7 (t47 t1>, (t47 t2)7 (t47 t3)}>

Definition 4.3.2 (SG construction). Let sg be a function from resource-dependen-
cies into SG’s:

def

sg (I, W) = (R, {(r1,m) |t € I(r)) Ary € W(t)})

We apply Definition 4.3.2 and get the graph in Fig. 4.1b:

sg (]1, Wl) = (R, {(Tla T2)> (TQ, 7’1)})

4.4 Results

Cycle detection in a graph has a complexity of O(e 4 v) [101], for a graph with e
edges and v vertices. From [15], we know that for any graph ¢ < v?, thus we can
simplify the complexity to O(v + v?). And because in the WFG the vertices are
tasks, then a deadlock detection algorithm that uses the WFG has a complexity
of O(T + T?) for a system with T tasks.

Finding a cycle on the WFG is equivalent to finding a cycle in the SG.
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Definition 4.4.1 (General Resource Graph (GRG) construction). Let grg be a
function from resource-dependencies into GRG’s:

grg (LW) E (RUT, {(t,7) | r e WU {(r,t) | t € I(r)})

Lemma 4.4.1. We have that t1l5 is a walk on wig (D) if; and only if, there exists
a resource r such that tyrty is a walk on grg (D).

Proof. Letgrg (D) = (V, E) and wfg (D) = (V', E’). ( =) Since t; 5 is a walk
on wfg (D), then t;t, € E’. By Definition 4.3.1 there exists a vertex r such that
r € W(t1) and ty € I(r). Thus, by Definition 4.4.1 (t1,7) € E and (r,t,) € E,
and therefore t17t5 is a walk on grg (D).

( <= ) Since t1rts is a walk on grg (D), then (¢1,7) € F and (r,t3) € E.
From Definition 4.4.1 r € W(t,) and to € I(r). Thus, from Definition 4.3.1
tity € E' and therefore ¢;t, is a walk on wfg (D). O

Lemma 4.4.2. We have that ryry is a walk on sg (D) if, and only if, there exists
a task t such that ritry is a walk on grg (D).

Proof. The proof follows an analogous reasoning to that of Lemma 4.4.1. [

Lemma4.4.3. Ifw = t; - - - t,, is a walk with a positive length on wfg (D) and 1 <
k < n, then there exists a walk w' = ry---ry on sg (D) such that for all i
where 1 < i < k we have t;r;l; 1 is a walk on grg (D).

Proof. We prove by induction on k.

« Base case k = 2. Thus, w = t1tst5 - - - t,, and n > 3. By hypothesis, ¢15 is
a walk on wfg (D), so Lemma 4.4.1 yields that there exists a resource 7,
such that ¢,7t5 is a walk on grg (D). Similarly, from the hypothesis and
using Lemma 4.4.1 t5t3 is a walk on wfg (D), we get that there exists
a resource ry such that torot3 is a walk on grg (D). Finally, we have
that 7ty is a walk on grg (D), hence by Lemma 4.4.2, 175 is a walk

onsg (D).

+ Inductive case k = j + 1. Hence, w = t; -+ -t;tj41 - tp,and n > j > 2.
By the induction hypothesis we have that there exists a walk 7 - - - ; on
sg (D) such that (i) for all ¢ where 1 < i < j we have t;r;t;. is a walk on
grg (D). From (i) we have that (ii) ¢,;r;t;1; is a walk on grg (D).

By hypothesis, we also have that ¢, ;.5 is a walk on wfg (D), thus from
Lemma 4.4.1, there exists a resource r;; such that (iii) ¢;1741%j42 is a
walk on grg (D).
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From (ii) ¢;r;t;41 and (iii) ¢;+17j41tj12 walks on grg (D), we get that
r;tirit1 is a walk on grg (D). Applying Lemma 4.4.2 to the latter, yields
that 7,741 is a walk on sg (D). Thus, 71 - - - ;741 is a walk on sg (D)
and we are left with proving for all 2 where 1 < 7 < 7 + 1 we have
tiritir1 is a walk on grg (D). But, we already know that (i) for all ¢
where 1 < i < j we have ¢;r;t;,1 is a walk on grg (D), so we just need
to prove that ¢;17,+1t;12 is a walk on grg (D), which we have already
shown with (iii).

[]

Theorem 4.4.1. There exists a cycle w on graph wig (D) if, and only if, there
exists a cycle w' on graph sg (D).

Proof. ( =) The proof follows by induction on the length of w.

« Case length is 1, where w = ¢t for some task ¢. By hypothesis ¢¢ is a walk
on wfg (D). From Lemma 4.4.1 there exists a resource 7 such that ¢rt is a
walk on grg (D). Since trt is a walk on grg (D), then we know that (¢, )
and (r, t) are edges on grg (D), and therefore rtr is also a walk on grg (D).
Thus, from Lemma 4.4.2 and rtr is a walk, we get that rr is a walk on sg (D)
and a cycle.

« Case length is greater than 1, where w = ¢;---t,t,11t; and n > 2.
Applying Lemma 4.4.3 to ¢y - - - t,,t,, 1, we get that ry - - - 7, is a walk on
sg (D) such that (i) for all i where 1 < i < n we have t;r;t;,; is a walk
on grg (D). Since t; - - - t,t,11 is a walk on wfg (D), thus from (i) we get
that (ii) t171t5 and (iii) ¢,,r,, ¢, 11 are walks on grg (D). From tq - - - t,t,, 11t
is a walk on wfg (D), we get that t,,1t; is a walk on wfg (D) and from
Lemma 4.4.1, there exists a resource r such that (iv) ¢, 17t; is a walk
on grg (D). From (iii) ¢,,7,t,+1 and (iv) t,,117t1, we get that r,,t,,,17; thus
from Lemma 4.4.2 we get that (v) r,,» is a walk on sg (D).

From (iv) t,,y17t and (ii) t171t2, we get that rt;r; is a walk on grg (D).
Applying Lemma 4.4.2 to the latter, yields that (vi) 77 is a walk on sg (D).

Finally, since (vi) rrq, (v) 7,7, and 7y - - - 7, are walks on sg (D), we get
that rry - - - r,r is a walk on sg (D) and a cycle.

The proof for ( <= ) follows an analogous reasoning. []

The two crucial properties of our deadlock detection algorithm are: sound-
ness (Theorem 4.4.2), where finding a cycle in the SG corresponds to a deadlocked
state; and completeness (Theorem 4.4.3), where the SG of any deadlocked state
contains a cycle.
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We distinguish between a totally deadlocked state (Definition 4.4.2) and a
deadlocked state (Definition 4.4.3), formalised in the following two definitions.

Definition 4.4.2 (Totally deadlocked state). A state (M , T) is totally deadlocked
if, and only if, T # (), and for allt € dom T we have that T'(t) = await(p,n);b
and there is a task t' € dom T where M (p)(t') < n.

Any totally deadlocked state is also a deadlocked state.

Definition 4.4.3 (Deadlocked state). State (M T'YT ) is deadlocked on task
map T if, and only if, state (M, T) is totally deadlocked.

The relationship between a blocked task in a state and an edge in a WFG
graph is fundamental for the results we establish in this section.

Lemma 4.4.4. Lety) (M,T) = (I,W), wig (D) = (V, E),v'(r) = (p,n). We
have that (t1,t3) € E if, and only if, T'(t1) = await(p,n); b and M (p)(t2) < n.

Proof. ( = ) We have that (t;,%;) € E, thus by Definition 4.3.1 there is a
resource 7 such that » € W(t,) and t, € I(r). From Definition 4.1.2 and
r € W(ty), we get that T'(t;) = await(p,n);b and v(p,n) = r. From Defini-
tion 4.1.2 and ¢, € I(r), we obtain that M (p)(t2) < n.

( <= ) We have that T'(t,) = await(p,n);b and M(p)(t2) < n. From
Definition 4.1.2 and T'(t;) = await(p, n); b, we get that is a resource r such that
v(p,n) = rand r € W (t;). From Definition 4.1.2 and M (p)(t2) < n, we get
that t; € I(r). We apply Definition 4.3.1to ¢t; € I(r) and r € W (t,) and get
that (tl,tg) e k. O

Theorem 4.4.2 (Soundness). If w is closed on wig (v (M, T)) with a positive
length, then there exists task map T" and T" such thatT = T' W T", domT" =
{t |Vt € w}, state (M, T) is locally deadlocked on T".

Proof. Let wfg (¢ (M,T)) = (V, E) and

X Lty by |Vt ta) € w} (4.1)

First, we show that dom X C dom7. Let t; € dom X, we need to show
that t; € domT. If X(¢;) = to, then by Eq. (4.1) (f1,%2) € w and therefore
(t1,t2) € E. Thus, by Lemma 4.4.4 T'(t;) = await(p,n);b.

Now that we showed that dom X C dom T, then let 7" = T} W T5 such that
dom 7} = dom X. We have that T} # (), since the length of w is | dom X| > 0.
Second, we prove that (M , T 1) is globally deadlocked. By Definition 4.4.2 for
any task t; € dom T}, we need to show that (1) 7 (t) = await(p,n); b and that
(2) there exists a task ¢o such that M (p)(t2) < n.
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1. Let ¢t; € domT, then ¢; € dom X and therefore there is a task ¢5 such
that (¢1,t;) € w and therefore (t;,t2) € FE. Applying Lemma 4.4.4
to (t1,t2) € E, yields that T'(¢;) = await(p,n);b and M(p)(ts) < n.
Since t; € dom T}, then T1(t) = await(p,n);b.

2. We are left with showing that ¢, € dom 77 (since we already know that
M (p)(t2) < n). By hypothesis w is a cycle, thus there exists a task 3
such that (t5, t3) € w. We apply Eq. (4.1) to (t5,t3) € w and get that t5 €
dom X. Therefore, t5 € dom7}.

Finally, applying Definition 4.4.3 to (M , T 1) is globally deadlocked, yields
that (M T W T 2) is locally deadlocked on 77. O

Completeness

The intuition behind the proof of completeness can be divided into two parts.
First, by showing that any globally deadlocked state has a cycle. Second, by
establishing the subgraph relation between a globally deadlocked state and a
locally deadlocked state.

It is easy to see that any globally deadlocked task ¢ has a positive out-degree.

Lemma 4.4.5. Let (V, E) = wig (¢ (5)). If S is globally deadlocked andt € V,
then t has a positive out-degree.

Proof. Let S = (M , T). By Definition 4.4.2 there exists a task ¢ such that 7'(t) =
await(p,n); b and there is a task t' € dom T where M (p)(t') < n.
From Lemma 4.4.4, we get that (¢,¢') € E and ¢ has a positive out-degree. [J

A graph in which all vertexes have a positive out-degree is cyclic.

Lemma 4.4.6. Let G = wifg (¢ (S)). If S is globally deadlocked, then there exists
a cyclew on G.

Proof. Let G = (V, F). Applying Lemma 4.4.5 to the hypothesis yields that
every vertex has a positive out-degree. Hence, by the contrapositive of [15,
Proposition 1.4.2], (V, E) has a cycle w. O

Next, is an auxiliary lemma to establish the subgraph relationship between
WEG’s.

Lemma 4.4.7. For allt ¢ dom T, we have that wig (1 (M, T)) is a subgraph of
graphwig (¢ (M, T @ {t: b})).
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Proof. Let wig (¢ (M, T)) = (V, E) and wig (¢ (M, T w {¢t: b})) = (V',
Graph (V, F) is a subgraph of (V' E')if 1) V C V', 2) E C E', 3) V(¢t,t
E = tecVAteV.

E).
) €
1. We have that V' C V' holds, since V =V’ = T.

2. If (t1,t2) € E, then (t1,t3) € E'. By Lemma 4.4.4 and (t1,12) € E, we
have that T'(ty) = await(p,n);b' and M (p)(t;) < n. We have that ¢ ¢
domT, thus T'W {t: b}(t2) = await(b/,n);b. From T'W {t: b}(t2) =
await(p,n); b, M(p)(t1) < n, wig (¢ (M, Tw{t: b})) = (V', E'), and
Lemma 4.4.4, we get that (¢1,1,) € E'.

3. We show that V(¢,t') € E = t € V At' € V. By definitiont € T
andt' € T.

O
Lemma 4.4.8. Graph wfg (¢ (M, T)) is a subgraph of wig (v (M, T & T")).
Proof. The proof follows by induction on the structure of 7". Let
wig (¢ (M,T))=(V,E) and wig(y (M, TWT"))= (V' E)
We inspect T".

« Case T"is (). To show that (V, E) is subgraph of itself, we just need to show
thatV(t,t') € E = t € V At' € V, which holds by Definition 4.3.1,
since V=V'="T.

« CaseT"is T"w{t: b}. By the induction hypothesis, graph wfg (¢ (M, T'))
is a subgraph of wfg (¢ (M, T wT")). By Lemma 4.4.7 this case holds.

]
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Finally, we can establish the completeness theorem.

Theorem 4.4.3 (Completeness). If state S is locally deadlocked on T andt €
dom T, then there exists a t'-cycle on wig (¢ (S)) such that t' is reachable from t.

Proof. By Definition 4.4.3 we have that S = (M, TWw T') and that (M, T) is
globally deadlocked. Let (V1, Ey) = wig (¢ (5)). Let (V4, Ey) be the subgraph
of (V1, E1) of all vertices reachable from ¢. It is easy to see that V5 is nonempty.
From Definition 4.4.2 there is a task ¢” € domT such that M (p)(t") < n.
Applying Lemma 4.4.4 to T'(t) = await(p,n);b and M (p)(t") < n, we get
that (t”,t),sot” € Vy and (t",t) € Es.

We have that every Vo, C domT. Let 7o = {T'(t) | t € domV,}. We
now show that 75 is globally deadlocked. For that it is enough to pick ¢; € V5
and show that (i) 75(¢;) = await(p,n); b and there exists a task ¢, such that
(i) t> € dom T and (iii) M (p)(t2) < n. Since t; € domT and (M, T) is globally
deadlocked, then by Definition 4.4.2 T'(t;) = await(p, n); b and there exists a
task ¢ such that t5 € dom 7T and (iii) M (p)(t2) < n. Given that T'(¢;) = Ta(t1),
then (ii) 75(t1) = await(p,n); b. We still need to show (i). Applying Lemma 4.4.4
to 7'(t1) = await(p,n);b, t2 € domT, and (iii) yields (t1,t2) € E;. Thus, t;
reaches t,; and therefore, to € V5 and (t1,t3) € Es. Hence,(i) to € dom Ts.

From Lemma 4.4.6 and globally deadlocked state (M e 2), we get that there
exists a t'-cycle on graph wfg (¢ (M, T»)). By definition, we also know that any
t' is reachable from ¢. We apply Lemma 4.4.8 and obtain that wfg (v (M, T3)) is
a subgraph of wfg (¢ (M, T’ & T)), hence w on wig (¢ (M, T" W T)). O

4.5 Armus: a tool for runtime deadlock
verification

Armus is a dynamic verification tool of barrier deadlocks that implements the
theory in Section 4.3. Our tool verifies more barrier synchronisation patterns
than current state-of-the-art and improves the scalability of graph-based verifica-
tion. We introduce Armus-X10 and JArmus as two applications of Armus. These
are the first barrier deadlock verification tools for X10 and Java. The applications
feature distributed deadlock detection, and local deadlock avoidance.

The main limitations of state-of-the-art runtime verification of barrier dead-
locks are: (i) a representation of concurrency constraints that assumes static
barrier membership, and (ii) a commitment to the WFG model, which is opti-
mised for concurrency constraints with more barriers than tasks (a rare situation
for classical parallel programs). Naive extensions to resolve (i) face the problem
of maintaining the membership status of barriers consistently and efficiently;
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this issue is compounded in the distributed setting, which is a key design point
of deadlock verification for languages like X10/H]J. Issue (ii) is related to the
dynamic nature of such barrier applications, where the number of tasks and
barrier synchronisations may not be known until run-time and may vary dur-
ing execution. Committing to a particular graph model can thus hinder the
scalability of dynamic verification. In the general case we cannot determine
which model is most suitable statically; moreover, this property may change as
execution proceeds.

To address (i), Armus uses our novel representation of concurrency depen-
dencies, based on events in the sense of Lamport’s logical clocks (see Section 4.1).
The analysis of dynamic membership is simplified because it avoids tracking the
arrival status, that in a distributed system is a global state (i.e., scattered among
many sites), thus a challenging procedure to maintain.

Armus addresses (ii) with a new technique that automatically selects between
two graph models according to the monitored concurrency constraints. The
standard graph model used in graph analysis, the WFG, comes from distributed
databases [62], a setting with a fixed number of tasks and dynamic resource
creation. The underlying assumptions of the WFG no longer hold for languages
with dynamic tasks and dynamic barrier creation (first-class barriers), such as
X10 and Java. For these applications, Armus proposes a technique that selects
either the WFG or the SG depending on the ratio between tasks and barriers. The
difference on the size of the graph can be dramatic. For instance, in benchmark
PS, the average edge count decreases from 781 edges to 6 edges (see Section 4.6).
In our evaluation, the automatic model selection outperforms the usual approach
of a fixed graph representation.

Architectural overview The architecture of Armus is divided into two lay-
ers: the application layer that receives a trace of operations from the running
program, and the verification layer that receives a set of concurrency constraints
from the application layer. The application layer is specific to each language
we check. The verification layer is our library that checks for deadlocks in a
resource-dependency state D.

The verification algorithm can be used to avoid and to detect deadlocks. In the
former, Armus throws an exception before deadlocks happen. The programmer
can treat the exceptional situation to develop applications resilient to deadlocks.
In the latter, verification is performed periodically and can only report already
existing deadlocks, with the benefit of a lower performance overhead.

Verification library Armus’ deadlock verification library implements the
theory described in Section 4.3. The main features of the library are (i) a deadlock
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detection algorithm that is fault-tolerant and distributed; and (ii) a scalable
deadlock verification technique (i.e., the adaptive graph representation).

The input of the verification library is a trace of the running program. Essen-
tially, whenever a task of the program blocks, the application layer invokes the
verification library by producing its blocked status: a set of waiting W (¢) and
set of impeding resources {r | Vr: ¢t € I(r)}. The library is divided into two
services: the edge buffer maintains the blocked status of all tasks, implementing
the resource-dependency state D; the deadlock checker analyses the edge buffer
for any deadlock, using Definition 4.3.1 and Definition 4.3.2. Maintaining the
blocked status is more frequent than checking for deadlocks, so the edge buffer
rearranges D per task to optimise updates. The deadlock checker internally
transforms the dependencies into a graph and then performs cycle detection
with JGraphT 2.

The verification library provides two graph selection modes: fixed or au-
tomatic. In the former, the verification always uses the same graph model.
State-of-the-art tools are fixed to the WFG model. In the automatic mode, the
verification library selects the graph model according to the ratio between
blocked tasks and registered phasers. This means that the graph model used for
cycle detection can change over time.

We briefly describe the implementation of each mode. In the fixed to WFG
mode (see Definition 4.3.1), the algorithm iterates over a copy of the blocked
tasks twice. First, uses the impeding resource of each blocked task to construct
map /. Second, generates a WFG-edge from each waiting resource r to each
task in /(7). In the fixed to SG mode (see Definition 4.3.2), it iterates over each
blocked task (available in the edge buffer) and generates an SG-edge from each
impeding resource to each blocked resource. The adaptive mode tries to build
an SG first; if during the construction of the SG it reaches a size threshold, then
it builds a WFG instead. The size threshold is reached if at any time there are
more SG-edges than twice the number of tasks processed thus far. The value of
the threshold was obtained based on experiments on the available benchmarks.

Distributed deadlock detection Armus adapts the traditional one-phase
deadlock detection [65] to barrier synchronisation and introduces support for
fault tolerance. We briefly describe our adapted one-phase deadlock detection
algorithm. A distributed program is composed of various sites that communicate
among each other, each runs a copy of Armus. Every Armus instance of a
distributed program has access to a remote data store server Redis,’ called the
global edge buffer. Tasks update their blocked status, as usual, but target an

*http://jgrapht.org/
Shttp://redis.io/
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edge buffer local to their site. While the distributed program runs, each site

periodically publishes a snapshot of its local edge buffer to the global edge buffer.

The deadlock checker, that runs from each Armus instance, requires a global

view of the system, so it operates on the blocked status of the global edge buffer.
The differences with reference to the original algorithm in [65] are:

« Armus uses logical clocks to represent barrier synchronisations (see Sec-
tion 4.1) and maintain global data consistency; the original algorithm
requires vector clocks to represent lock synchronisations.

« For fault-tolerance concerns, the global status of Armus is maintained in a
dedicated server, and all sites check for deadlocks. In contrast, in [65] there
is a designated control site that collects the global status and performs
graph analysis. Our benchmarks, in Section 4.6, show that the verification
overhead has a negligible impact for 64 tasks.

The verification algorithm is fault-tolerant, since it continues executing
despite (i) site-failures and (ii) data store-failures. Such feature is of special
interest for checking fault-tolerant applications, like Resilient X10 [35]. The
algorithm resists (i) because the deadlock checker executes at each site and
does not depend on the cooperation of other sites to function. The algorithm
resists (ii) because Redis itself is fault-tolerant.

Verifying X10 and Java We present two verification applications to check for
barrier deadlocks: JArmus for Java programs and Armus-X10 for X10 programs.
These tools work by “weaving” the verification into programs. The input is a
compiled program to be verified (Java bytecode); the output is a verified program
(Java bytecode) that includes dynamic checks for deadlock verification. JArmus
and Armus-X10 layers implement the resource-dependency construction from
Section 4.1.

JArmus and Armus-X10 share the same usage and design. The implemen-
tation of each of these verification tools is divided into two components: the
resource mapper and the task observer. The resource mapper converts syn-
chronisation events to resources. The task observer intercepts blocking calls
to inform Armus that the current task is blocked with a set of resource edges.
The task observer is programmed with Aspect-Oriented programming, through
Aspect] [61].

Armus-X10 can verify any program written in X10 that uses: clocks, finishes,
and the SPMDBarrier; the tool can verify distributed applications. Unlike in Java,
automatic instrumentation is possible. The X10 runtime provides information
about the registered clocks and registered finishes of a given task, which is
required to construct the concurrency dependencies of each task. X10 can be
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compiled to Java bytecode, called Managed X10, and to machine code, called
Native X10. Currently, our application only supports Managed X10.

JArmus supports CountDownLatch, CyclicBarrier, Phaser, and Reen-
trantLock class operations. In Java, the relationship between the participants
of barrier synchronisation and tasks is implicit. For example, when using a
CyclicBarrier the programmer declares the number of participants and then
shares the object with those many tasks. It is not specified which tasks par-
ticipate in the synchronisation. JArmus has no way of reconstructing this
information for the CountDownLatch, CyclicBarrier, and Phaser classes, so
the programmer must annotate its code to supply the barriers the each task
is registered with. Each task, upon starting up, must invoke JArmus.regis-
ter (b) per barrier b it uses (similarly to the X10 clocked). Instances of the
class ReentrantLock do not require annotations.

4.6 Evaluation

The aim of the evaluation process is to 1) ascertain whether the performance
impact of Armus scales with the increase in the number of tasks, 2) evaluate
the performance overhead of distributed deadlock detection, and 3) compare
execution impact the SG with the WFG and with adaptive approach.

The hardware used to run the benchmarks has four AMD Opteron 6376
processors, each with 16 cores, making a total of 64 cores. There are 64GB of
available RAM. The operating system used is Ubuntu 13.10. For the languages,
we used Java build 1.8.0_05-b13, and X10 version 2.4.3.

We follow the start-up performance methodology detailed in [43]. We take
31 samples of the execution time of each benchmark and discard the first sample.
Next, we compute the mean of the 30 samples with a confidence interval of 95%,
using the standard normal z-statistic.

Impact of non-distributed verification

The two goals of this evaluation are: to measure the impact of verification on
standard Java benchmarks, and ii) to measure whether the verification scales
with the increase of the number of tasks. We run the verification algorithm
against a set of standard parallel benchmarks available for Java. JArmus is run
in the detection mode (every 100 milliseconds) and in the avoidance mode, both
use the adaptive graph model. Note that the Java applications we checked are
not distributed.

We select benchmarks from the NASA Parallel Benchmark (NPB) suite [42]
and the Java Grande Forum (JGF) [99] benchmark suite. The NPB ranges from
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Table 4.1: Relative execution overhead in detection mode.

Threads 2 4 8 16 32 64

BT 3% 4% 0% -5% 0% 7%
CG 7% 0% 7% 15% 12% 9%
FT 1% 0% -1% -7% 0% 0%
MG 5% 0% 0% 0% 11% 13%
RT 4% 0% 0% 0% 0% 8%
SP 1% 4% 4% 2% 0%

kernels to pseudo-applications, taken primarily from representative Compu-
tational Fluid Dynamics (CFD) parallel applications. The JGF is divided into
three groups of applications: micro-benchmarks, computational kernels, and
pseudo-applications. All benchmarks proceed iteratively, and use a fixed number
of cyclic barriers to synchronise stepwise. Furthermore, all benchmarks check
the validity of the produced output.

For the sake of reproducibility we list the parameters of the benchmarks run
as specified in [42, 99]: BT uses size A, CG uses size C, the Java version of FT
uses size B, MG uses size C, RT uses B, and SP uses size W. The input set chosen
for benchmark SP only allows it to scale up to 31 tasks. For simplicity, in the
evaluation we consider that this benchmark scales up to 32 tasks.

Fig. 4.2 summarises the comparative study of the execution time for each
benchmark. Tables 4.1 and 4.2 list the relative runtime overhead in detection and
in avoidance. The results for the NPB and JGF benchmark suites are depicted in
Figs. 4.2a to 4.2f. In detection mode, since there is a dedicated task to perform
verification, we observe that the overhead does not increase linearly as we add
more tasks. The relative runtime overhead sits below 15% and in most cases is
negligible. In avoidance mode, each task checks the graph whenever it blocks,
so as we add more tasks, the execution overhead increases. Still, in the worst
case, benchmark CG, the overhead is 50%, which is acceptable for application
testing purposes.

Impact of distributed verification

The goal of the evaluation is to measure the runtime overhead of deadlock
detection in available X10 distributed applications. Armus-X10 is configured
with the distributed deadlock detection mode, running the verification algorithm
every 200 milliseconds. The chosen benchmarks are available via the X10 source
code repository *. Deadlock avoidance is unavailable in the distributed setting.

‘https://svn.code.sf.net/p/x10/code/trunk/
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Table 4.2: Relative execution overhead in avoidance mode.

Threads 2 4 8 16 32 64

BT % 0% 0% 0% 11% 8%
CG 0% 9% 20% 34% 46% 50%
FT 1% 4% 0% 0% 7% 25%
MG 8% 1% 21% 27% 27% 30%
RT 5% 0% 0% 0% 5% 16%
Sp 2% 9% 8% 22% 28%

Execution time (5)
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Figure 4.2: Comparative execution time for non-distributed benchmarks (lower
means faster).

Benchmarks FT and STREAM come from the HPC Challenge benchmark [75],
SSAC2 is an HPCS Graph Analysis Benchmark [14], JACOBI and KMEANS are
available from the X10’s website. For reproducibility purposes the non-default
parameters we select are: FT magnitude 11; KMEANS 25k points, 3k clusters to
find, and 5 iterations; JACOBI matrix of size 40, maximum iterations are 40;
SSCA2 2% vertices, a with a probability of 7%, and no permutations; STREAM
with size of 524k.

Fig. 4.3 depicts the execution time of each benchmark with and without
verification. There is no statistical evidence of an execution overhead with
running deadlock detection mode.
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faster).

Impact of the graph model choice

The goal of this evaluation is to measure the impact of the graph model in
the verification procedure. To this end we analyse the worst case behaviour:
programs that generate graphs with thousands of edges. In particular, we
evaluate our adaptive model selection against the usual fixed model selection
(WFG and SG).

We select a suite of programs that spawn tasks and create barriers as needed,
depending on the size of the program, unlike the classical parallel applications we
benchmark in Sections 4.6 and 4.6 where the number of tasks should correspond
to the number of available processing units (cores). The suite of programs
exercises different worst case scenarios for the verification algorithm: many
tasks versus many barriers.

The chosen benchmarks are educative programs taken from the course on
Principles and Practice of Parallel Programming, taught by Martha A. Kim and
Vijay A. Saraswat, Fall 2013 [109]. BFS performs a parallel breadth-first search
on a randomly generated graph. There is a task per node being visited and a
barrier per depth-level of the graph. FI computes a Fibonacci number iteratively
with a shared array of clocked variables (each pairs a barrier with a number).
Each element of the array holds the outcome of a Fibonacci number. When the
program starts it launches n tasks. The i-th task stores its Fibonacci number
in the i-th clocked variable and synchronises with task ¢ + 1 and task ¢ + 2
that read the produced value. FR computes a Fibonacci number recursively.
Recursive calls are executed in parallel and a clocked variable synchronises the
caller with the callee. SE implements the Sieve of Eratosthenes using clocked
variables. There is a task per prime number and one clocked variable per task.
PS computes the prefix sum—or cumulative sum—for a given number of tasks.
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Table 4.3: Edge count and verification overhead per benchmark per graph mode.

SE FI FR  BFS PS

Edges 23 1074 140 5 7
Auto Avoidance 75% 94% 117% 45% 82%
Detection 25% 24% 25% 9% 18%

Edges 51 2137 1643 7 6
SG Avoidance 75% 112% 300% 45%  82%
Detection 25% 24% 25% 9% 18%

Edges 23 1281 94 579 781
WFG Avoidance 75% 94% 117% 200% 600%
Detection 25% 29% 25% 18% 27%

Given an input array with as many elements as there are tasks, the outcome of
task 7 is the partial sum of the array up to the i-th element. All tasks proceed
stepwise and are synchronised by a global barrier.

Figs. 4.4 and 4.5 depict the execution time of each benchmark verified by
Armus-X10 in avoidance and detection modes (respectively) where we vary
the selection method of the graph model. Table 4.3 lists the average number
of edges used in verification and the relative execution time overhead of each
benchmark.

We can classify the benchmarks in three groups according to the ratio
between the number of tasks and the number of resources: i) similar count
of tasks and resources, benchmark SE; ii) much more resources than tasks,
benchmarks FI and FT; and iii) much more tasks than resources, benchmarks
BFS and PS. When i) there are as many resources as there are tasks, then all
graph models perform equally well. When ii) there are more resources than
tasks, and iii) vice-versa, the choice of the graph model is of major importance
for a verification with low impact on the execution time.

Even in the worst case behaviour for analysis the largest verification over-
head with deadlock detection is 25%; for deadlock avoidance the largest is 117%.
For both cases we consider adaptive graph selection. Overall, the approach of
the adaptive graph model outperforms the fixed graph model approach. The
adaptive approach can save up to 9% of execution overhead in deadlock detection
versus a fixed model. The graph model choice severely amplifies the verification
overhead in deadlock avoidance. The case in point is benchmark PS, where the
verification overhead ranges from 600% (fixed) down to 82% (adaptive).



Chapter Five

Deadlock prevention

A way to prevent deadlocks is by restricting the expressiveness of synchroni-
sation mechanisms. We propose a minimal language, called SBRENNER, that
incorporates three techniques to achieve deadlock freedom.

Nested fork/join. This programming model consists of two primitives: the
async forks tasks, and the finish joins the execution of tasks. A finish
accepts a program as a parameter; the instructions are executed sequen-
tially. After executing the instructions in a finish block, the task waits in
a join barrier for the termination of any task spawned within the scope of
the finish block. This restriction prevents deadlocks that arise from the
interaction between multiple join barriers.

Await on all registered phasers. Task can only await on phasers they are
registered with. Additionally, a task must await on every phaser it is
registered with at once. This restriction prevents deadlocks that arise from
the interaction between multiple cyclic barriers.

Cyeclic barrier visibility. Instructions within the body of a finish cannot ac-
cess phaser names declared outside (before) of that finish. This restriction
prevents deadlocks that arise from the interaction between join-barriers
and phasers.

The next section introduces the design of SBRENNER: we show deadlocked
programs written in BRENNER that motivate extensions to the language con-
structs. Sections 5.2 and 5.3 introduce the syntax and the semantics of SBRENNER.
Section 5.4 presents a mechanism, called a type system, to specify (and enforce)
a discipline on phaser usage, inspired by the X10 and HJ languages.

5.1 Language restrictions

Fork/join deadlocks. BRENNER makes it trivial to write a fork/join program
that deadlocks. In the next listing, task t1 launches task t2 and then waits for
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it to finish. Task t2 decides to wait for task t1 to conclude and therefore both
tasks reach a deadly embrace.

Listing 5.1: A fork/join deadlock.

// t1 -- parent task
pl = newPhaser(); // join barrier for t1
t2 = newTid () ;

p2 = newPhaser(); // join barrier for t2
reg(p2, t2);

fork(t2, // child task
await (pl, 1); // await t1 to finish
adv (p2); // signal end of t2
end
); // end of t2
dereg (p2); // t2 is the only participant
await (p2, 1); // await t2 to finish
adv (pl); // signal end of t1
end

The first proposal of a fork/join programming model [84] includes syntactic
restrictions to render its programming model deadlock free. This restricted
programming model is known as the nested fork/join. The idea behind the
nested model is to:

« assign a parent-child relationship between the parent task that forks, and

the forked child task;

« disallow tasks from awaiting ancestor and sibling tasks.

SBRENNER defines the nested fork/join model of X10 and HJ. To limit tasks
from awaiting siblings and ancestors, we remove task names from the syntax of
SBRENNER. Such alteration affects task creation and phaser registration (whose
discussion we postpone). Next, we introduce specialised constructs to be used
instead of phasers.

SBRENNER uses instruction AsyNc to fork a task. Instruction FINISH is used
to await the termination of a group of tasks. The instruction expects a program
as a parameter, called the body. Any task (indirectly) spawned within the body
of a finish is registered with its join barrier. After executing the body, the task
awaits at the implicit join barrier.

The next example, written in SBRENNER, fixes the fork/join deadlock in
Listing 5.1. The child task can no longer wait for its parent task, because there
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are no task names to refer to. When a task terminates it automatically signals
the join barrier of the enclosing finish, as in Line 4. The parent task awaits its
child in Line 6 after executing the finish body.

// tl -- parent task
finish(
async ( // child task
end // signals end of child
)
end // awaits child to finish
J§
end

Cyclic barrier deadlocks. The simplest way to prevent deadlocks that arise
from the interaction between cyclic barriers is to restrict the language to have
a single, global cyclic barrier. The Bulk-Synchronous Parallel programming
model [103] champions the use of such restriction.

X10 introduces a technique that copes with multiple cyclic barriers: the
language enforces each task to wait on all registered barriers at the same time.
The increase of expressiveness, with respect to having a single cyclic barrier,
is that two groups of tasks can synchronise independently from one another,
as long as each group uses different barriers. The work in [92] formalises the
technique, but lacks a formal proof of the deadlock-freedom property.

Waiting only on all registered phasers is not enough to prevent deadlocks in
BRENNER. One reason it fails is because a task can wait for any phase, as in the
following one liner example.

p = newPhaser(); await(p, 2); end

For phasers it makes sense to restrict the phase number a task can wait
for. Let instruction AWAIT (without arguments) be such that it awaits on every
registered phaser using the task’s local phase, thereby preventing the deadlock
in the previous example.

p = newPhaser ();
await; // await(p, 0);
end;
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This restriction is still not enough to prevent the following deadlocked
program. Task t1 waits for task t2 to advance to phase 1 on phaser p, while
at the same time task t2 waits for task t1 to advance to phase 1 on phaser q.
In Line 3 we note that async accepts a sequence of phaser names in which the
spawned task becomes registered with. Here, the spawned task is registered
with p and q.

Listing 5.2: Deadlocked program using two phasers.

p = newPhaser(); q = newPhaser();
async(p,q,
adv (p);
await;
end
) 5
adv (q);
await;
end

SBRENNER proposes a single change to counter this source of deadlocks: a
task must advance the exact same number of times all registered phasers before
awaiting. That is, before awaiting if the task is registered on two phasers p
and ¢ and it advances p twice, then it must also advance phaser ¢ twice. We
introduce a new language construct next that is used to check that all phasers
are advanced exactly once. If the programmer forgets to advance a phaser, then
the program is invalid and must be rejected by the typechecker.

In X10, there is a single operation that advances all phasers and then awaits
on all phasers. The novelty of our technique is twofold. First, a task can advance
multiple phases before awaiting. Second, a task can suppress waiting alto-
gether and perform the producer-consumer synchronisation pattern, something
unfeasible with X10’s cyclic barriers.

In the next example, we fix the deadlock of Listing 5.2. SBRENNER enforces
the programmer two advance both phasers before awaiting. Instruction next
demarcates that all phasers have been advanced once.

Dangling participant deadlocks. A simpler form of deadlock has to do with
dangling participants, where a task awaits forever terminated tasks. Java and
MPI suffer from this problem. For example, if in Section 5.1 we remove the two
instructions of task t2, then task t1 becomes deadlock waiting for task t2.
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Listing 5.3: Fixed deadlock with two phasers.

// task tl
p = newPhaser(); q = newPhaser();
async(p,q, // task t2
adv(p); adv(q);
await; // await(p, 1) await(q, 1);
next;
end
)
adv(p); adv(q);
await; // await(p, 1) await(q, 1);
next;
end
// task tl
p = newPhaser(); q = newPhaser();
async(p,q, // task t2
end // forgets to deregister
)
adv(p); adv(q);
await; // forever waiting for t2
next;
end

In X10 and HJ every task implicitly deregisters from all barriers at the end of
its execution; there is no way to identify crashed tasks. SBRENNER enforces that
the programmer explicitly deregisters from registered phasers before terminating
every task.

Fork/join and cyclic barrier deadlocks. Combining cyclic barriers with the
fork/join programming model introduces yet another form of deadlocks. The
next program deadlocks because the tasks that forks (task t1) is waiting for the
forked task t2 to finish, while task t2 is waiting for task t1 to advance phaser p.

SBRENNER employs a technique introduced by HJ: the “Immediately Enclos-
ing Finish (IEF) scope rule” states that a task cannot be registered with phasers
declared outside their immediately enclosing finish scope. The previous program
is invalid, because in Line 3 we are registering a task with a phaser name p that
is declared outside the finish.
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p = newPhaser ();
finish(
async (p,
adv (p);
awaitAll; // await(p, 1);
end) ;
end) ;
dereg(p);
end

Pipeline parallelism. The changes produced so far still allow us to write
producer-consumer synchronisation patterns. We revisit Listing 3.3 by rewriting
the programs of the producer and consumer tasks in SBRENNER. The producer
signals the consumers after producing an item with phaser p.

loop( // for (i = 0; i < N; i++)
skip; // B[i] = produce(i);
adv (p); // signal consumer
next; end) // loop

The consumer awaits consecutively for each signal from the producer before
consuming the next element. Adapting the program of the observer tasks only
amounts to replacing instruction AWAIT(p) with instruction AWAIT.

loop( // for (i = 0; i < N; i++)
adv(p); await; // await
skip; // consume (B[il);
end) // loop

Removing the possibility to await on an arbitrary phase hinders SBREN-
NER’s ability to perform the bounded producer-consumer pattern, important
for pipeline parallelism. Shirako et al. explored in [96] the notion of bounded
phasers to describe the bounded producer-synchronisation pattern. We adapt
this idea to SBRENNER under a deadlock-free setting. Instruction bound(p) lets
a task be ahead of the slowest task up to a certain number of phases. We leave
the exact bound number unspecified, as this detail does not affect our goal of
showing deadlock freedom, and this way we avoid introducing natural numbers
in the language.

We can now rewrite the producer to be ahead of the consumers up to a certain
number of phasers. There are two changes we must do. First, the producer must
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change its bound. Second, the producer must await after advancing. In practice,
a producer that is at phase ¢ and with a bound of £ only blocks if there is at least
one consumer behind phase k — 1.

bound(n); // bound(n, SIZE); // set the bound to SIZE
loop( // for (i = 0; i < N; i++)

skip; // B[i] = produce(i);

adv (p); // signal consumer

await; // wait for slow consumers

next; end) // loop

We underline that BRENNER is capable of writing the bounded producer-
consumer pattern without introducing any notion of bound phasers. The re-
quired addition is to simply introduce arithmetic expressions over natural num-
bers. To await at a phase i with a bound k we write awarT(p, i - k). This
example highlights the expressive semantics of BRENNER when compared with
the original semantics of phaser.

5.2 Syntax

Following is a discussion of the new terms of the language, with respect to
BRENNER which we highlight using a .

Definition 5.2.1 (Abstract syntax of SBRENNER). Fig. 5.1 defines the syntax of
the language.

Instruction async replaces instructions reg, fork, and newTid. We remove
task names from the language to avoid potential deadlocks in fork/join and in
phaser synchronisation. The parameter s of async specifies the phasers in which
the forked task is to be registered with. Consider the following program written
in BRENNER.

t = newTid ();

reg(t, pl); reg(t, p2); reg(t, p3);
fork(t, b);

end

It can be translated into SBRENNER as follows.
Instruction p = newPhaser() creates a phaser. Instead of await(p,n)
SBRENNER has instructions await and bound(p). Instruction await awaits on
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b = Programs
| end empty program
| ;b construct program
(ES Instructions
| |async(s,b) fork the execution of a task

| p = newPhaser() create a phaser

| dereg(p) deregister from phaser
| adv(p) advance phase
| [bound(p) update bound
| |await await on all phasers
| enter next phase
| [finish(b) join barrier
| ¢ control the flow
c = Control flow
| skip internal action
| loop(b) non-deterministic loop

Figure 5.1: SBRENNER syntax.

async(pl, p2, p3, b);
end

every registered phaser at the task’s local phase. For instance, a task that is reg-
istered with phaser p at phase n, with phaser q at phase m, and executes await
corresponds, in BRENNER, to a task that executes Awa1T(p,n) followed by
AwAIT(q,m). Awaiting on q followed by p produces the same effect. SBRENNER
lacks an instruction to await on phasers the task is not registered with.

Instruction bound(p) lets the task wait for a phase other than its local phase.
The idea is that any task may wait on a smaller phase than its local phase
without deadlocking. For each phaser p the task is registered with there is a
bound m associated with p. The bound is a natural number and starts at zero.
Consider a task that is registered with p has a local phase of n and a bound
of m. Let o = n — m. Instruction await can be translated into BRENNER as
AWAIT(p, ©0).
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Listing 5.4: Matrix multiplication programmed in SBRENNER.

finish(
loop(
async (
loop(
loop(
skip;
end) ;
end) ;
end) ;
end) ;
end) ;
end

Instruction next marks all phasers as unarrived and represents the beginning
of a new phase. Instruction finish(b) accepts a parameter called the body of
the finish and declares a new phaser name scope.

Example

Running example: matrix multiplication, Listing 5.4. The program starts with
a finish block, Lines 2 to 11, that awaits the computation of each row of the
matrix. A loop in Line 2 spawns the tasks. The parallel computation of each row
is done with an async, in Line 3, in which there is no more synchronisation. The
main task sits waiting at the end of the finish, in Line 11, for the termination of
each spawned task. The two main differences with reference to the BRENNER
version of the same example, in Listing 3.1, are: the async replaces the direct
manipulation of tasks names, and the finish block replaces the phaser used to
await the termination of spawned tasks.

Running example: iterative averaging, Listing 5.5. Phaser p is used as a
cyclic barrier. The driver task creates a phaser p, executes the outer loop, in
Lines 2 to 17, to spawn the worker tasks and then deregisters itself from p. The
worker tasks are all registered with phaser p and synchronise together while
performing the inner loop, in Lines 4 to 14. The two main differences with
reference to the BRENNER version of the same example, in Listing 3.2, are: using
async instead of direct task name manipulation, and the inserting a next after
synchronising.

Running example: producer-consumer, Listing 5.6. The driver task creates
phaser p and launches two groups of tasks. The first group, spawned in Lines 2
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Listing 5.5: Iterative averaging in SBRENNER.

p = newPhaser(); // ¢ = new Clock();
loop( // for (i = 0; i < N; i++)
async(p, // async clocked(c)
loop( // for (k=1; k <= M; k++)
skip; // 1=P[(i-1) % NIl;r=P[(i+1) % NI;
adv (p); // c.resume();
skip; // tmp = (1L + 1) / 2;
await;
next; // c.advance () ;
skip; // PL[i]l = tmp;
adv (p);
await;
next ; // c.advance () ;
end); // for
dereg(p);
end); // async
end); // for
dereg(p); // do not influence other tasks
end // program

to 12, consists of the producer tasks that synchronise with the consumers after
producing an element. The second group, spawned in Lines 13 to 20, consists of
the consumer tasks that await for all producer tasks to produce an event before
consuming it. The main difference with reference to the BRENNER version of the
same example, in Listing 5.6, is that we introduced a bounded producer-consumer.
Each producer task starts by setting its bound, in Line 4. This means that each
producer can be ahead of the slowest task a certain number of phases when it
invokes the await in Line 8. In Listing 3.3, the producer is unbounded, so the task
advances without waiting for the consumers. The program in Listing 5.6 can be
adapted to an unbounded producer by simply removing the await in Line 8.

5.3 Operational Semantics

We begin with name binding.

Definition 5.3.1 (Binding). In p = newPhaser(); b, the displayed occurrence of
phaser name p is a binding with scope b. An occurrence of a phaser name is bound
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Listing 5.6: Bounded producer-consumer synchronisation with phasers.

p = newPhaser(); // ¢ = new Phaser();
loop( // producers
async (p,
bound (p) ;
loop( // for (i = 0; i < N; i++)
skip; // B[i] = produce(i);
adv (p); // signal consumer
await;
next;
end); // loop
end); // async
end) ;
loop( // consumers
async (p,
loop( // for (i = 0; i < N; i++)
adv(p); await(p);
skip; // consume (B[i]);
end); // loop
end); // async
end) ;
dereg(p);
end // program

if it lies within the scope of a binding occurrence of the phaser name. Otherwise,
the phaser name is free.

Bound phaser names can be computed by the next inductively defined func-
tion.
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Definition 5.3.2 (Bound phaser names function)

bn(async(s, b); b') & s Ubn(b) U bn(b)
bn(p = newPhaser();b) & {p} Ubn(b)
bn(dereg(p); b) & bn(adv(p): b) d:efbn(bound(p);b)  hn(b)
bn(await;b) “ pn(next; b) & bn (b)
bn(£inish(b);¥') & bn(b) U bn(¥)
bn(end) & ()
bn(skip; b) ¥ bn(b)
bn(Loop(b); ¥') & bn(b) Ubn(b)

Free phaser names can be computed as:

Definition 5.3.3 (Free phaser names function)

fn(async(s, b): 1) & p U fa(b) U (V)
fn(p = newPhaser(); b) i (0) \ {p}
fn(dereg(p); b) & fn(adv(p); b) & fa(bound(p); b) & fn(b)
fn(await;b) « fn(next; b) = '
fn(finish(b); ¥') & fn(b) U (V)
fn(end) =)
fn(skip;b) ' fn (b)
fn(Loop(b); b') & fn(b) U (V)
For example, in program
DEREG (p) ;
q = NEWPHASER();
Async (q)
DEREG (p) ;
END ;
END

phaser name p is free and phaser name q is bound

A phaser name may occur both free and bound in the same expression. In
the following example phaser name p appears bound and free
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DEREG (p) ;

p = NEWPHASER();
AsyYNC (p) END

END

From top to bottom, the first displayed occurrence of phaser name p is free,
at DEREG (p); the second and third displayed occurrences of p are bound, at
p = NEWPHASER() and AsynNc(p). In the async the use of phaser name p targets
the second occurrence and not the first.

Definition 5.3.4 (Substitution). A substitution for programs o is a function that
is the identity except on a finite set, defined from phaser names to phaser names.
We write [q/p| for the substitution o such that o(p) = q and o(r) = r forr # p.

A formulabo represents the application of substitution o to programb, replacing
each free occurrence of phaser name p in program b by o(p). We define the
application of a substitution to a program (see the phaser name convention below)
as:

= SynC({U(pl) -0 (pn)}, (bo)); (Vo)

= newPhaser(); (bo)
ereg(a(p)); (bo)

Q-’U

For example, substituting phaser name p for phaser name ¢ in program
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adv(p); await; dereg(p); end yields the following result, where o = [¢/p]:
(async({p,r},await;dereg(p); end); end)o
défasync({a( ), 7}, (await; dereg(p); end)o); (endo)
)

—async {q,7}, (await;dereg(p); end)o); (endo
);end)o); (endo)

( p

—async({ , 7}, await; (dereg(p

—async({ ,7},await; dereg(o(p)); (endo)); (endo)
—async({ ,7},await; dereg(q); (endo)); (endo)
—async({ ,7},await; dereg(q); end); (endo)
d:fasync({q, r},await;dereg(q); end); end

Definition 5.3.5 (Change of bound phaser names). A change of bound names
in program b is the replacement of a program that occurs in b of the form

p = newPhaser(); V/
by g = newPhaser(); V'[q/p|, where q is not bound nor free inl'.

Definition 5.3.6 («-convertibility). Programsb and b/ are a-convertible, b =, V',
if program b can be obtained from program b’ by a finite number of changes of
bound names.

The two following expressions are a-convertible.

loop(p = newPhaser(); skip; badv(p); end); end
=,loop(q = newPhaser(); skip; badv(q); end); end

Phaser name convention. For any given mathematical context (e.g., defini-
tion, proof), terms are taken up to a-convertibility and assume a convention
(Barendregt’s name convention [16]), in which all bound phaser names are
chosen to be different from the free phaser names and also different from each
other.

For example, program

loop((p = newPhaser(); skip; adv(p); end)); dereg(p); end

breaks the convention, since the displayed occurrence p is both bound and free.
The following a-convertible term conforms to the name convention:

loop((¢ = newPhaser(); skip; adv(q); end)); dereg(p); end

Substitution for programs is only defined for terms respecting the name
convention.
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S = (M, T) Abstract machine
M == {p1: P1,...,pn: P,} Phaser maps
T = {t1:71,....,tn: 7}  Task maps
P = {t;:vy,...,t,: v,}  Phaservalue
v = (p;a) Local view
a =u| a Flags
T n= Tasks
| (B,b) regular task
| S (B,b) finish task
B = {p:n,...,p:n} Bounds

Figure 5.2: Syntax of the abstract machine.

Definition 5.3.7 (Abstract machine). Fig. 5.2 depicts the syntax of the state.

The state S of a computation pairs a phaser map M and a task map 7.
A phaser map M stores the available phasers, mapping addresses to phasers.
Phasers P map task names to local views v, that pair a wait phase n with an
arrive flag a. Flag a, for arrived, denotes a task that advanced its phase. Flag u,
for unarrived, denotes a task that can advance the phaser.

Task maps 7" hold tasks 7, named by task names ¢. There are two kinds of
tasks. A regular task (B, b) holds a map of bounds B for each phaser the task is
registered with, and also the program b it is executing. A finish task S (B, b)
denotes a blocked regular task (B, b) that is waiting for the tasks in state S to
conclude their execution.

The nested fork/join execution model can be represented as a tree of tasks in
which leaf nodes can run concurrently and branch nodes wait for its children to
terminate. A regular task is a leaf node. A finish task (M , T) > (B, b) is a branch

node and its children are the tasks in task map 7. Fig. 5.3 illustrates such a tree:

the root is finish task 7 def (Ml, {ta: To,t3: 7‘3}) > (By, by ); tasks 7y, 5, 76, and

77 run concurrently; tasks 7y, 73, and 74 are blocked on a join barrier of a finish.
The reduction for states, S — 5’, allows for the non-deterministic choice of
which tasks to evaluate.

Definition 5.3.8 (Small-step semantics). The small step reduction relation for
SBRENNER is defined in Figs. 5.4 to 5.6.

Before explaining reduction rule R-AsyNc we require some auxiliary defini-
tions.
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(M, {t2: T2, t5: 73}) > (B1, b1)

T2 T3

(Ba,by)  (Ms, {ts: 7a,ts: 75, t6: 76}) > (Bs, bs)

T4 = T6
(M4, {t7: 77}) > (By, by) (Bs, bs) (Bg, be)
7
(B7,b7)

Figure 5.3: A dependency tree of tasks.

Definition 5.3.9 (Copy local views).

copy(s,t,t', M) = M’ P(t) =wv

Cpy-
COPY(S & {p}utﬂt,vML—U {p P}) =MUu {p Pu {tli U}} ( Y CONS)
t,t',M)=M
copy(s, . 7, M) p¢s (Cpy-sKkip)
copy(s,t,t', M W {p: P}) = M'&{p: P}
copy(0,t,¢',0) =0 (Cpy-NIL)

For instance, in Line 3 of Listing 5.5, let the phaser map available in that
state be M, def {p: Pl}, where P, def {ta: (0,u)}.
We have that copy({p}, ta, t1, M1) = M, where

CPY-NIL
copy({p},ta,t1,0) =0 Pi(p) = (0,u)

copy({p}, ta, t1,{p: P1}) = {p: LW {t:: (0,u)}}

CPY-CONS

Definition 5.3.10 (Bound creation). bounds(s) o {p: 0| Vpe s}

It is easy to see that bounds({p}) = {p: 0}.

Rule R-async governs the spawning of a new task that executes b’ and is
registered with every phaser p € s. In SBRENNER the spawned task inherits
(copies) the local phase of the task that spawns when becoming registered
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(M, T w{t: (B,async(s,V'); b)})

s (copy(s. ¥, M), T {1: (B.b)} & {#': (bounds(s),0)}) O oXN
q ¢ bn(b)
(M, Tw{t: (B,p = newPhaser|(); b)}) (R-PHASER)
—(Mw{q: {t: (0,u)}}, Tw{t: (Bw{q: 0},blq/p])})
(Mw {p: Pw{t: v}},Tw{t: (BY{p: n},dereg(p);b)}) Reprreq)

(M@ {p: P}, Tw{t: (B,b)})

(M&J {p: Pw{t: (n,u)}},TLirJ {t: (B,adv(p);b)})

—>(M ) {p: Py {t; (n, a)}},T W {t: (B,b)}) (R-ADVANCE)

neN
(M, Tw{t: (BY{p: _},bound(p);b)}) — (M, T w{t: (BW {p: n},b)})
(R-BOUND)
awaitAll(M, t, B) (R-awarT)

(M, Tw{t: (B,await;b)}) — (M, T w{t: (B,b)})

(M, Tw{t: (B,next;b)}) — (commit(M,t),T W {t: (B,b)}) (R-NEXT)
Figure 5.4: Small step semantics for states (phaser related) .

with p € s—this is performed by copy(s, ¢, ', M). Function bounds(s), used to
build the forked task, sets the initial bound of each registered phaser to zero.
Hence, with rule R-async we get

(My,T W {ts: (B,async({p},V);b)})
— (copy({p}, ta, t1, M1), T W {ta: (B,b)} W {t1: (bounds({p}),t)})

And if T = (), we can simplify the state to

(My, {tq: (B,async({p},V);b)}) = (Ma, {ta: (B,b),t1: ({p: 0},1))

A task that executes p = newPhaser() becomes registered with p and is able
to advance this phaser. The reduction allocates a phaser with one participant, ¢,
that starts at phase zero and is marked as unarrived; the bound for the new
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phaser also starts at zero. We select a phaser name ¢ that is not known in b and
in the domain of M to ensure the locality of names, so that no other task can
refer to it unless the phaser name is explicitly shared via async.

For example, at Line 1 in Listing 5.5, let the initial phaser map be empty
and let it there a single task, named ¢,, executing Listing 5.5. Let ¢ be such

that ¢ ¢ bn(b). Thus,
q ¢ bn(b)
(0,{ta: (0, p = newPhaser();b))
—({a: {ta: (0,w)}}, {ta: ({q: 0},0[a/p])})

Tasks deregister from phaser name p with expression dereg(p). Consider
Line 18 in Listing 5.5 and assume we have three tasks in the system: task
named ¢, executes Line 18, and tasks ¢, and ¢, are executing their loop. Let there
only be a phaser in the system, named p, M &ef {p: {t1: v1,ta: vo, ty: Ud}}.
It is easy to see that there exists a phaser P such that M(p) = P W {t4: v4}.
Therefore,

R-DEREG

({p: Pw{ty: vg}}, TW {td: ({p: 0},dereg(p);b)})
—>({p: P} TW {td: (@,b)})

A task performing an adv(p) simply turns the flag from u to arrived a,
denoting it ready to synchronise (rule R-ADVANCE). Instruction bound(p) is a
non-deterministic choice of a new bound value, rule R-BounD. Other tasks can
observe the phase of p advancing. Assume that in Listing 5.5 we have two tasks,
named t; and ¢, in parallel, both tasks executing Line 6. Let the state of the
phasers be

M {p: {1z (0,m), 50 (0,0)}} (5.1)
There exists a phaser P such that M;(p) = P W {t5: (0,u)}. Hence,

R-abpv

({p: Pw{t2: (0,u)}}, T W {t2: (B,adv(p);b)})
%({p: Pw{ty: (0, a)}},T&J {to: (B,b)})
After the task named ¢, advances phaser p the state of the phasers is given
by
My = {p: {t1: (0,0), 122 (0,2)}} (5.2)

Definition 5.3.11 (Local phase). The local phase of a local view is computed as:

def{n+1 ifo=a

localPhase (n,a) = _
n ifa =u
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The local phase of task ¢, for phaser p in M, is
localPhase M5 (p)(t1) = 0

and of task ¢, is
localPhase Ms(p)(t2) = 1

Definition 5.3.12 (Await predicate).

Vt € dom P: localPhase (P(t)) > n
await(P, n)

The await predicate holds for phase 0 of phaser p
await(Ms(p), 0) (5.3)

but it does not hold for
await(Ms(p), 1) (5.4)

as localPhase M (p) (1) < 1.
The following predicate embodies await.

Definition 5.3.13.

Vp € dom M At € dom M (p):
await(M (p),n) A n = localPhase(M (p)(t)) — B(p)
awaitAll(M, t, B)

Let B = {p: 0}. We know that B(p) = 0 and from Eq. (5.3) we also know
that await(Ms(p), 0), thus

await(Ms(p), 0) localPhase M5 (p)(t;) = 0
awaitAll(M,, ¢, B)

We also know that predicate awaitAll( My, to, B) does not hold, since
localPhase M5 (p)(ty) =1

and from Eq. (5.4) await(Ms(p), 1) fails.

Rule R-awarT makes the task await at the local phase of every phaser it is
registered with.

Consider the following phaser map

M {p: {t1: (0,a),85: (0,2)}} (5.5)
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as the state of Listing 5.5 while task ¢, executes Line 8. Also, let B & {p:n} It
is easy to see that for any bound n

await(M;s(p),1 —n) localPhase M5(p)(t1) = 1
awaitAll(Ms, t1, B)

then
aWﬂitAH(Mg, t17 B)

R-awailt
(M3, Tw {t,: (B,await;b)}) — (M3, T W {t1: (B,b)})

Definition 5.3.14 (Commit phase).

commit(M,t) = M’
commit(M @ {p: PW{t: (n,a)}},t) =M {p: PY{t: (n+1,u)}}

(Com-c)
com'mit(M, t) =M t ¢ dom P (Cons)
commit(M W {p: P},t) = M'w{p: P}
commit((), t) = () (Com-N)
Using rules Com-N and Com-c we get that
commit(Ms, 1) = {p: {t:: (1,u),t2: (0,a)}} = M, (5.6)
Function commit does not affect the local phase of any task, as
localPhase Mj5(p)(t1) = localPhase My(p)(t1)
and
localPhase Mj3(p)(t2) = localPhase My(p)(t2)
Rule R-NEXT governs the application of function commit.
Thus, from Eq. (5.6) we have that
R-NEXT

(M, T {t,: (B,next;b)}) — (commit(Ms,t), T W {t;: (B,b)})

Reduction unrelated to phasers is included in Fig. 5.5. Rule R-FiN1sH declares
that the body of the finish b’ is executed by task ¢’ that exists in a new state S.

We define the notions of halted state to identify when the finish barrier
concludes.
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S0, ' (0,0)}) .
(M. Tw {t: (B, flnlsh(b’) DY) — (M. T {5 5o (B.o)y) s
517 5 (R-rUN)
(M, Tw {t: Sy>(B,b)}) — (M, Tw{t: S (B,b)})
S is halted (Ryorn)
(M,Tw{t: S (B,b)}) = (M, Tw{t: (B,b)})

cb—U

(R-FLOW)

(M,TLw_LJ {t: (B,¢; b)}) — (M,T&J{t: (B,b’)})

Figure 5.5: Small step semantics for states (finish, control flow) .

skip;b — b (R-sk1p)
loop(b);b" — b - (Loop(b); b') (R-ITER)
loop(b); b — ¥ (R-ELIDE)

Figure 5.6: Small step semantics for control flow instructions .

Definition 5.3.15 (Halted state). We say that state
(M, {t;: (§,end), ... t,: (D;end)})
is halted.

Given a finish task S > (B, b), we have that state .S reduces until it becomes
halted with rule R-rUN, and then the finish task becomes the regular task (B, b)
with rule R-joIN.

Rule R-FLow governs the reduction of instructions that alter the control
flow c. Rules in Fig. 5.6 are trivial.

5.4 Type System

A type system [23] is a formalism used to analyse the source code of a program
according to a set of rules, called typing rules. The analysis abstracts each term
of a program with respect to its type. For instance, the “integer” type can denote
any mathematical expression that yields an integer. This way a type system can
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I'(p)=a M'Es: IV
'k (swW{p}): I"w{p: a}

Figure 5.7: Typing rules for arguments .

F'E0:0 (T-aA-c,T-A-N)

abstract an expression 3 4 5 x 2 as an integer type. Typechecking is the process
of verifying if a given source code conforms with some type information.

Type systems are used to establish properties about the programs of a lan-
guage. In our case, the objective is to show the absence of deadlocked states for
programs written in SBRENNER. To this end, we specify a phaser usage policy
by means of typing rules. Programs that adhere to this phaser usage policy are
guaranteed to be deadlock free.

The operational semantics of SBRENNER is not defined for all states. For
instance, rule R-DEREG expects the phaser name to be in the domain of the phaser
map, and rule R-ADVANCE assumes the phaser to be unarrived. The reduction
rules assume a certain policy and the semantics is undefined for any behaviour
that breaks these assumptions, i.e., the state will not be able to reduce. We define
a typing system that rejects programs violating these assumptions.

Definition 5.4.1 (Type system). The type system for SBRENNER is defined in
Figs. 5.7 to 5.9.

A typing I" maps phaser names to arrival flags. The type system uses a typing
to obtain (and record) the arrival flag for each phaser the task is registered with.

A typing relation I' - s: T” assigns a typing [ to a term s given a typing I'.
On the left-hand side of the turnstile, we have the assumptions I" under which
the term s is checked; typing I is inferred. Usually a typing relation yields
a type (like an integer type). In our type system the outcome is a typing that
represents the arrival flag of each registered phaser name. Judgement I' - s: T
is used in the context of typing an async and yields the smallest typing [ that
can typecheck s.

Typing relations are defined by cases, usually syntax-oriented on the term
we are checking. Each case is covered by a typing rule. Fig. 5.7 consists of two
rules: the base case T-A-N states that for an empty set of arguments we need the
empty typing ). The inductive case T-a-c allows us to compose arguments s
with distinct phaser names that are in the typing I'. Similarly to reduction
rules, typing rules can be axioms or have preconditions. Rule T-A-N is an axiom.
Rule T-a-c has two preconditions, I'(p) = aand ' F s: T".
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To prove the validity of a type judgement (i.e., whether it holds), we construct
a typing derivation applying the typing rules. Let typing I" be
def
I'={p:wu,q:u,r:a} (5.7)
For example, typing judgement I' - {p}: {p: u} holds and its derivation tree
(its proof) is
T-A-N

I'(p)=u r=0:0
T-A-c
' (0w{p}): 0w {p: u} et
TEA{p}: {p: u}

Judgement I' - {q}: {¢: a} does not hold, since I'(¢) = u.

To type instructions we use [' - ¢: I, defined in Fig. 5.8. Typing '/ captures
the effects on the arrival flags after the execution of an instruction. Most
typing rules are straightforward. Rule T-async checks the forked instruction b
under the assumptions inferred while typechecking s. This means that phaser
names in s must all be registered, in typing I". Moreover, the spawned task
must deregister from all phasers upon termination, so its effects are the empty
typing. Rule T-PHASER ensures that phaser name p is unknown and initialises
it as unarrived, thus in the effects we extend the typing with p assigned to u.
Similarly, rule T-DEREG removes the phaser name p from the typing of the effects
to disallow further manipulation, as only phasers names in the typing I' can
be (de)registered and advanced. Rule T-aDv enforces that an advance on p
is interleaved by a next. The effects of advancing p is marking it as arrived.
Instruction bound(p) leaves the arrival flags of the phaser names unaltered,
rule T-BouND. Tasks can only await after advancing all registered phasers,
rule T-awarT. This instruction produces no effect on the state of the phasers.
Rule T-NEXT ensures all registered phasers are advanced and then marks these as
unarrived. Instruction skip has no side effects, rule T-sk1p. Finally, rule T-Loop
states that the body of the loop must preserve the arrival flags of the registered
phasers, plus it must not deregister from any phaser name in I'.

To type programs we use ' - i: [, defined in Fig. 5.8. The rules ensure that
the effects of an instruction are enough to type its continuation, cf. rules T-cons
and T-END.

To summarise, the type system enforces four rules:

1. atask can only (de)register and advance phasers it is registered with, cf.
rules T-PHASER, T-DEREG, T-ADV, T-ASYNC;

2. every registered phaser is advanced exactly once before an invocation of
next, cf. rules T-aApv and T-NEXT;
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'+s: 17 I"'Eb:0

T-
I'F async(s,b): T (T-as¥ne)
I'F p = newPhaser(): 'W {p: u} (T-PHASER)
F'w{p: a} - dereg(p): T (T-DEREG)
F'y{p: u}kFadv(p): W {p: a} (T-ADV)
['F bound(p): I’ (T-BOUND)

Vp €domI: I'(p) =a

T-
I'-await: I’ (T-awArT)
{pr1:a,...,p,:a} Fnext: {p;:u,...,p,: u} (T-NEXT)

DFb:0

T-
[F finish(b): [ (T-Finisii)
' skip: T (T-skrp)

'Eb: T
T-
I'F loop(h): I' (T-roor)
Figure 5.8: Typing rules for instructions .
| I"Eb: T (T-cons)
-CON
' b: T

I'Fend: T’ (T-END)

Figure 5.9: Typing rules for programs |I' - b: T"|.
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3. the body of a finish and of forked tasks must deregister from all phasers
before terminating, cf. rules T-async and T-FINISH;

4. each iteration of a loop must terminate registered with the same phasers
it starts registered with, cf. T-Loop.

We give an example for each of these four rules.

Rule 1. An empty typing () means that there are no registered phasers. The
only phaser-related instruction that can be typed (i.e., checked) is phaser creation.

T-PHASER (5.8)
0 F p = newPhaser(): {p: u} '

Let T, & {p: u} and I'y o {p: a}. The effects of creating a phaser are

enough to type an advance.

T-ADv —  T-END
[y Fadv(p): {p: a} 'y end: I'y

[y - adv(p);end: Ty

T-cons

And therefore,
() F p = newPhaser(): I'; [y - adv(p);end: I'y

T-cons
() - p = newPhaser(); adv(p); end: I'y

Rule 2. Typing I'; cannot be used to type a next, yet the outcome of advanc-
ing p, that is typing 'y, can type instruction next.

T-NEXT
{p: a} F next: {p: u} def
I'y Fnext: Iy
Rule 3. The following tree holds.
T-DEREG ——  T-END
Iy F dereg(p): 0 ) F end: ()

T-cons

[y F dereg(p); end: ()
And we also know that

—— T-A-N
F1<p>:a CyE0:0

T-
I (0w {p}): 0w {p: a} 4
Fll—{p}:Fl B




72 CHAPTER 5. DEADLOCK PREVENTION

Thus,
O o{p}: Ty [y - dereg(p); end: ()

'y F async({p}, dereg(p);end): 'y

Rule 4. Enforcing that the iteration must terminate registered with the same
phasers it starts registered with does not disallow phaser creation inside the
loops. For instance, the following tree holds.

0 - p = newPhaser(): I'y I'; I dereg(p); end: ()
T-cons

() - p = newPhaser(); dereg(p); end: ()
T-Loop

() F loop((p = newPhaser();dereg(p); end)): ()



Chapter Six

Type system properties

The type system for instructions represents a specification on a phaser usage
we deem as valid. Applying the typing relation to a program corresponds to
checking if the program conforms with this phaser usage. Yet, to reason about
the semantics of SBRENNER we need to establish a relation between a program b
and its state S.

Let §; & (M, {t: (0,end)}) and S, o (0,{t: (B,dereg(p); end)}). Nei-
ther of these states can reduce. State S; is halted, there are no reduction rules
for program end. State S; cannot reduce because phaser name p is not in the
domain of phaser map (), w.r.t rule R-DEREG. We can distinguish between these
two states in terms of validity (next, we define this notion precisely with a type
system for states). State S; is valid because it is not doing anything unexpected,
there is not a rule for program end because terminated tasks should remain
halted. State S is invalid because a task is manipulating an unknown phaser
name. A type system enjoys the property of Subject Reduction if the reduction
relation preserves validity. A type system enjoys the property of Progress if any
valid state either reduces or is halted, which implies the absence of deadlocks.

In this chapter we build a type system for states that enjoys the properties
of subject reduction and progress. This requires the definition of a type system
for phaser maps in Section 6.1, and another for task maps in Section 6.2. We
conclude the chapter establishing some basic results in Sections 6.3 to 6.5.

6.1 Typing phaser maps

The operational semantics of SBRENNER lays some assumptions not only about
a phaser usage, but also on the configuration of phaser maps. In particular,
the semantics expects the absence of dangling task names. For instance, the
following state cannot reduce because task name ¢’ is not assigned to any task.

({p: {t: (1,a),t": (O,a)}},{t: {p: O},await;b)})

A type system for phaser maps that enjoys progress (i.e., valid states must reduce
or be halted) must rule out such ill-formed phaser map.

73
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The operational semantics also expects the phasers in the phaser map to be
the outcome of the instructions, not an arbitrary phaser map. The next state
cannot reduce.

({p: {t: (1,a),t": (0,a)},q: {t: (1,a),t': (2,a)}},
{t: ({p: 0,¢: 0}, await;b),t': ({p: 0,¢: 0}, await;d')})

Tasks t and t" are deadlocked. Task ¢ requires task ¢’ to advance phaser p and,
at the same time, task ¢’ requires task ¢ to advance phaser ¢. Task ¢ has a local
phase of 2 for phaser p and a local phase of 2 for phaser g. We can say that
for ¢ the local phase difference between p and q is zero, as 2 — 2 = 0. Similarly,
for ¢’ the local phase difference between p and ¢ is minus two, as 1 — 3 = —2.
Following, we explain why is it that a program that follows the phaser usage of
SBRENNER cannot reach a state that contains a phaser map with disparate phase
differences.

Our language restricts tasks to advance their registered phasers stepwise.
This means that for any two phasers, whenever a task executes a next their
relative local phase difference stay the same. Say task ¢ creates phasers p and ¢
one after the other, it advances both phasers, and then issues a next. The local
phase difference between p and ¢ while executing the next is zero, as task ¢ has
a local phase of one for both phasers. That is, there exists a phaser map M such
that M (p)(t) = (1,a), M(q)(t) = (1,a), and 1 — 1 = 0. During the lifetime
of the task named ¢, and while it is registered with phasers p and ¢, the local
phase difference between both of these phasers will remain zero whenever it
executes a next. The type system for instruction will reject any program that
tries otherwise, e.g., advancing p more than once before of a next.

If every task maintains the local phase difference between any pair of phasers,
and since phasers can only be shared by spawning tasks, then the spawned tasks
have “inherit” the local phase differences of their parent tasks. Let task ¢ have a
local phase difference between phasers p and ¢ of zero. If it spawns task ¢’ and
registers ¢’ with p and ¢, then task ¢’ also possess a local phase difference of zero
between p and q.

When the local phase difference property is respected for all task names
in a phaser map, then we can establish an ordering between task names. We
introduce the notion of supersteps, borrowed from the Bulk-Synchronous Parallel
model. In this programming model, there is a single, global barrier for all tasks
to synchronise, so all tasks proceed stepwise, or in supersteps. In SBRENNER,
a group of tasks that share at least one phaser synchronises together. There
are two differences, with respect to the Bulk-Synchronous Parallel model. First,
multiple groups can be defined each with their own “global” barrier. Second,
tasks can be executing in different supersteps, because waiting is optional.
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Given a phaser map M, a task ¢ is one superstep ahead of another ¢’ if for every
phaser p in which both tasks are registered we have that M (p)(¢t) = (n+1,_)
and M (p)(t') = (n,_). Let z be an integer, and operations =, +, and — be the
usual equality, addition, and subtraction on integers, respectively. The superstep
difference A is a map from pairs of task names (1, t2) to integers Z.

Definition 6.1.1. Let (N, <A) be defined as
Vi, ts € N: At ) € Bg <= t; <aty
Definition 6.1.2. Let (N, =) be defined as
Vi1, ta € N: A(ty,ty) =0 <= t; =a o

Definition 6.1.3 (Total ordering). The relation structure (N, <,) is a total order-
ing if, and only if, it is

reflexive Vi € N:t <a t

transitive Vi, t5,13 € N:t] <A to Aty <Aty = t] <A t3
anti-symmetric Vi,,t0 € N:t; SaA oAty <aty = t1 =ats
compatible Vt,,t; € N:t; <A taVia <aty

Definition 6.1.4 (Type system for phaser maps). The type system for phaser
maps is defined in Fig. 6.1.

We are only interested in superstep differences A that are well-formed under
task names IV, notation N A, that is superstep differences where the relation
structure (N, <) forms a total ordering, rule D-wF.

For example,

« any difference map A is well formed for the empty set, ) - A;

« the difference map A, &f {(t,t): 0} is well formed for {t}, so we have
{t} l_ Al;

« the difference map A, & {(t,t): 4} isill formed for {¢} because A(t,t) #
_A<t7 t);

o let Ag be such that Ag(t, t) = Ag(t,, t,) = O, Ag(t, t/) = 1, Ag(t,, t) = —1,
then this difference map is well formed for {¢,#'}, or {¢,¢'} - Ag;
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Well-formed phase difference :

(N, <a) is a total ordering
th,tg € N: A(tl,tg) =z = A(tg,tl) = —z
NEA

Phase difference for labels :

A;tl;nl FP A(thtg) = (n1 — ’I"LQ)
Ajtizng B PW{ta: (ne; )}

Typing rules for phasers :

AFP Ast;nE P
AFPw{t: (n;_)}

Typing rules for phaser maps|A; N = M |:

AFP domP C N A;NEM

AN My {p: P}
(T-p-mAP-CcONS, T-P-MAP-NIL)

(D-wF)

A;t;n @ (D-L-coNs,D-L-NIL)

AFD (D-PH-CONS,D-PH-NIL)

A;NEOD

Figure 6.1: Typing rules for phasers and phaser maps.

.« the difference map A, & {(t,t"): 4} is ill formed for {¢,t'} since A4(t', 1)
is undefined;

« the difference map {(¢,t'): 0} is ill formed for {¢,#'} because A;(#',t) is
undefined.

Judgement A; t;n = P checks whether the superstep difference in P matches
the one in A between task name ¢ and every ¢’ € dom P (rule D-L-CONS).
Judgement A = P verifies if the superstep differences of the task names in P
respect the ones in A, by picking each task name in dom P and comparing it
the others in P (rule D-pH-cONs). Judgement A F M checks if the superstep
differences in M respect the ones in A, by checking each phaser independently
(rule D-PM-CONS).

To summarise, the type system enforces two rules:

1. there are no dangling task names mentioned in the domain of each phaser
of the phaser map, with respect to a given set V;

2. the phaser map respects a given difference map A and a set V.
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For example, let N = {t1,t5, 13}, N F A, A(ty,t3) = 2, and A(ts, to) = —1.
Phaser {¢;: (4,u),t2: (3,a)} is well-typed under superstep difference A.

—— D-PH-NIL. ————— D-L-NIL
AFD Aity; 310
D-PH-CONS
AF{ty: (3,a)} Asty;4 - {ly: (3,a)}
D-pPH-CONS
AFA{t;: (4,u),tz: (3,a)}
where
A(tl,tg) =2 A(t:;,tg) =—1
—— D-L-NIL transitivity

D-1-conNs
At 4 F {tzl (3,a)}

6.2 Typing states

For typing task maps, there are three ill-formed task map configurations to
consider. First, that the bounds of each task match exactly the registered phasers
in the phaser map of the state. For example, the state

({p: {t: (0,a)}},{t: (0, await;b)})

cannot reduce because by rule R-awaIT and Definition 5.3.13 phaser name p
must be in the domain of the bounds () of task ¢, and we have p ¢ 0.

Second, that the program of each task mentions phaser names that are in the
phaser map of the state. The next state cannot reduce because task ¢ is trying to
advance a non-existent phaser named p.

(@, {t: (0.adv(p);b)})

Third, that each tasks deregisters from all of its phasers upon completing so as
to avoid the creation of dangling task names. The state

({p {t (17 a): t' (07 a)}}v {t ({p 0}7 await; b)a t' ({p O}a end)})
cannot reduce because ¢’ terminated without deregistering from phaser p.

Definition 6.2.1 (Typing rules for task maps). The typing rules for task maps is
defined in Fig. 6.2.

Judgement ; M : I' assigns a typing I' to a phaser map M given a task
name ¢. The typing is constructed in such a way that its domain contains the
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Typing rules for activity permissions m

b M: T t ¢ dom P
Fe Mw{p: P}: T

Fe M: T P(t)=(_,a)

H MW {p: P}:TW{p: a}

Typing rules for bounds|T - B:

I'-B
F'wi{p:a} - By {p: n}

Typing rules for tasks :

I'B TFb0 S (0:0);TF(B,b)
(0;0);T" F (B,b) ;T + So (B,b)

Typing rules for task maps |>; M = T'}:

e M: T U:I'Fr XM ET
YW{t: UV METY{t: 7}

o 0: 0 (T-PERM-SKIP, T-PERM-NIL)

(T-PERM-CONS)

00 (T-B-c,T-B-N)

(T-T-R,T-T-F)

O:M =0  (T-TM-c,T-TM-N)

Figure 6.2: Typing rules for permissions, bounds, tasks, and task maps.

phaser names in which task name ¢ is registered. For example, we have that the
next derivation holds.

0 @T—PERM—NIL
i T-PERM-CONS (6.1)
Fe {p: {t: (0,a)}}: {p: a}

Judgement I' = B checks if the domain of typing [ matches the domain of
bounds B. For example, bounds {p: 0} are well typed under typing {p: a}.

— T-B-N

T-B-C
{p:a} - {p: 0}

A (tree) node of differences W::=(A; 3J) pairs a map of children 3 and map
of differences A. A ¥ maps task names to nodes V. Judgement ¥; I" - 7 types a
task under a node of differences ¥ and a typing I['. Typing a finish task requires
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Typing rules for abstract machines :

domT + A A;domT = M S MET
(A;Y) (M,T)

(T-AmACH)

Figure 6.3: Typing rules for states.

a node of differences W to be able to check a nested states (rule T-T-F), otherwise
the node of differences must be empty (0); (). The type system checks whether
typing I' is enough to check the bounds B and the program b of regular tasks,
rule T-T-r. Furthermore, the outcome of typing b is an empty typing, which
means the task must deregister from every phaser before terminating,.
Judgement >; M F T types a task map 7" under a map of nodes > and a
phaser map M. The domain of ¥ and of 7" must be equal, meaning that for each
task 7 there is a node of differences W, rule T-TMm-c. For each task 7 named ¢, the
type system checks task 7 under its registered phasers [' and node differences W.
To summarise, the type system enforces three rules:

1. the phasers in which task ¢ is registered with (by inspecting the phaser
map) equals the ones in the task’s bounds, rules T-B-c and T-TM-C;

2. the free phaser names of any tasks’ instructions is registered phasers,
rules T-T-r and T-PERM-CONS;

3. any task that terminates is not mentioned in the phaser map, rule T-T-R.

Definition 6.2.2 (Typing rules for states). The typing rules for task maps is
defined in Fig. 6.3.

Judgement ¥ I S types a state S under a node of differences V. Given a
node of differences (A; Y), the type system uses the map of differences A and
the domain of the task maps 7" to type the phaser map M, thus it ensures the
absence of dangling task names and that the phaser map respects the phase
differences in A. The map of tasks 7" is typed under the map of nodes > and the
phaser map M, meaning that for each task named ¢ in the task map 7'(¢) there
must be a node X(t) = V.

6.3 Inversion

Inversion lemmas serve as the cornerstone for many of the results we establish.
These are, nonetheless, an idiosyncrasy of our choice to represent composed
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structures with maps (and sets). The gist behind these results are: given a typing
relation for a map (like a task map) and a member of that map we can deconstruct
the map obtain the typing relations of its constituents. For example, given a
well-typed task map 7" and a member 7'(t) = 7, then we show that there exists
a task map 7" such that 7' = 7" W {¢: 7}, task map 7" is well typed, and 7 is
also well typed. The proofs for these results are uninteresting and follow by
induction on the typing relation. In the remainder of the section we establish
the inversion property for typing arguments, typing task maps, inferring the
typing context of a phaser map, and typing the differences of a phaser.

Lemma 6.3.1. IfI' - s: I and p € s, then there exist some arguments s' and a
typing I' such that s = s’ W {p}, I" =" W {p: a},['(p) =a, '+ s: T".

Proof. The proof follows by induction on the typing relation. We perform an
inversion of I' - s: I and a case analysis on the derivation.

e Case T-A-N
IF'EQ:0

We reach a contradiction since we have that p € ().
+ Case T-aA-c:
['(q)=d sy

I'F(siw{q}): T1w{qg: a'}
where s is s; W {¢} and I is ' W {q: a}. If p = ¢, the case holds.
Otherwise, p # q and therefore p € s;. Applying the induction hypothesis
tol' - s1: I'; and p € s; we get that there exist some arguments s, and
a typing I's such that sy = so W {p}, 'y = o W {p: a}, () ['(p) = a, and
I'F sy: I'y. We have that I & Ty {¢: a}and & ey {q}.

Hence,
() C(q) =d I'Fosy: Ty
T-a-c

PE (sow{g}): ot {q: a'} 4
s 1" -

Lemma 6.3.2. If ¥1; M T} and T1(t) = 7, then
1 El - 22 <] {t \I/},
2Ty =Tyw{t: 7},

3. l_tMIF,
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4. V:I'F 7, and

Proof. The proof follows by induction on the typing relation. We perform an
inversion of >1; M F T and a case analysis on the derivation.

o Case T-TM-N:
0;MFEQ

where X1 is ) and T is ). We have thatt € dom T, yet T def (), so this case
does not apply.
« Case T-T™m-c:

(l) l_t1 M: Fl (ll) \Ijl, Fl l_ 1 (lll) 23, M l_ T3
23 %) {tli qfl},M F T3 %) {tli 7'1}

where ¥y is X3 W {t1: U1} and T} is T3 W {t1: 7 }. If t = t1, we are done.
Otherwise, we know that ¢ # t;. Hence, ¢ € dom T3 and by the induction
hypothesis we have that: (iv) X3 = X, W {¢t: U}, (v) T3 = Ty W {t: 7}
B)F¢ M:T',(4) ;' 7, and (vi) Xy; M + T}.

Let 22 déf 24 ) {tlf \Pl}, hence (1) 21 = EQ (] {t \I/} Let TQ déf T4 (]
{t1: 71}, we have that (2) T} = T> W {t: 7}. We are left with showing (5),
in the following.

(1) l_tl M Fl (ll) \Ill;Fl H 1 (Vl) 24; M+ T4
24 %) {tli \Pl},M H T4 W {tli 7'1} def
So: M T N

T-tMm-C

O

Lemma 6.3.3. IfI'y - By andp € domI'y V p € dom By, then there exist 'y
and By such that Ty =Ty W {p: a}, By = BoW{p: n}, andT'y F Bs.

Proof. The proof follows by induction on the relation I'y - B;. We perform a
case analysis on the derivation tree of the last rule applied.
() I's - By
Isw{q: '} F BswW{q: m}

where I'j) = '3 W {q: ¢’} and B; = B3 W {q: m}. If p = ¢, we are done.
Otherwise, we have that p # ¢ and therefore, (ii) p € dom['3 V p € dom Bs.
Applying the induction hypothesis to (i) I's F B; and (ii)) p € dom['3 V p €
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dom Bs, yields that there exist I'y and By such that (iii) I's = Ty W {p: a},
(iv) Bs = BywW{p: n},and (v) 'y - By. LetI'ys = I'y W {q: d’} and By =
B, W {q: m}. Thus,
V) Tyt By
Lyw{g: d'} F Bsw{q: m}

'y F By

]

Lemma 6.3.4. Ift, M;: T andt ¢ dom M (p), then there exist a phaser map My
and a phaser P such that

1. Mlegtt'{p5 P};
2. |_t Mg: I.

Proof. The proof follows by induction on the typing relation -, M;: I'. Next,
we perform a case analysis on the derivation of the last rule applied.

« Case T-PERM-NIL:

"t®3@

where M is () and I is (). We reach a contradiction because p € dom ().

« Case T-PERM-SKIP:

(i) F Ms: T (ii) t ¢ dom P’
Fe Msw {q: P'}: T

where M, is M3 W {q: P'}. If p = ¢, then we are done. Otherwise, p # ¢,
thus ¢ ¢ dom M;(p). Applying the induction hypothesis to -, Mj: T,
and t ¢ dom M;(p) yields that there exist a phaser map M, such that
(iii) M3 = M, @ {p: P}, (iv)Fy My: T. Let My = My W {q: P'} such
that (1) My = My W {p: P}.

(iv) Fy My: T (ii) t ¢ dom P’
Fe Myw{q: P'}: T 4,
(3) F My: T

T-PERM-SKIP

« Case T-PERM-CONS:

(i) Fy My: TV (i) P'(t) = (m,d)
Fe MW {q: P'}: T"w{q: '}
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where M is My W {q: P’} and T"is I" W {q: d'}. If p = ¢, we reach
a contradiction. Otherwise, we have that p # ¢. Applying the induc-
tion hypothesis to F; Mj: IV and ¢t ¢ dom Mj3(p), results in a phaser
map M, and a phaser P such that (iii) M3 = M, W {p: P}, (iv)F, My: T,
Let (1) My = M, W {q: P'}. Thus,

) by My: TV @) P'(t) = (m,d)

Fe Myw{g: P} "W {g: a'} 4

by My: T B

T-PERM-CONS

]

Lemma 6.3.5. If -, M;: 'y andt € dom M;(p), then there exist a phaser
map M, a typing I's, a phaser P, and a flag a such that

1. My = Myw{p: P},
2. Ty =Tyw{p: a}, and
3. l_t Mgi Fg.

Proof. The proof follows by induction on the typing relation -, M;: I';. Next,
we perform a case analysis on the derivation of the last rule applied.

» Case T-PERM-NIL:

¢ 0:0
where M is () and I is (). We reach a contradiction because ¢ € dom {)(p).
+ Case T-PERM-SKIP:

(i) by Ms: T (i) t ¢ dom P’
Fe Msw{q: P'}: T

where M is M3 W {q: P'}. If p = g, then we are done, as we reach a
contradiction. Otherwise, p # ¢, thus ¢t € dom M3(p). Applying the
induction hypothesis to -, M3: I'1, and ¢t € dom M;(p) yields that there
exist a phaser map M, and a typing 'y such that (iii) M3 = My & { p: P},
)Ty =Tyw{p: a}, and (iv) -y My: T'y. Let My = My W {q: P’} such
that (1) M; = My W {p: P}.

(iv) b My: Ty (ii) t ¢ dom P’
Fe MyW{q: P'}: Ty det
(3) k¢ My: Ty

T-PERM-SKIP
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+ Case T-PERM-CONS:
(i) F M3: T (i) P'(t) = (m, )
l_t Mg@ {q Pl}l Fg[‘ﬂ {q a’}

where M is M3 W {q: P’} and 'is [V W {q: a'}. If p = ¢, we are done.
Otherwise, we have that p # ¢. Applying the induction hypothesis to
k¢ M3: T's and t € dom M (p), results in a phaser map My, a typing [y,
a phaser P, and a flag a such that (iii) M3 = M, W {p: P}, (iv) ['s =
Lyw{p: a},and (v) by My: Ty. Let (1) My = My W {q: P’} and (2) Iy def
I'yw{q: a'}. Thus,

W) b My: Ty Q) P'(t) = (m,d)
Fe MyW{q: P'}: Ty W{q: a'} def
F My Ty B

T-PERM-CONS

O

Lemma 6.3.6. If A; N - M; and M, (p) = P, then there exists a phaser map M-
such that:

1. My, =My {p: P},
2. AF P,
3. dom P C N, and
4. A; N+ M.
Proof. We invert the hypothesis and get the following proof tree.

Q) AFP (ii) dom P’ C N (iii) A; N F My
A;NE My {p: P}

where phaser map M is M3W{p': P'}. If p = p’ we are done. Otherwise, p # p/,
and therefore (iv) p € dom Ms.

Applying the induction hypothesis to (iii) A; N = M3 and (iv) p € dom M,
yields that (v) M3 = My W {p: P}, (vi) A F P and we get (2), (vii) dom P C N
and we get (3), and (viii) A F M,. We are left with showing (1) and (4). Let M, =
M,y {p': P'}.

AFP (i) domP CN  (vii) A; N F M,
A NEMw{p': P}
4) AN M,

T-P-MAP-CONS
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Lemma 6.3.7. If A;t;;ny = Py and Pi(ts) = (ng,aq), then there exists a
phaser P, such that

1. P1 :P2H'J{t2: (n2>a2)}’
2. A; tl; ny H Pl: and
3. A(tl,tg) = N1 — Na.

Proof. The proof follows by induction on the derivation of the structure of
first hypothesis. By inverting hypothesis A;t;n, - P; we get the following
derivation.
(l) A, t17 nq F P3 (ll) A(tl, tg) = (n1 - ’n,3>
A;tl;nl - P3 ) {tgi (ng,_>}

If t3 = t,, then we are done. Otherwise, t3 # t5 and therefore ¢t € dom P;. Let
(iii) Ps(t2) = (n2,as). Applying the induction hypothesis to (i) A;t;;nq F
P; and (iii), yields that there exists a phaser P, such that (iv) P3 = P, &
{ta: (n2,a2)}, (v) A;ty;ng B Py, and (vi) A(ty,t2) = ny — na so we get (3).
Let P2 = P4 W {t32 (ng, ag)}. We have that (1) PQ ] {tzl (712, CLQ)}.

W) Astyzn B Py (i) At t3) = ny — ns
A;tl;nl l_ P4 O} {tgi (ng,ag)} dif
(2) Astysng Py

D-L-conNs

]

Lemma 6.3.8. f N - A, A - P, Pi(t) = (n,a), then there exists Py such
that Py = P, W {p: (n,a)}, A+ Py, and A;t;n b P.

Proof. The proof follows by induction on the structure of A - P;. We invert the
hypothesis and obtain the following derivation.
i)AF P (ii) A;t';m B Py
AF Py {t: (m,a)}

If t = t/, then we are done. Otherwise, t # t' and therefore ¢t € dom P;.
Hence (iii) P3(t) = (n,a). Applying the induction hypothesis to (i) A - P;
and (iii) P3(t) = (n,a), yields that (iv) P3 = P, W {t: (n,a)}, (v) A+ P, and
i) Astsn b Py

Since (i) A;#';m F P; and (iii) P3(t) = (n, a), then by Lemma 6.3.7 there
exists a phaser P, such that P; = P{W{t: (n,a)}, A;t';m b P, and A(t',t) =
m — n. Given that P; = P, W {t: (n,a)} and that P; = P, W {t: (n,a)},
then P, = P;. Thus, we have that (vii) A;¢;m F Py.
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Let P, & Py w {t': (m,a)}.

vi) A+ Py (vii) A;t'ym b= Py

D-pH-CONS
AFPW{t': (m,ad)} 4
@) AF P, B
Finally,
At t)=(m—n
(.0 = ( ) Inv. NF A

vi) A;t;n - Py A(t,t') = (n—m)
Astin b Pyy{t': (m,a)} 4
B)A;t;nkE Py

D-1-coNs

6.4 The domain of typing contexts

We establish some properties about the domain of typing contexts.

1. any member of a well-typed s must be in the in the domain of its typing
contexts;

2. any phaser in the inferred typing’s domain of a phaser map, is also in the
domain of that phaser map;

3. the typing relation -; M : I" constructs typing [" as
{p:a|VpedomM: M(p)(t) = (n,a)}
Lemma 6.4.1. IfT'F s: [, thenT” C T and domI” = s.

Proof. The proof follows by induction on the typing relation. We do a case
analysis on the derivation of the last rule applied.

+ Case T-A-N:
CEG:0
where s is () and I" is (). We have that s = () = dom {).
+ Case T-a-c:
)T (p) =a @IrEs: T
I'Esw{p}: T"w{q: a}
where [V isI"W{q: a} and sis '/ {p}. Applying the induction hypothesis
to (ii) [' - s": T we get that '/ C " and dom I = s'. Thus, dom I U
{p} = s U{p}. And, by definition we have domI" = s, so I" C T..
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Lemma 6.4.2. Ift, M: I, thendom I’ C dom M.

Proof. The proof follows by induction on the typing relation. We perform an
inversion and a case analysis on the derivation of the last rule applied.

« Case T-PERM-NIL:
l_t (Z)I @
where M is () and T is (). We have that dom () C dom () by definition.
« Case T-PERM-SKIP:
Fe M T t ¢ dom P
'k Mw{p: P}:T
where M is M' & {p: P}. Applying the induction hypothesis to t;

M': T yields that domI" C dom M’. Given that domI" C dom M’
and dom M’ C dom M, then domI" C dom M.

« Case T-PERM-CONS:

e M:T P(t)=(_,a)
' My {p: P}: "W {p: a}

where M is M' W {p: P} and I'is " W {p: a}. Applying the induction
hypothesis to; M’: ' yields that dom I C dom M’. So, dom I"U{p} C
dom M’ U {p} and therefore domI" C dom M.

0
Lemma 6.4.3. Ift; M: T, then'(p) = a < M(p)(t) = (n,a).

Proof. (=)
The proof follows by induction on the typing relation -, M : I'. Next, we
perform a case analysis on the derivation of the last rule applied.

» Case T-PERM-SKIP:
H M T t ¢ dom P

Fe M'w{q: P}: T
where M is M' W {q: P}.

- Case p = ¢. In this case, we have that p ¢ dom M’. Hence,
Lemma 6.4.2 and -, M': T, we have that p ¢ domI" and we reach a
contradiction.
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- Case p # q. Applying the induction hypothesis tot; M': T"and p €
dom I yields that M'(p)(t) = (n,a) and I'(p) = a. As ¢ ¢ dom M’,
then we get that M (p)(t) = (n,a).

« Case T-PERM-NIL:

l_t @3 @
where M is () and I is (). We reach a contradiction because p € dom T’ def
p € dom ().
« Case T-PERM-CONS:
e M2 T P(t) = (n,a)
Fe M'w{q: P}: T"w{q: a'}

where M is M’ W {q: P} and I"is [" W {q: a’}. If p = ¢, we are done.
Otherwise, we have that p # ¢. Applying the induction hypothesis to
F¢ M': T and p € domI”, results in M'(p)(t) = (n,a) and ['(p) = a.
Thus, M (p)(t) = (n,a) and I'(p) = a.

( <= ) The proof follows by induction on the typing relation -, M : T'. Next,
we perform a case analysis on the derivation of the last rule applied.

o Case T-PERM-SKIP:
Fe M': T t ¢ dom P

Fe MW {q: P}: T
where M is M’ W {q: P}. We have that ¢ # p, otherwise we get a
contradiction, as t € dom P and ¢ ¢ dom P. Applying the induction
hypothesis to -, M': I"and M'(p)(t) = (n,a) (since p € dom M’), yields
I'(t) = a.

» Case T-PERM-NIL:

l_t @3 @
where M is () and T" is (). The case does not apply as dom M # ().
« Case T-PERM-CONS:

e M:T P(t)=(_,a)
Fe MW {q: P}: T"w{q: a'}

where M is M' W {q: P} and I'is IV W {q: a'}. If p = ¢, we are done.
Otherwise, we have that p # ¢. Applying the induction hypothesis to
¢ M': TV and M'(p)(t) = (n,a), results in I"(t) = a. Hence, I'(t) = a.

]
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6.5 Strengthening

Strengthening is when we are able to generalise the context necessary to type
given a term. The intuition behind usefulness of these lemmas is that with them
we can “forget” certain restrictions on the left-hand side of the turnstile (the
context). We establish the strengthening of the typing for arguments, of the
phaser map when inferring a typing, of the phaser map when checking task
maps, of the task names when checking phaser maps, and of task names when
checking differences.

Lemma 6.5.1. IfT'W{p: a} - s: IV andp ¢ s, then" - s: I".

Proof. By inversion of the hypothesis we get the following premises.

@) (Tw{p: a})(q) =d @rw{p:atks: 1"
Fwip:a}lF (sW{q}): T"W{q: a'}

where s & ¢ 1 {q}. Since p ¢ s (hypothesis) and s gy {q}, thenp ¢ ¢'.
Applying the induction hypothesis to (ii) I' W {p: a} F s': I'” and the latter, we
get that (iii) [' - §': . Thus,

@) Tw{p:al)@)=d  p#q
I'(q)=d (i) + s 17
'k (sw{g}): I"w{q: d'}

T-A-C

Lemma 6.5.2. If
1. by MW {p: PY{t: v}}: I and
2.t ¢ domT,

then -y M W@ {p: P}: I.

Proof. Let M, M {p: Py {t: v}}. Wetestift € dom M;(p):

« Case t € dom M (p).

From Lemma 6.3.5 and - M;: I"and t € dom M, (p) yields that there
exists a typing I such that (i) ' = I" W {p: a} and (ii) - M : T". Hence,

(PwW{t: v})(t') = (n,a) t & dom M(p)
Q) Fy M: T’ P(t') = (n,a)
Fo MW {p: P}: "W {p: a}

T-PERM-CONS
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« Caset ¢ dom M (p).

From Lemma 6.3.4 and by M;: I" and t ¢ dom M;(p) yields that (i) -
M : T'. Thus,

t ¢ dom M, (p)
() Fy M:T t' ¢ dom P
Fo MW {p: P}: T

T-PERM-SKIP

Lemma 6.5.3. If
1. My {p: Pu{t: v}} T and
2.t ¢ domT,

then ¥'; M & {p: P} FT.

Proof. The proof follows by induction on the typing relation (1). Next, we
perform a case analysis on the derivation of the last rule applied.

« Case T-TM-N:
;M {p: PY{t:v}} 0

The case holds by direct application of rule T-Tm-N.
+ Case T-T™m-c:

(i) Fy M;: T (v, r'er (iii) X" My T
St Uk M, F T e {t: 7

where Sis X" W{t'": U}, Myis Mw{p: PW{t': v}}and Tis T"w{t': 7}.
By Lemma 6.5.2 and ¢t ¢ domT we get that (iv) -y M W {p: P}: I.
Applying the induction hypothesis to ¥”; M; - T’ and t ¢ dom 7T’ (as
t ¢ domT) yields (v) ¥"; M @ {p: P} F T Thus, with rule T-TM-c we
get the following tree.

(iv) Fe My {p: P}:T (@ ¥ITFr WY Mu{p: P}ET
E”Lﬂ{t’:\I/};Mll—T'LirJ{t':T}dif
E/;MLﬂ{p:P}I—T
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Lemma 6.5.4. IfA; N = M andt; M: (), then A; N\ {t} - M.

Proof. The proof follows by induction on relation A; N = M. We do a case
analysis on the derivation of the last rule applied.

« Case T-P-MAP-NIL:
A;NFE(

where M is ().
The proof concludes with the application of rule T-P-MAP-NIL.
» Case T-P-MAP-CONS:

HAFP (i) dom P C N (iil) A; N F MY
A;NEM wip: P}

where M is M" & {p: P}.

Applying the induction hypothesis to (iii) A; N = M’ and F; M : () yields
that (iv) A; N \ {¢t} = M’. From Lemma 6.4.3 and -; M : () we get that
(v) t ¢ dom P. Hence, we can apply rule T-p-MAP-CcONs to conclude this
case.

(v)t ¢ dom P (ii) dom P C N
QAR P dom P C N\ {t} (iv) A; N\ {} F M’
AN\ A{t} - M w{p: P}

Lemma 6.5.5. If N - A, then N \ {t} - A.
Proof. We invert N = A and obtain

(i) (N, <) is a total ordering
(11) th,tg €EN: A(tl,tg) =z = A(tg,tl) = —z
NEFA

By Definition 6.1.3 and (IV, <a) is a total ordering, then (N \ {t}, <a) is a total
ordering. From (ii) we get Vt1, 1t € N\ {t}: A(t1,t2) = 2 = A(ta, 1) = —=.
Hence, we conclude the proof by applying rule D-wr. [

Lemma 6.5.6. If (\;X) - (M, T W {t: (B,end)}), then (A\;X) F (M,T).



92 CHAPITER 6. TYPE SYSTEM PROPERTIES

Proof. By inverting the hypothesis we get
@HNEFA (i) A;NEFM (i) X; M T w{t: (B,end)}
(AS)E (M, Tw{t: (B,end)})

where N = dom T U {t}. Inverting (iii) yields the following premises

ODEO () - end: ()
(iv) k¢ M: 0 (0;0);T F (0, end) WX M~ET
Y {t: (0;0)}; METw{t: (,end)}

where ¥ is X' W {¢t: (0;0)} and B is (. Since we have (i) A; N - M and
(iv) by M: (), then by Lemma 6.5.4 we have (vi) A;domT + M. Since we
have (i) NV + A, then by Lemma 6.5.5 we have (vii) dom 7 + A. The proof
concludes by applying (vii), (vi), and (v) to rule T-AMACH. ]



Chapter Seven

Subject reduction

A type system enjoys the property of subject reduction if the reduction relation
preserves well-typedeness. The objective is to show that, for any well-typed
term, reduction always yields typable terms. This property works as a “sanity
check” of type systems.

To understand the basic idea behind subject reduction, the reader can proceed
to the proof of Lemma 7.10.2. The proof is trivial, as we need only to ensure that
program concatenation preserves the typing I'.

The chapter is divided into one section per reduction relation, plus a section
for the main result (Theorem 7.11.1).

7.1 Async

Definition 7.1.1. We define function copyp(t,,ty, A) A’ Let Al(t, ) =
Alto,t'c), where o = [t,/ty].

Lemma 7.1.1. If N - A, then N U {t'} - copy, (¢, 1/, A).
Proof. Let copyp(t,t',A) = A’

1. We show that if t1,t, € N U{t'} and A’(t1,19) = 2, then A(tg,t1) = —=.
From Definition 7.1.1 and A’(t1,t5) = z, we have that A(ty0,t20) =
z. But we know that N + A, thus A(ty0,t10) = —z and therefore
From Definition 7.1.1 A'(¢,t5) = z.

2. We now show that (N U {t'}, <) is a total ordering. Substitution o =
[t/t'] is an injective function over IV, hence we can state that <,, is an
ordering induced by o on N, defined by:

Vi1, to € NU {t/}i t1 <arty <= ti10 <A oo

Since (IV,<a) is a total ordering and o is an injective function from
NU{t'} to N, then </ (the ordering induced by o) is also a total ordering.

93
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Applying rule D-wr to (1) and (2) concludes this proof. ]
Lemma 7.1.2. IfA;t;nt P andty ¢ dom P, then copyy(t1,t2, A);t;n - P.

Proof. The proof follows by induction on the typing relation. We perform a case
analysis on the derivation of the last rule applied.

+ Case D-L-NIL:
Ait:n k0
The case holds with the application of rule D-L-N1L.

+ Case D-L-CONs:
(i) Ast;n b P (i) A(t,t') = (n—n')
AstynkE Pry{t: (n;a)}
where P is P W {t: (n’;a)}. Let A" = copyy(t1,t2, A). Applying the
induction hypothesis to A;¢;n = P and ty ¢ dom P’ (as t, ¢ dom P),
we get (iii) A’; t;n = P'. Since t # t5 and t’ # t,, then by Definition 7.1.1
A(t,t") = A'(t,t') and therefore A'(¢,t') = (n — n'). Hence,
(iii) A t;n = P! iv) A'(t,t") = (n —n')
A'st;n B PPy {t: (n;a)}

D-1L-cons

Lemma 7.1.3. If A P andt, ¢ dom P, then copyp(t1,t2, A) F P.

Proof. The proof follows by induction on A - P. We perform a case analysis
on the derivation of the last rule applied.

« Case D-PH-NIL:
AFD

The proof for this cases consists of the direct application of rule D-pPH-NIL.

+ Case D-PH-CONS:
iHAEFP (i) A;t;n = P
AFPW{t: (nja)}
where P is P' W {t: (n;a)}. Let A" = copyp(t1,t2, A). Applying the
induction hypothesis on (i) A = P’ and t5 ¢ dom P yields (iii) A" - P’.
With Lemma 7.1.2, (ii) A;t;n = P/, and to ¢ dom P (hypothesis), we
get (iv) A;t;n b+ P

Therefore,

(iii) A" - P’ (iv) A t;n = P’
A'FPW{t: (n;a)}
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[]
Lemma 7.1.4. If A;t;;n = P andty ¢ dom P, then copyy(t1,ta, A);ta;n F P.

Proof. The proof follows by induction on the typing relation. We perform a case
analysis on the derivation of the last rule applied.

« Case D-1L-NIL:
Aitizn b0

The case holds with the application of rule D-L-NiL.

» Case D-1L-coONSs:

(1) As;ty;n b P (i) A(t1,t) = (n —m)
Asti;nE PPy {t: (m;a’)}

where P is P’ W {t: (m;a’)}. Let A" = copyp(t1,t2, A). Applying the
induction hypothesis to A;ty;n = P and t; ¢ dom P’ (as ty ¢ dom P)
results in (iii) A’;to;n = P’. Given that t; # ty and t # ts, then by
Definition 7.1.1 A/(t1,t) = A(ty, t), thus (iv) A’(¢1,t) = (n — m). Thus,

(iii) As;ty;n = P (iv) A(t1,t) = (n —m)
Ajty;n e Pry{t: (m;ad)}

D-1-conNs

Lemma 7.1.5. f N F A, A+ P, P(t;) = v, ty ¢ dom P, then
COpyD(tl,tQ, A) FPW {tzi ?J}

Proof. Let v = (n;a) and A" = copyp(t1,t2, A). Since we have N - A, A +
P, and P(t;) = (n;a), then there exists P’ such that P = P' W {p: (n;a)},
(i) A F P, and (ii) A;¢1;n = P'. By hypothesis we have that ¢, ¢ dom P
and we know that P = P’ W {p: (n;a)}, then (iii) to, ¢ dom P’. Applying
Lemma 7.1.4 to (ii) A;¢y;n = P and (iii) to ¢ dom P, yields (iv) A';to;n = P'.
By inverting N - A, we have that < is symmetric and t; € N, thus t; <a t;
and therefore from Definition 6.1.1 (v) A(¢;,t;) = 0. Hence, we have the
following premise (vi).

V) A(ty,t1) =0 ([t1/t2])(t2) = 1
(iv) A toy;n B P A'(tg,t1) =0
AtysnE PPy {ti: (nja)} 4
Aity;nt P N

Definition 7.1.1

D-L-cons
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Therefore,

AF P ty¢domP
Lemma 7.1.3
A'+P (i) A'sto;n B P
A'F PW{ty: (n;a)}

D-PH-CONS

[

Lemma 7.1.6. If N - A, A; N & My, My = copy(s,t,t', M), andt’ ¢ N, then
copyp (t,t', A); NU{t'} = My

Proof. Let A’ &f copyp (t,t', A)and N’ = N U {t'}. The proof follows by induc-

tion on M’ = copy(s, t,t’, M). We perform a case analysis on the derivation of
the last rule applied.

» Case CpPY-NIL:
copy(0,t,t',0) =0

where M is (). The case concludes with rule T-P-MAP-NIL.
« Case CprY-CONS:

(i) copy(s,t,t’', M) = M’ (i) P(t)=wv
copy(s W {p},t,t', M & {p: P}) =M & {p: Py {t': v}}

where M, is M {p: P} and Myis M'w {p: P {¢': v}}. Let (iii) P’ &

P {t': v}. With Lemma 6.3.6, A; N - M, and M;(p) = P, we get
(iviAF P,(v)dom P C N, and (vi) A; N - M.

(a) Since we have that (v) dom P C N and t’ ¢ N (hypothesis), then
(vii) ¢’ ¢ dom P. From Lemma 7.1.5, N - A (hypothesis), (iv) A - P,
(i) P(t) = v, and (vii) t' ¢ dom P, we get that A" + P’.

(b) The following tree holds.
domP C N
domPU{t'} CNUt'}
dom P’ C N’ B

(c) Applying the induction hypothesis to NV = A (hyp.), (vi) A; N = M,
1) copy(s,t,t, = , (vi) A; ,and ¢ othesis
(i) copy(s, £, £/, M) = M, (vi) A; N - M, and # ¢ N (hypothesis)
to obtain A’; N’ = M.
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Hence,
(a) A"+ P (b) dom P' C N’ ) A N' =M
AN EMw{p: P}
copyp (£, t', A); NU{t'} = M, N

T-P-MAP-CONS

» Case Cpy-SKIP:

copy(s,t,t', M) = M’ pé¢s
copy(s,t,t', MW {p: P}) =M w{p: P}

With Lemma 6.3.6, A; N = M, and M;(p) = P, we get (iv) A - P,
(v)dom P C N, and (vi) A; N = M.

(a) From Lemma 7.1.3, (iv) A F P, and t; ¢ dom P, we get that A’ - P.
(b) The following tree holds.
domP C N
dom P C N U{t'} if
domP C N’ B

(c) We apply the induction hypothesisto N = A (hypothesis), (vi) A; N
M, (i) copy(s,t,t', M) = M', and t' ¢ N (hypothesis) to obtain
A N'= M.

Hence,
(@ A"+ P (b) dom P C N’ ) A N' =M
AN+ M w{p: P} def
copyp (£, ', A); N U {t'} = M, N

T-P-MAP-CONS

O]

Lemma 7.1.7. If N - A, A; N = M, M" = copy(s,t,t', M), andt' ¢ N, then
there exists a A’ such that N U {t'} - A" and A'; N U{t'} - M".

Proof. Let A" = copyy(t,t',A). From Lemma 7.1.1 and N F A we get
NU{t'}+ A

From Lemma 7.1.6, N A (hypothesis), A; N = M (hypothesis), M’ =
copy(s,t,t', M) (hypothesis), and ¢’ ¢ N, then A’; N U{t'} - M. O
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Lemma 7.1.8. If, M : T, copy(s, ty,te, M) = M', and t # ty, thent-, M': T.

Proof. The proof follows by induction on copy(s, t1,t2, M) = M’. We perform
a case analysis on the derivation of the last rule applied.

« Case CpPY-NIL:
copy (D, t1,t2,0) =0

where M is (), s is (), and M’ is (). The case holds by hypothesis -, 0): T..
+ Case Cpy-CONs:

(i) copy(s',t1,ta, My) = My (i) P(ty) =v
copy(s' W {p}, t1,ta, My W {p: P}) = My w {p: PW{t: v}}

where M is M; W {p: P}, siss' W {p},and M"is Mow {p: P {t2: v}}.
We test the membership of ¢ € dom P.

- Caset € dom M (p). Applying Lemma 6.3.5tot; M: I, andt €
dom M (p), yields that there exist a typing I'" such that (iii) P(t) =
(n,a), I' = T W {p: a}, and -, M;: I". Applying the induction
hypothesis to the latter, (i) copy(s’,t1,t2, M1) = My, and t # to
(hypothesis), we get that (iv) -, Ms: [". Hence,

(iv) by My: T (i) P(t) = (L, a)
F My W {p: P}: T"W{p: a}

T-PERM-CONS

- Caset ¢ M(p).
Applying Lemma 6.3.4 to -, M : I and t ¢ dom M (p) we get that
. My : I'. With the induction hypothesis, the latter, (i), and ¢ # ¢
(hypothesis), we get that (iv) -, Ms: I'. Thus,
F My: T t ¢ dom P
Fe Mow {p: P}: T

T-PERM-SKIP

« Case CPyY-SKIP:

copy(s, t1,ta, My) = M, pés
copy (s, t1,ta, Mi W {p: P}) = Myw {p: P}

where M is My W {p: P} and M"is M, {p: P}. The proof has the same
structure as case CPY-CONS.

]
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Lemma 7.1.9. If X; M + T, ty ¢ domT, and copy(s,t1,ta, M) = M’, then
S M FT.

Proof. The proof follows by induction on the relation >; M = T'. We perform a
case analysis on the derivation of the last rule applied.

o Case T-TM-N:
0;MEQ

where ¥ is () and T is (). The proof for this case consists of a direct
application of rule T-TM-N.

« Case T-TMm-cC:

(i) Fe M:T () v; ' r (iii) X5 M =T
YW{t: U} MET'W{t: 7}

where Y is ¥'wW{t: U} and T isT'W{¢: 7}. From Lemma7.1.8, (i) M : T,
copy(s, t1,ta, M) = M’ (hypothesis), and ¢ # t, (hypothesis), and we get
that (iv) -, M’: T'. Next, we apply the induction hypothesis to ¥; M + T7,
to ¢ dom7’ (as ty ¢ domT), and copy(s,ty,ts, M) = M’ to obtain
(v) X; M’ = T'. Hence,

(iv) =, M T (@) w;r'+r WX MET
YW {t: Vb MET W{t: 7}

T-t™M-C

Lemma 7.1.10. IfV; " - (B, async(s,); b), then ¥; T = (B, b).
Proof. By inverting the hypothesis we get the following premises.
()T Hb:0
(O)T+B I async(s,b');b: 0
(0; 0);T - (B, async(s,b'); b)

The proof concludes applying rule T-T-R to premises (i) and (ii). O]

Lemma 7.1.11. If ;M + T'w{t: (B,async(s,V');b)}, copy(s,t,t', M) =
M', andt' ¢ domT U {t}, then X; M' =T W {t: (B,b)}.

Proof. By Lemma 6.3.2 and ¥; M + T'W {t: (B, async(s,V');b)} we get that

() O =3"w{t: U,
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(i) F, M: T,
(i) ¥; T+ (B, async(s,b');b), and
(iv) X' MET.

We know that (v) ¢ # t/, as from ¢’ ¢ dom T U {t} (hypothesis). Applying
Lemma 7.1.8, (ii) F; M : T, copy(s, t1,t2, M) = M’ (hypothesis), and (v) t # ¢/,
then (vi) F, M’: I'. From (iii) V;T' - (B, async(s,b’);b) and Lemma 7.1.10
we get (vii) U; ' F (B, b). Since we have t' ¢ domT U {t}, then (viii) ¢’ ¢
domT. Applying Lemma 7.1.9 to (iv) ¥"; M + T, (viii) t' ¢ domT7, and
copy(s,t,t', M) = M’ (hypothesis) yields (ix) >"; M’ + T.

Hence,
(vi) /, M": T (vit) ¥; T' - (B, b) ix) X" M'+T
YW {t: UL M ETW{t: (B,b)} 4t
SMFTwi{t: (B,b)}

T-TM-C

]

Definition 7.1.2. For any maps X and Y we have that X C Y if, and only if
VzedomX: X(z) =Y (z2).

Lemma 7.1.12. If

1L M:T,

2. VpedomM = t' ¢ domM(p), and

3. copy(s,t,t', M) = M,
then there exists a typing I'" such thatt, M': T', 1" C T, and dom " = s.
Proof. The proof

» Case CprY-NIL:
COPY(®7 t t/v @) =0
where M is (), sis (), and M is (). We have b, (): () (with rule T-PERM-NIL),
I' C 0, and dom ) = 0.

« Case CprY-CONS:

(i) copy(s',t,t', My) = My (i) P(t) =wv
copy(s' W {p},t, ', My W {p: P}) =MW {p: Py {t': v}}




7.1. ASYNC 101

where sis s’ W {p}, M is My & {p: P}, and M'is My & {p: Pw {t': v}}.
Since we have F; M : T" (hypothesis) and (ii) t € dom M (p), then there
exist a typing I and a flag a such that (iii) I' = [V W {p: a}, and (iv)
M; : T'. Applying the induction hypothesis to

- (iv) by My T,

- Vp € dom M; = t' ¢ dom M (p), from (2), and

- copy(s',t,t', My) = My
yields that there exists a typing [ such that (v) -y M': T, (vi) I C T,
and (vii) dom I = s'. Let (viii) P’ “py {t': v}. Since we have (v) Fy
M;: T" and p ¢ M, then by Lemma 6.4.3 p ¢ dom["” and therefore
I {p: a} is defined. Hence,

(v) by M;: T (viii) P'(t") = (s a)
He MyW{p: P'}:T"W{p: a}

T-PERM-CONS

Since (vi) [/ C I'and I' = I" W {p: a}, then I ¥ {p: a} C I'. And,
finally, from (vii) dom I = &', s = ¢ W {p}, and dom {I'" & {a: p}} =
dom I U {p}, then domT” U {p} = s.

« Case Cpy-SKIP:

(1) COPY(S, t7t/7 Ml) - M2 (ll)p ¢ S
copy(s,t,t/, My W {p: P}) =My W {p: P}

where M is My W {p: P} and M"is My W {p: P}. We test for the mem-
bership of ¢ in P.

- Case t € M;(p). Since we have I, M : I' (hypothesis) and (ii) ¢ €
dom M (p), then there exist a typing [ and a flag a such that (iii) I' =
IMw{p: a},and (iv) -, M;: I". Applying the induction hypothesis to
(iv) by My: TV, (2), and (i) copy(s, t,t’, My) = Ms, we get that there
exists a typing I'” such that -y My: T, I C I”, and dom " = s.
Thus,

p€domM = t' ¢ dom M(p)
o My: T t' ¢ dom P
H MywW {p: P}: T”

=

T-PERM-SKIP

- Caset ¢ M;(p). From -, M: T and t ¢ dom M (p), then
M;: T'. Applying the induction hypothesis to (iv) -, M;: T, (2),
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and (i) copy(s, t,t’, My) = M,, we get that there exists a typing [
such that -y My: IV, IV C T, and domI” = s. Thus,

p€domM = t' ¢ dom M(p)
l_t’ MQZ F/ t/ ¢ dom P
Fe My W {p: P}: T’

=

T-PERM-SKIP

Lemma 7.1.13. IfI" - s: IV and bounds(s) = B, then "  B.

Proof. The proof follows by induction on the typing relation I' - s: V. We
perform a case analysis on the derivation tree of the last rule applied.

« Case T-aA-N:
L'E0:0

where s is (). We have that bounds(s) = () = B (by Definition 5.3.10),
hence the case holds with rule T-B-N.
+ Case T-a-c:
AT (p) =a (IrEs: T
I'Fs'w{p}: "W {p: a}

where s is &' W {p} and I is I' & {p: a}. Let (iii) bounds(s’) = B’
We apply the induction hypothesis to (ii) I' - s’': I and (iii) to obtain
(iv) I = B'. Since we have (iii) bounds(s’) = B’ and s = s’ & {p}, then
by Definition 5.3.10 B = B'W{p: 0}. LetI'; be such thatI' = I'y W {p: a}.
Thus,

(T B
T-B-C
I"w{p: a} - B W {p: 0} def
' B B

]

Lemma 7.1.14. IfV; ' F (B, async(s,b');b) and bounds(s) = B’, then there
exists a typing I'" such that V; I + (B', V'), " C T, and dom I’ = s.

Proof. We invert the hypothesis to obtain the following premises.
@I Fs: TV @) Ir'Eo: 0
[+ async(s,b): T
()T'+B [+ async(s,b');0: 0
(0;0);T + (B, async(s,V');b)
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where W is ((); ()). From Lemma 6.4.1 and " - s: I, we get that (iv) [" C " and
(v) domI"” = s. Next, we apply Lemma 7.1.13 to (ii) I' - s: I” and bounds(s) =
B’ (hypothesis), and obtain (vi) " - B’. Hence, applying rule T-1-R to (vi) and
(iii) we get that (vii) (0; 0); T" + (B’,V'). The outcome of this proof consists of
premises (vii), (iv), and (v). ]

Lemma 7.1.15. If, M: T, ;T  (B,async(s,b');b), Vp € domM =
t' ¢ dom M (p), copy(s,t,t', M) = M’, and bounds(s) = B’, then there exists a
typing I such thatty M': TV and V;T" + (B, V).

Proof. From Lemma 7.1.12, F; M: I',Vp € dom M = t' ¢ dom M (p), and
copy(s,t,t', M) = M’, we get that there exists a typing [ such that (i)
M T, (i) I C T, and (iii)) dom " = s. Applying Lemma 7.1.14 to ¥; "
(B, async(s,t');b) and bounds(s) = B’ (hypothesis) we get that there exists
a typing I'” such that U; T F (bounds(s), V'), I” C T, and domT"” = s. Thus,
since we have IV C I, I C T", and domI"” = domI” = s, then IV = I'” and we
conclude the proof. O

Lemma 7.1.16. If A; N = M,t ¢ N, andp € dom M, thent ¢ dom M (p).

Proof. Since we have A; N = M and p € dom M, then by Lemma 6.3.6, we have
that dom P C N. But we know that ¢ ¢ N, hence t ¢ dom P. O

Lemma 7.1.17. If
1. ;M FETw{t: (B,async(s,b');b)},
2. A;NFE M,

“w

copy(s,t,t', M) = M,
4. bounds(s) = B/,

5t ¢ N, and

(=)

. N =domT U {t},
then then there exists a X' such that
M ETwW{t: (B,b)}w{t: (B,b)}

Proof. By Lemma 6.3.2 and ¥; M - T'W {¢: (B, async(s,b);b)} we get that
there exists a ¥ such that (i) -, M : T" and (i) ¥; " - (B, async(s, b'); D).

From Lemma 7.1.16, (2) A; N = M, (5) t' ¢ N, then we have (iii) Vp €
domM = t' ¢ dom M (p).
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Applying Lemma 7.1.15 to (i), (ii), (iii), (3) copy(s,t,t', M) =
(4) bounds(s) = B’, yields that there exists a typing [ such that (iv) -
and (v) U; IV = (bounds(s), ). Applying Lemma 7.1.11 to

M, nd
o M’

YoM bETw{t: (B,async(s,);b)}

,copy(s,t,t', M) = M' andt' ¢ domTU{t},then(vi)X; M' - T w {t: (B,b)}.
Let T/ & Tw {t: (B,b)}. Therefore,
iv) by M': T (v) U;T" F (bounds(s),t) (vi)X; M' T’ T
-TM-C
Sw{t: U M+ T w{t' (bounds(s),t)} def

Yw{th: U M +-Tw{t: (B,b)}w{t: (bounds(s),t')}

7.2 Phaser creation
Definition 7.2.1 (Substitution function for typing). Formula I'c is defined as:

p2 ¢ domT o = [p2/p1]
F'o={o(p): T'(p) | Vp € domI'}

Lemma 7.2.1. Ifo(p) = q, then (' W {p: a})o = (F'o) W {q: a}.

Proof.
(Tw {p: a})o =
(Fo)w ({p: a}o) =
FowW{o(p): a} =
Fow{q: a}

Lemma 7.2.2. I[fTo =T and o(p) = ¢, then T'(p) = T"(q).

Proof. From I'(p) = a, we have that I' = I'" W {p: a}. Applying Lemma 7.2.1
to o(p) = g and we get (I W {p: a})o = (I"0) W {q: a}. But we know that
I'oc =1, thus (I'"o) W {q: a} = I" and therefore I''(¢) = a. O

Lemma 7.2.3. Ifp ¢ s, then s[q/p] = s.

Proof. Lets = {p1,...,p,} and s[q/p| = {o(p1),...,0(pn)}. To show that s =
so it is enough to show that p; = o(p;). By Definition 5.3.4 since p; # p, then

o(pi) = pi- O
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Lemma 7.2.4 (Substitution for arguments). If 'y b s: T's, 0 = [pa/p1], p2 ¢
domTI'; N's, andp; ¢ s, thenT'10 - so: I'y0 and T'yo = Ts.

Proof. The proof follows by induction on the derivation of I'y - s5: I'y. We do a
case inspection on the last rule applied.

« Case T-aA-N:
i E0:0

where arguments s are () and typing I's is (). We have that o = ) (by
Definition 7.2.1) and () = (o (by Definition 5.3.4). Since p, ¢ domT'; and
p2 ¢ dom (), then, by Definition 7.2.1, I'y0 and (o are both defined. The
case holds by direct application of rule T-A-N.

IokQo: Qo

« Case T-a-c:
W) Ti(p) =a () Iy F s T

Iy Esw{p}: Thw{p: a}
where arguments s are s’ W {p} and typing I's is I', W {p: a}. From
o = [p2/p1], p2 ¢ domI';, and Definition 7.2.1, then (iii) I'yo = T7.
Let o(p) = ¢. Next, since (iii) ['yo = I'} and o(p) = ¢, then from
Lemma 7.2.2 we have that (iv) I'}(¢) = a. We have that the following
premise holds.

;s s=sW{p}
p1¢3’

(v)so =5

Lemma 7.2.3

And so does premise (vi).

I Es:T, o=[p/pi] pggédomflﬂs/l
I Fso: T T W so=4

vi) T} F s T

Since p; ¢ s, then p; # p and therefore (vii) o(p) = p (by Definition 5.3.4).
Hence,

(iv)IM(q) =a (vii)p=gq

I'(p) =a Vi) Fs": T,
s w{pt: Tyw{p: a} B
I'okFso: Ty

T-aA-c
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From 'y = T, W {p: a} and ¢ = p, then 'y = T, W {q: a}. And since we
have o(p) = ¢, then 'y = I', W {o(p): a}. Next, we have that I'y = I'y0, thus
'y =Tho W {o(p): a}. Thus, we apply Lemma 7.2.1 to o(p) = ¢ we get that
Iow{o(p): a} = (I'y W {p: a})o. Hence, I'y = I'y0. O

Lemma 7.2.5 (Substitution for arguments). IfI'y - s: I'y, 0 = [p2/p1], and
po & domI'; N's, thenTo b so: T'y0.

Proof. If p; € s, then we conclude the proof with Lemma 7.2.4. Otherwise,
p1 € s. By Lemma 6.3.1, '] - s: I', and p; € s, we have that there exist some
arguments s’ and a typing I's such that

(i) s=sw{p}

() To =Ts5W {p:: a},
(iii) I'y(p1) = a,
@) T+ ': T,

We apply Lemma 7.2.4 to (iv) ' + §': I's, 0 = [p2/p1] (hypothesis), po ¢
domT';Ns (hypothesis), and p; ¢ s (we get this from premise (i)), then (v) ['yo
s'o: I'so and (vi) I's0 = T's. But from Lemma 7.2.3 and p; ¢ s, we have
that (vii) s'c = §'. Since we know that p; ¢ dom 'y, then, by Definition 7.2.1,
I} = T'y0. Since we have (iii) ¥ (p;) = a and I'} = I';0, then from Lemma 7.2.2
we have that I'1(p;) = I'|(p2). Thus,

[(p2) =a I Es:Ts
p p T-aA-c
Iy E ("W {pe}): Ts W {pa:a}
ok so: (I'g)o

Lemma 7.2.6. IfI'c =1",0(p) = q, andp € domT, then I'(p) = ['(q).

Proof. From Definition 7.2.1 we have that domI” = {o(p) | p € domT'}. Thus,
if p € domTI and o(p) = ¢, then ¢ € domI". Since we have ¢ € domI" and
o(p) = ¢, then from Definition 7.2.1 we have I''(¢) = I'(p). O

Lemma 7.2.7. For any a if Vp € domI': I'(p) = a and I" = T'o, then Vp €
domI": I'(p) = a.

Proof. Let g € domI”. We have that ¢ = o(p) and p € domT". Since p € domT,
then I'(p) = a. From I'c = I, 0(p) = ¢, p € domT’, and Lemma 7.2.6, then
I'(p) = I"(q)- O
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Lemma 7.2.8 (Substitution for programs). IfI' - b: IV, p ¢ bn(b), ¢ ¢ domT,
o =lq/p|, thenT'o - bo: I'o.

Proof. The proof follows by induction on the typing relation over programs. We
perform a case analysis on derivation of the inversion of I' - b: T".

Case T-END.
I'tFend: T

where b & end and I' = T". By hypothesis we have that ¢ ¢ dom I, so from
Definition 7.2.1 I'o is defined. By Definition 5.3.4 we have that end = endo.
Hence,

— T-END
r=r’ I'ocFend: T'o

I'oc b endo: Mo

Case T-coNs.
(@ILkFq7: T b)) I"EY: TV

=40 IV
Next, we invert I' I i: I'”, performing a case analysis on the derivation of the
last rule applied.

+ Case T-PHASER:

I' - r = newPhaser(): ' W {r: u}

where i & = newPhaser() and I “ry {p: a}.

We have that r € bn(b) (from Definition 5.3.3), and that p ¢ bn(b) (hy-
pothesis), hence p # r and therefore (i) o(r) = r (from Definition 5.3.4).
We also know that bn(r = newPhaser(); V') &« {r}Ubn(V). From p # r
and the latter, we get that (ii) p ¢ bn(¥'). Since ¢ ¢ domI" and r ¢ domT,
then (iii) ¢ ¢ domI".

Applying the induction hypothesis to (b) I F b: I", (ii) p ¢ bn(b'), (iii) ¢ ¢
domI", o = [q/p] (hypothesis), and obtain that I''o I b'c: I'o. But, we
know that I = T'w{r: u}, hence I’o = (F'w{r: u})o. From(@i) o(r) = r,
the latter, and Lemma 7.2.1, we have (I' W {r: u})o = (I'o) & {r: u}.
Hence, we have (iii) (I'o) W {r: u} F ¥'o: I"o and (iv) r ¢ domT'o.

The following premise (v) holds.

(iv)r ¢ domD'o
I'c - p = newPhaser(): (I'o) W {r: u}

T-PHASER
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And therefore,
W Toki: (To)w{r:u} (i) (To)W{r:u}kbo: o
Lot (i;0)0: T'o

T-conNs

Case T-aDpv and T-DEREG have the same proof structure, so we just show
case T-ADV:
Fyw{r:u}tadv(r): I'y W {r: a}

where i & adv(r) and I & Ty w {r: u} and ['” 2 {r: a}.

From Definition 5.3.4 and p ¢ bn(adv(r);b") we get that (i) p ¢ bn(V).
Applying the induction hypothesis to (b) I F b: IV, i) p ¢ bn(V),
o = [q/p] (hypothesis), and obtain that /o  b'c: I'o. But, we know
that I = T'; W {r: a}, hence [0 = (I'y W {r: a})o. From (i) o(r) = r,
the latter, and Lemma 7.2.1, we have (ii) (I'y W {r: a})o = (I'o) W {r: a}.
Hence, we have (iii) (I'yo) W {r: a} F b/o: I"o.

As we have (ii) (I'1 W {r: a})o = (I'o) W {r: a}, then we also have
(iii) (T, W {r: u})o = (I'o) W {r: u}. Thus,

T-ADvV
FioW{p:u}Fadv(r): oW {p: a}
(iv)TokFi:TVo
Hence,
(iv)Toki: "o (i) Mo+ bo: o
T-cons

Lot (i;0)0: T'o

Case T-AWAIT:
VpedomI: I'(p) =a

I'Fawait: T

. def .
where 1 = await and I = I,

From Definition 5.3.3 and p ¢ bn(b), we get that (i) p ¢ bn(b'). We apply
the induction hypothesis to (b) I' = ¢': I, (i) p ¢ bn(V'), ¢ ¢ domT
(hypothesis), o = [q/p] (hypothesis), then (ii) ['o - Vo : V0.

From Definition 5.3.4 we have that await;b'c = await; (o). Since we
have Vp € domT": I'(p) = a and Lemma 7.2.7, then

Vp € dom (I'o): (I'o)(p) = a
and applying T-AwAlIT to the latter yields that

(iii) I'o + await: I'o
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Thus,
(i) o Fi: o (@) Tokbo:To

Totb (i;0)0: T'o

T-cons

 Case T-NEXT:
{p1:a,...,p,:a} Fnext: {p;:u,...,p,: u}

. def def def
where i = next, [ = {p;: a,...,p,: a},and " = {p;: u,...,p,: u}.

From Definition 5.3.3 and p ¢ bn(b), we get that (i) p ¢ bn(d/). It is
easy to see that dom[" = domI", hence (ii) ¢ ¢ domI"”. We apply the
induction hypothesis to (b) I'" = ¥": T, (i) p ¢ bn(V'), (i) ¢ ¢ domT,
o = [q/p| (hypothesis), then (iii) /o - /o : TVo. But we know that Vp €
domTI": T"”(p) = u, then from Lemma 7.2.7, Vp € dom o : (I'"o)(p) =
u. Thus, [0 = {¢;: u,..., g, u} and by Definition 7.2.1

Fo={q:a,...,q,: a}
Therefore, premise (iv) holds with rule T-AwAIT.
{g1:a,...,q,: a} Fawait: {¢;: u,...,q,: u}

Thus,
(iv)To - await: [0 (i) Mo FbVo: To
o b await; (V'o): Vo
Lot (await;b)o: o

T-cons

Definition 5.3.4

o Case T-ASYNC:
(1)F|_S]_11 (11)F1|_b1®

['F async(s,by): T

where i & async(s,b;) and I = I'. Since we know that (i) I' - s: T'y,
then, by Lemma 6.4.1, we have that I'; C I" and since ¢ ¢ domT, then
(iii) ¢ ¢ s. And according to Definition 7.1.2 since we have that ¢ ¢ dom I’
(hypothesis), then (iv) ¢ ¢ domI';. From (iii) and (iv) we have that
q ¢ domI'; Us.

The following premise (v) holds.
I kFs: Ty o=][q/p] (iv)q¢ domI1Ns
ok (s0): (T'y0)

Lemma 7.2.5
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From p ¢ bn(async(s, b1);b) and Definition 5.3.4, we have
p ¢ sUbn(b) Ubn(b)

Thus, (vi) p ¢ bn(V') and (vii) p ¢ bn(b;). Applying the induction hypoth-
esis to (i) I'y F by: 0, (vi) p ¢ bn(by), (iv) ¢ ¢ domT'y, and o = [¢/p],
yields (vii) T'yo F byo: (.

Hence, the following premise (viii) holds.
W) (Fo) = (so): (I'10) (vii)['yo F byo: 0
o F async(s, (b10)): To

T-AsyNC

Applying the induction hypothesis to (b) [' = b": I, (vi) p ¢ bn(V'), ¢ ¢
domI" (hypothesis), o = [¢/p| (hypothesis), results in (ix) ['c - b'o: [Vo.

And therefore,
(iv) To I async(s, (bio)): To (ix)Tokbo: o
I'o b async(s, (b10)); (b'o): o
Lot (i;0)0: T'o

T-coNs

Definition 5.3.4

« Case T-rFINIsH. the proof for this case follows a similar, yet simpler, struc-
ture than case T-AsyNc.

[]

Lemma 7.2.9. If N - A, A;N + M, q ¢ domM, andt € N, then A; N +
MW {q: P}, where P = {t: (0;u)}.

Proof. We have that A - P:

— D-PH-NIL —— D-1-NIL
A A;t;0F0
D-pH-CONS
AR {t: ()} 4
AFP B

Hence,
domP={t} teN
AP domP C N A;NEM
A;NEMuwu{p: P}

T-P-MAP-CONS
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Lemma 7.2.10. Ifp ¢ domT, thenT'[q/p] =T.

Proof. The proof follows by induction on the structure of I'. We perform a case
analysis on the structure of I'.

« Case I'is (). Let o = [¢/p]. The case holds by Definition 7.2.1, as o = 0.

« Case 'is [V W {r: a}. Let o = [¢/p|. Applying the induction hypothesis
top ¢ domI” (as p ¢ domT'), we have that (i) "o = I". Since p ¢ domT,
then r # p, and thus from Definition 7.2.1 (ii) o(r) = r. Thus,

Fr=r"w{r:a}
@) = T"o)w{o(r): a}
(Definition 7.2.1) =T"w{r:a})o
(hyp.) =Tlo

Lemma 7.2.11. If
1. (0;0);T + (B,p = newPhaser(); b),
2. q ¢ bn(b), and
3. ¢ ¢ domT,
then ((;0); '@ {q: u} = (B W {q: 0},b[q/p]).
Proof. By inverting hypothesis (1), we get the following two premises.

@ Ty {p:u}tb:0
G)T'+B I' b p = newPhaser(); b: ()
(0; 0);T + (B, p = newPhaser(); )

Let o = [¢/p] and 'y “ry {p: u}.

We know that ¢ ¢ bn(p = newPhaser();b) by hypothesis, hence ¢ # p.
Since ¢ # p and ¢ ¢ domT, then (iii) ¢ ¢ domI';. Applying the substitution
Lemma 7.2.8 for programs to (ii) I'; F b: 0, (2) ¢ ¢ bn(b), (iii) ¢ ¢ domT';, and
o = [q/p], yields 1o F bo: (.

As 3) p ¢ domI', we have that 'c = T, from Lemma 7.2.10. Hence,
['yo =T'W {q: u}, by Definition 7.2.1. Therefore, we have (iv): I' W {¢q: u}
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bo: ) Ty {q: u} Fb[q/p]: 0. And concluding, the next tree holds.

QT F B
-B-C
rw{qg:u} - Bw{q: 0} )T W{g: u} - blg/p]: 0
(0;0);Tw {q: u} - (Bw {q: 0},blg/pl)

-T-R

Lemma 7.2.12. If3; M =T, p ¢ dom M, and domT N dom P = (), then
SSMwu{p: P} T.

Proof. The proof follows by induction on the typing relation. We perform a case
analysis on the derivation of the last rule applied.
» Case T-T™m-C:

HM:T U7 MET
Yu{t: U} METW{t: 7}

where X is X' W {t: U} and T'is 7" W {¢: 7}. Since dom 7' N dom P = (),
then ¢ ¢ dom P. Applying the induction hypothesis to ¥'; M + T,
p ¢ dom M, and domT Ndom P = () yields ¥'; M W {p: P} - T'. We
conclude the case with rule T-Tm-c:
- M:T t¢domP
T-PERM-SKIP
o M:T U, T'-7 Y;Mw{p: P} T

Yuw{t: Uk Mu{p: P} T W {t: 7}

« Case T-TM-N:
0: M ()

where ¥ is () and T is (). The case concludes by direct application of
rule T-TM-N.

[]

Lemma 7.2.13 (Substitution for tasks). If
1. ;M ETuw{t: (B,p=newPhaser();b)},
2. q ¢ dom M, and

3. q ¢ bn(b),
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thenS; M W {q: {t: (G;u)}} =T W {t: (Bw{q: 0},b[q/p])}.

Proof. Let T} L1y {t: m}, 7 & (B,p = newPhaser();b), and M, My
{q: {t: (0;u)}}. Applying Lemma 6.3.2 to the hypothesis ¥; M + T} and
Ti(t) = 7 (by definition), yields (i) ¥ = ¥, W {t: ¥}, T} = Tw{t: nn},
(ii) F¢ M : T, (iii) U; T' - 7, and (iv) 2¢; M = T

To prove this lemma, it is enough to show the following three premises,
which we use to prove that X W {t: U}; My - T'W {t: 75} holds, where 7 &«

(BW{q: 0},b[q/p)).

(a) Show thatt; Ms: I'w {g: u}. From Lemma 6.4.2 and (ii) -, M : T, yields
that domI" C dom M. Since (2) ¢ ¢ dom M, then we have (iv) ¢ ¢ domT.
Thus,

(ii) F M: T P(t) = (0;u) q ¢ domT
e Mw{q: P}:TW{qg: u} 4
e My: T'W{q: u} a

T-PERM-CONS

(b) Show that ¥; '@ {g: u} I 7. By inverting (iii) ¥; I" - 71, we get that ¥ =
(0; @). Applying Lemma 7.2.11, (iii) (; 0); T F 71, (2) ¢ ¢ bn(b), and (iv) ¢ ¢
domT, then ¥;T'W {q: u} F 7.

(c) Show that ¥1; My - T'. Applying Lemma 7.2.12 to (iv) X; M = T, (2) q ¢
dom M, and dom T N {t} = 0 (since t ¢ dom T, yields that 31; M, - T.

We apply rule T-Tm-c to (a), (b), and (c) to conclude this proof. O

7.3 Deregistration

Lemma 7.3.1. If N - A, A; N = My, M,(p) = P;, andt € dom P, then there
exist a phaser map Mo, phaser P, such that:

1 MlegH_‘J{plpl},
2. Pp=Pw{t: v}, and

Proof. By Lemma 6.3.6, A; N = M, and M;(p) = P, we get that there exists a
phaser map M, such that (i) M; = My W {p: P}, (i) A - Py, (iii) dom P, C N,
and (iv) A; N F M. Let Py(t) = v. Since we have N - A, A+ Py, Pi(t) = v,
then there exists P, such that (2) P, = P, W {p: v}, V) A F P,.
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Hence,
(2 P =P,y {t: v}
dom P, C dom P, (iii) dom P, C N
VAFP dom P, C N (iv) A; N = M,
B)ANEF MU {p: P}

Lemma 7.3.2. If);T W {p: a} + (BW{p: n},dereg(p);b), then
0;T + (B,b)
Proof. We invert the hypothesis to obtain the following premises.
(i) TC+Hb:0
A Trw{p:a} F By {p: n} I'wW{p: a} b dereg(p); b: 0
(0;0); T w{p: a} = (BW{p: n},dereg(p); d)

Further, we apply Lemma 6.3.3to ' W {p: a} F B W {p: n} to obtain (iii) I - B.
Hence,

(i) T+ B @I Eb:0
(;0);T F (B,b)

Lemma 7.3.3. If
S;Mu{p: Pw{t: v}} FTw{t: (BW{p: n},dereg(p);b)}
then there exists > such that

YsMw{p: P} -Tw{t: (B,b)}

def

Proof. Let M, MW {p: Pu{t:v}}, T =Tw{t: 1}, and

e def (BW{p: n},dereg(p);b)

Applying Lemma 6.3.2 to the hypothesis 3; M; = T} and T1(t) = 71 (by
definition), yields (i) X = Xy W {¢: ¥y}, (ii) b, My: Ty, (iii) ;T F 7, and
(iv) Xy ; M E=T.

Let M, & M {p: P}, Ty Ty {t: »},and 7 & (B,b).
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(a) Show that b, My: T's holds. Since b, My : T’y and M (p)(t) = (n;a), then
by Lemma 6.3.5 we have (v) 'y = I'y W {p: a} and -, M: I's. We have
that p ¢ dom P. Hence,

Fy M: Ty p ¢ dom P
e MW {p: P}: Ty def
l_t MQI Fg

T-PERM-SKIP

(b) Show that W;I's - 7, holds. By inverting (iii) Vy; 'y F 74, we get that ¥, =
(). Applying Lemma 7.3.2 to 0; Ty W {p: a} b 7y yields 0; Ty - 7.

(c) Show that ¥5; M5 = T holds. Applying Lemma 6.5.3 to (iv) ;M = T,
t ¢ dom P yields that X1; My - T

We apply rule T-T™m-c to (a), (b), and (c) to conclude this proof. O

7.4 Advance phase

Lemma 7.4.1. f NF Aand A+ Pw{t: (n,u)}, then A Pw{t: (n,a)}.

Proof. Let P, = P W {t: (n,u)}. Applying Lemma 6.3.8to N - A, A F P,
Pi(t) = (n;u), then (i) A - P, and (ii) A;¢;n = P. Applying rule D-pH-CONS
to (i) and (ii) yields that A - P W {¢: (n,a)} holds. O

Lemma 7.4.2. IfN - Aand A; N+ MW {p: PW{t: (n;u)}}, then A; N +
My {p: P {t: (n;a)}}.

Proof. We use Lemma 6.3.6 to obtain
(i) AFPW{t: (n,u)},
(i) dom P W {t: (n,u)} C N, and
(i) A;NFE M.

From Lemma 7.4.1, N - A, and (i)A - P W {t: (n,u)}, we get that (iv) A I
Pw{t: (n,a)}. We have that dom P W {t: (n,u)} = dom P W {t: (n,a)},
hence we have (v) dom P W {t: (n,a)} C N. Hence, we conclude this proof
applying rule T-pP-MAP-CONS to (iv), (v), and (iii). [

Lemma 7.4.3. Ifty MW {p: PW{t: (n,u)}}: T, then there exists a typing I"
such thatI' =T" & {p: u} and

Fe My {p: PY{t: (n,a)}}: I"w{p: a}
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Proof. Applying Lemma 6.3.5 to the hypothesis, we get that there exists a typ-
ing IV such that I' = IV W {p: a} and (i) F; M : I". Let P’ & py {t: (n,a)}.
We know that (ii) P'(t) = (n,a). Thus,

@) FM: T (i) P'(t)=(_,a)
HMw{p: P'}: "y {p: a}

T-PERM-CONS

Lemma 7.4.4. Ifty MW {p: PW{t: (n;u)}}: T andt # t', then
Fo MW {p: PW{t: (n;a)}}: T

Proof. Let My & M w {p: Py {t: (n;u)}}. Wetestift' € M;(p).

« Caset’ € M;(p). Applying Lemma 6.3.5 to the hypothesis, we get that
there exists a typing [ such that I' = IV W {p: a} and (1) Fv M: I".
Let P' & Py {t: (n;a)}. We conclude applying rule T-PERM-CONS to (i)
and P'(t') = (n;a) (ast # t').

« Caset’' ¢ M;(p). Applying Lemma 6.3.4 to the hypothesis, we get that

Gy M:T. Let P & Py {t: (n;a)}. The case concludes with the
application of rule T-PERM-sKIP to t' ¢ dom P’ (as t # t').

]

Lemma 7.4.5. If V;T' - (B, adv(p);b), then there exists a typing I"" such that
F=T"w{p:u}and V;I"W {p: a} F (B,b).

Proof. By inverting ; T" - (B, adv(p); b) we get the next premises.
I'y{p:uttadv(p): "W {p:a} @) I"W{p:a}lrb:0
@Or+nB Iy {p: u} F adv(p);b: 0
(0;0);1" @ {p: u} - (B, adv(p); )

where I' = IV W {p: u}. We apply Lemma 6.3.3to (i) I' - B and p € domT’, and
get (iii) B = B’ W {p: n}, and (iv) I" + B’. Hence,

i)' F B
T-B-C
F’Lﬂ{p:a}l—B'Lﬂ{p:n}_
I"y{p:a} B a @ I"w{p:alFb:0
(0:0): " {p: a} - (B,b)

T-T-R
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Lemma 7.4.6. If
e ;MW {p: PY{t: (n,u)}} + T and
et ¢ domT,

thenS; M & {p: Pw{t: (n,a)}} +T.

Proof. The proof follows by induction on the typing relation. We do a case
analysis on the derivation of the last rule applied.

« Case T-TM-N:
0;:MFEQ

where ¥ is () and T is (). The case concludes by direct application of
rule T-Tm-N.

» Case T-TMm-cC:

Q) Foy My: T @)W D7 (i)Y M T
YW {t: VM T W{t: 7}

where X is X' W {t': U}, Myis MW {p: PW{t: (n;u)}},and Tis T @
{t': 7}. Let M, M {p: Pw{t: (n;a)}}. From Lemma 7.4.4, by
Mi;:T andt # t' (as t ¢ domT), we get (iv) -y My: I'. Applying the
induction hypothesis to (iii) >'; M; = T we obtain (v) 3'; My = T". We
conclude the proof applying rule T-Tm-c to (iv), (ii), and (v).

Lemma 7.4.7. If
SiMu{p: Pw{t: (n;u)}} =T w{t: (B adv(p);b)}

then
SsMw{p: PU{t: (ma)}} T W {t: (B,b)}

Proof. Let M, My {p: Pw{t: (n;u)}}. From Lemma 6.3.2 and the hy-
pothesis we have that (i) ¥ = X" o {¢t: U}, (i) b, M;: T, (iii) ¥; T 7, and
(iv) X" My = T.

From Lemma 7.4.3 and I, M;: I', we get that there exists a typing [ such
that V) ' =17 W {p: u}, (vi) -y My: I W {p: a}. Let I" &l prry {p: a}. Next,
we apply Lemma 7.4.5 to (iii) ;' F 7 and get (vii) ¥; " (B, b).
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Applying Lemma 7.4.6 to (iv) ¥";M; F+ T and t ¢ domT, yields that
(viii) X"; My & T'. Therefore,

(vi) F; My: TV (vii) ¥; T" - (B, b) (viii) X" My =T
YW {t: U My ETwW{t: (B,b)}

7.5 Change bound

Lemma?7.5.1. IfU; '+ (BW {p: _}, bound(p); b), then ;' - (B W {p: n},b).
Proof. By inverting the hypothesis we get the next premises.
()T HFb:0
AT+ Bw{p: _} ' - bound(p); b:
(0:0); ' = (B W {p: _}, bound(p); b)

We apply Lemma 6.3.3 to (i) ' = B W {p: _}, and get that there exists a typing I’
such that (iii) I' = IV & {p: a} and (iv) [" - B. Hence,

)T’ - B .
()T =T'w{p:a}) T6{pajt Boipin}
I'+Bw{p: n}  @TFD: O
T-T-R
0;0y;T = (BW{p: n},b)
0

Lemma 7.5.2. If
SSMETwW{t: (BW{p: _}, bound(p);b)}

then
SSMETWwW{t: (BW{p: n},b)}

Proof. From Lemma 6.3.2 and the hypothesis we have that (i) ¥ = X" & {¢: U},
(i) ¢ M: T, (iii) ;' 7, and (iv) ¥"; M = T'. Next, we apply Lemma 7.5.1 to
(iii) U;T' F 7 and get (v) ¥; T - (B W {p: n},b). Therefore,

(i) F¢ M: T W)U, T'F (BW{p: n},b) (V) X' M+T
YWw{t: UV METW{t: (BWY{p: n},b)}
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7.6 Await
Lemma 7.6.1. If V;T" - (B, await;b), then ¥;T' - (B, b).
Proof. Inverting the hypothesis yields the following premises.
()T Fb:0
OI'-B [+ await;b: ()
(0; 0); T+ (B, await;b)

where U is ((); 0). We conclude the proof applying T-1-R to (i), (ii). O
Lemma 7.6.2. If¥; M =T W {t: (B,await;b)}, then
S, METw{t: (B,b)}

Proof. Applying Lemma 6.3.2 to the hypothesis yields that (i) ¥ = ¥/ W {t: U},
(), M: T, @{ii) U; T - (B,await;b), and (iv) ¥'; M + T. From (iii) ¥; T" -
(B,await;b) and Lemma 7.6.1, we get that (v) U; I - (B, b). Hence, we conclude
applying rule T-T™m-c to (ii), (v), and (iv). O

7.7 Next

Definition 7.7.1. Let commitp (A, t) = A’. Function commitp (A, t) is defined
by cases as follows.

A(t,t2)+1 iftlztandtg#t
A/(tl’tQ) = A(tl,t>—1 lftl #tandtg =1
A(tq,ts) otherwise

Lemma 7.7.1. If N b A and A’ = commitp (A, t), then N = A’
Proof. By hypothesis we have

(N, <a) is a total ordering
th,tg € NA(tl,tz) =z = A(t%tl) = —z
NEA

We show that for any task names ¢; and ¢, picked from N we have that
Al(ty,t3) = —A'(ta,t1). In the first column, a cell corresponds to a sub-case
where we compare the picked task names with ¢. In the second column, we
establish that A’(¢,t5) = —A'(t, t1) with Definition 7.7.1.
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Sub-case A'(ty,ty) = —A'(ta,t1)
ti=tAta=t At t) = —Alta, 1)
th At Nty =1t Aty t) —1=—(A(t, t1) + 1)
th=tAtaEt Al ts) +1=—(A(ta,t) — 1)
At Aty AL At ty) = —A(ta, 1)

We now show that (N, <) is reflexive. Let t € N. By hypothesis we
have t’ < t/, hence A(t',t") <a 0. Given that regardless of which task name
we chose A'(t',t') = A(t',t'), then we have that ¢t <a/ t.

Relation structure (N, <as) is anti-symmetric. By definition we get that
A/(t17t2) SA 0 and A/(tth) SA 0. Let tl,tg S N, tl SA’ tg, and t2 SA' tl.
We need to show that t; = t5 holds. But we have shown that A’(¢,t,) =
—A(tg,t1), hence A'(t1,t2) = 0 and therefore t; <a: to.

Relation structure (N, <as) is compatible. Let ¢;,t, € N. We need to
show that we have t; </ t2 V ty </ t1, or simply that A'(t;,t3) <a 0V
A'(ta,t1) <a 0. But we have already shown that A’(t1, t5) = —A/(t2, 1), hence
A/(t17t2) <a 0V A/(tg,tl) <a 0.

Finally, we show that (N, <a/) is transitive. Let t1,ts,t3 € N, A(t1,t3) = 2
A(tg, t3) = 29, and A(ty,t3) = 23. Relation structure (N, <a) is transitive, thus
21 + 29 = z3. It is enough to show that A'(ty,t2) + A'(to,t3) = A'(ty,t3). We
build a table to show this result. In the first column, a cell corresponds to a
sub-case, where we compare ¢, t2, and ¢3 each with ¢. In the second column, a
cell is the proof of the sub-case, using Definition 7.7.1.

Sub-case Aty te) + Al(te, t3) = A(ty, t3)
tlzt tQZt tgzt 21+ 29 = 23
tl%t tQZt tgzt 21—1+22:2,’3—1
tlzt t27ét tgzt Zl+1+22—1223
ti=1t to=1t t3#t 21+ 2+1=23+1
tl#t tg#t tgzt Zl+22—1223—1
tl%t tQZt t37£t 21—1+ZQ+1223
tlzt tg?’ét tg#t 21+1+22:Zg+1
tl#t tg?ét tg?ét 21+ 29 = 23

Relation structure (N, <a/) is a total ordering, since it is reflexive, transitive,
anti-symmetric, and compatible. 0

Lemma 7.7.2. If A;t;;ny F P, ty ¢ dom P U {t;}, and A’ = commitp (A, t5),
then A';t1;n, + P.

Proof. The proof follows by induction on the derivation of A;¢;;n, = P. We do
a case analysis on the last rule applied.
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» Case D-1L-NIL:
A; tl; n1 l_ @

The case holds by direct application of rule D-L-N1L.

« Case D-1L-coNs:

1) Asty;m = Py (i) A(ty, t3) = ng — ng
Ajtisng B Prw {ts: (n3, as)}

where phaser P is P, W {t3: (n3, as)}. We know that (iii) ¢, ¢ dom P, U
{t:}, as to ¢ dom P, U {t,} (hypothesis) and P = P, W {t3: (ns,as)}
(hypothesis). We apply the induction hypothesis to (i) A;t;;n F Py,
(iii) to ¢ dom P, U {t;}, and A’ = commitp(A,t5) (hypothesis), and
get that (iv) A’;t1;n; = P holds. From Definition 7.7.1 since t; # t
(hypothesis) and t3 # to (hypothesis), then (v) A'(¢1,t3) = A(ty,t3) =

ny — ns. Thus,
(IV) A/7 tl, nq F P1 (V) Al<t1, tg) =Ny — N3
A/; tl; nq ~ P1 %) {tgi (ng, ag)}

D-1-conNs

O]
Lemma 7.7.3. If A+ P,t ¢ dom P, and A’ = commitp (A, t), then A" - P.

Proof. We do an induction proof on the derivation of A - P, with a case analysis
on the last rule applied.

« Case D-pPH-NIL:
A

where P is (). The case concludes with direct use of rule D-PH-NIL.

» Case D-PH-CONS:

AFPW{t;: (n,a)}

where phaser Pis PiW{t;: (n,a)}. Since we have t ¢ dom P (hypothesis)
and P is P, W {t;: (n,a)} (hypothesis), then (iii) ¢ ¢ dom P;. We apply
the induction hypothesis to (i) A + P, (iii) ¢t ¢ dom P;, and A’ =
commitp (A, t), and get that A’ = P; holds. Since we have A;t;n + P,
t ¢ dom P, U {t;}, and A’ = commitp(A, ¢5), then by Lemma 7.7.2 we
have that A’;t;n = P,.

]
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Lemma 7.74. If A;t;n + P, t ¢ dom P, and A’ = commitp(A,t), then
At (n+1)F P.

Proof. The proof is by induction on the derivation of relation A;¢;n - P. We
do a case analysis on the last rule applied.

« Case D-1L-NIL:
Ait:nt0

where P is (). The case holds by direct application of rule D-L-NI1L.

« Case D-L-coONSs:

1) A;t;nt Py (i) A(t,t1) =n—mny
Astint PLw{ty: (ng,a1)}

where phaser P is P, W {t;: (ny,a;)}. Since t ¢ dom P and P is P, ¥
{t1: (n1,a1)}, then (iii) ¢ ¢ dom P;. We apply the induction hypothesis
to (i) A;t;n b Py, (iil) ¢ ¢ dom P, and A’ = commitp (A, t) (hypothesis),
and get that (iv) A’;¢; (n + 1) = P;. From Definition 7.7.1 since ¢; # t,
then A’(I,t1) = A(l,t;) + 1 = n — ny + 1. Hence,

A,(l,tl) =nNnN-—n +1

Aty (n+1)F Py Al tr) = (n+1) —m
Aiti(n+ 1) F Prw{ty: (n,a1)} 4
Nit;(n+1)F P -

D-1L-cons

O

Lemma 7.7.5. If N - A, A+ Py {t: (n,a)} and A" = commitp(A,t), then
A'FPw{t: (n+ 1,u)}.

Proof. Let P, = P W {t: (n,a)}. We have that (i) P,(t) = (n,a). Applying
N b A (hypothesis), A - Py (hypothesis), P;(t) = (n,a), then (ii)) A - P, and
(iii) A; ¢;n = P. By hypothesis we have that (iv) t ¢ dom P. From (ii) A - P,
(iv) t ¢ dom P, A’ = commitp(A,t) (hypothesis), and Lemma 7.7.3 yields
(v) A" = P. Applying Lemma 7.7.4 to (iii) A;t;n = P, (iv) t ¢ dom P, and
A" = commitp (A, t) (hypothesis), then (vi) A’;¢; (n + 1) F P. Hence,

V)A'FP i) At;(n+ 1) P
AFPW{t: (n+1,u)}

D-pH-CONS
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Lemma?7.7.6. fN - A, A; N+ M, A" = commitp (A, t), and M' = commit(M, t),
then A'; N = M'.

Proof. The proof follows by induction on the structure of M’ = commit(M, t).
We perform a case analysis.

» Case CoM-N:
commit((,t) =0

The case holds with rule T-p-MAP-NIL.

« Case Com-s:

(i) commit(M;,t) = Mo (i) t ¢ dom P
commit(M; W {p: P}, t) = My W {p: P}

where M & M, w {p: P} and M’ My W {p: P}.

We know that (iii) M (p) = P. From Lemma 6.3.6, A; N - M (hypoth-
esis), and (iii) M (p) = P, we have (iv) A - P, (v) dom P C N, and
(vi) A; N = M;. From (iv) A - P, (ii) t ¢ dom P, A’ = commitp (A, t),
and Lemma 7.7.3, then (vii) A’ - P. Next, we apply the induction hy-
pothesis to N - A (hypothesis), (vi) A; N + M;, A" = commitp (A, )
(hypothesis), and (i) commit(M;,t) = M, to obtain (viii) A; N = M.
Thus,

(vii) A"+ P (v) domP C N (viii) A"; N + M,
Ay N F My {p: P}

T-P-MAP-CONS

+ Case Com-c:
commit(M;,t) = Mo
commit(M; & {p: P W {t: (n,a)}},¢)
=M> W {p: PW{t: (n+1,u)}}

def

where M & My w {p: P}, M € Myw {p: PY, P ¥ Puit: (n,a)l,

and B, € Pw{t: (n+1,u)}.

We know that (iii) M (p) = P;. From Lemma 6.3.6, A; N - M (hypoth-
esis), and (iii) M (p) = P;, we have (iv) A + P, (v) dom P, C N, and
(vi) A; N = M. From N + A (hypothesis), (iv) A - Py {t: (n,a)},
A" = commitp(A,t), and Lemma 7.7.5, then (vii) A’ = P,. Next, we
apply the induction hypothesis to N - A (hypothesis), (vi) A; N = My,



124

CHAPTER 7. SUBJECT REDUCTION

A" = commitp (A, t) (hypothesis), and (i) commit(M;,t) = My, to ob-
tain (viii) A’; N - M. Thus,

(vii) A"+ P, (v) domP C N (viii) A"; N + M,
AN Myt {p: Py}

T-P-MAP-CONS

O

Lemma 7.7.7. Ift, M: T and M' = commit(M, t), then there exists a I such
that domT" = domI",Vp € domI": I'(p) = u, and -, M': T".

Proof. The proof follows by induction on the structure of M’ = commit(M, t).
We perform a case analysis on the definition of commit(M, t).

e Case CoMm-N:

commit(), ) = 0

where M is ) and M’ is (). By inverting -, M : ', we have that ' = ().
Hence, the case holds by hypothesis

FeMST € 00 € - M:iT
and domT' = domI” = () and Vp € domI": I'(p) = u.

Case Com-c:
(i) commit(M,t) = My
commit(M; W {p: P },t) = MayWw {p: Py}

where P| & Pw{t: (n,a)}, P» & Py{t: (n+ 1L,u)}, M o Myw{p: P},
and M’ & M, w {p: P2}

Since we have -, M: T (hypothesis) and ¢ € dom M (p) (hypothesis),
then by Lemma 6.3.5 there exists a I'y such that (i) ' =T'; W {p: a}, and
(iii) -, My : I'y. Applying the induction hypothesis to (iii) -, M;: I'; and
(i) commit(My,t) = My, yields that there exists a typing I'y such that
(iv) dom Ty = domT'y, (v) Vp € domT'y: I'y(p) = w, and (vi) Fy My: .
Let [V & Fow{p: u}. From (iv) domI'; = domI'; anddom[" = dom T, U
{p},then(1)domI" = domI". Since we have (v) Vp € domT's: I'y(p) = u,
domI” = domI's U {p}, and I"(p) = wu, then (2) Vp € domI": I'(p) = .
Finally, the following derivation tree holds.

(Vl) l_t MQI FQ P2<t) = (_, U)
T-PERM-CONS
l_t Mglﬂ{p Pg}i FQL‘i‘J{p U} def
l_t M,I F/
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» Case CoM-s:

(i) commit(M;,t) = My (i) t ¢ dom P
commit(M; W {p: P}, t) = My W {p: P}

where M & M, o {p: P} and M’ VA {p: P}. Since we have
M : T (hypothesis) and ¢t ¢ dom M (p) (hypothesis), then by Lemma 6.3.4
we have (iii) - M;: I'. Applying the induction hypothesis to (iii)
M;: T and (i) commit(M;,t) = M, yields that there exists a I such
that (1) domI" = domI”, (2) Vp € domI": I'(p) = u, and (iv) b, My: T".
Thus,
(iv) k¢ My: TV (ii) t ¢ dom P
F MywW {p: P}: T’

Fe M TY

T-PERM-SKIP

]

Lemma 7.7.8. If ;T I (B,next;b), then there exists a typing I such that
domI' = domI”,Vp € domI": I(p) = w, and ¥;I" F (B, b).

Proof. By inverting the hypothesis we get the following premises.
() {p1:wa,...,pp:u}-b:0
@Wr+n {p1:a,...,p,: a} Fnext;b: ()
(0;0); T+ (B, next;b)

where I' & {p1:a,...,p,: a}. Let I &ef {p1: u,...,p,: u}. By definition we
have that dom " = domI" and that Vp € domI": I''(p) = u. Hence,

OT+FB ()T Fb: 0
(0;0);T" + (B, b)

T-T-R

O]
Lemma 7.7.9. Ifty M: T, t # t/, and M' = commit(M,t), thent, M': T.

Proof. The proof follows by induction on the definition of M’ = commit(M, t).
We perform a case analysis on the derivation of the last rule applied.

+ Case Com-N:
commit((,¢) = 0

where M & M’ ¥ ). The case holds by hypothesis.
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« Case Com-s:

(1) commit(My,t) = M; (i) t ¢ dom P
commit(M; W {p: P}, t) = My W {p: P}

where M & M, v {p: P} and M’ VA {p: P}. We now testif t’ €
dom P.

- Case t’ € dom P. From Lemma 6.3.5, -, M : T" (hypothesis), ¢’ €
dom M (p), then (i) P(t') = (n,a), (i) ' = IV W {p: a}, and (iii) k-
M; : T'. Applying the induction hypothesis to (iii) Fy M;: 'y, t # ¥/
(hypothesis), and My = commit(M;,t) (hypothesis), then (iv) -
M, : T. Thus,

(iv) by My: ' (i) P(¢') = (n,a)
H MW {p: P}:T'w{p: a}

T-PERM-CONS

- Case t' ¢ dom P. Applying Lemma 6.3.4 to -y M : T' (hypothe-
sis) and t' ¢ dom M (p), then (i) -y M;: I'. Next, we apply the
induction hypothesis to (i) Fy M;: I, t # t' (hypothesis), and
My = commit(M7, t) (hypothesis), then (ii) - M : I'. Thus,

(i) Fy My: T t ¢ dom P
Fy Mow {p: P}: T def
I_t M,: T

T-PERM-SKIP

« Case CoMm-c:

commit(M;,t) = M,
commit(M; & {p: Pl},t) =My W {p: P2}

where P, & P u {t: (n,a)}, P, “pw {t: (n+Lu)}, M N Vo

{p: P }, and M' & My W {p: PQ}. The proof has the same structure as
in case COM-S.

[]

Lemma 7.7.10. If ;M + T,t ¢ domT, and M' = commit(M,t), then
S M FT.

Proof. The proof follows by induction on the typing relation. We perform a case
analysis on the derivation of the last rule applied.
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o Case T-TM-N:
O:MEOD

where T & (). The case holds by direct application of T-Tm-N.

« Case T-T™m-c:
(i) Fy M: T () w;I'r1 () X, M =T
YwW{t: U METW{t: 7}

where & & ¥/ 1y {t': V}and T L7y {t': 7}. From t ¢ dom T we have
that (iv) ¢ # t’. Applying Lemma 7.7.9 to (i) kv M: I, (iv) t # t/, and
M’ = commit(M,t) results in (v) -y M': T'. We also know that (vi) ¢ ¢
dom7’, ast ¢ domT (hypothesis) and T &7y {t': 7} (hypothesis).
Next, from the induction hypothesis, (iii) >'; M + T, (vi) t ¢ domT", and
M’ = commit(M, t), and we have that (vii) ¥'; M' F T". Hence,

(v) by M': T (i) U; '+ 7 (vii) ; M' =T
Sw{th: UhEME-T W{t: 7}

T-TM-C

O

Lemma7.7.11. If3; M = T'W {t: (B,next;b)} and M’ = commit(M,t), then
there exists a ¥’ such that ¥'; M' =T W {t: (B,b)}.

Proof. Lety = (B,next;b)and T3 'y {t: 71 }. We know that (i) 71 (t) = 7.

We apply Lemma 6.3.2 to ¥; M F T; (hypothesis) and (i) T1(t) = 7, and get
(i) X =W {t: U}, @) M: T, (iv) ¥; T 7, and (v) Xq; M F T.

From (iii) F; M : I', M" = commit(M, t) (hypothesis), and Lemma 7.7.7 we
have that there exists a typing [ such that (vi) domI' = domI"”, (vii) Vp €
domI”: I"(p) = w, and (viii) -, M': T".

But we also know that from (iv) ¥;I' F 7; and Lemma 7.7.8, we have
a typing I'” such that (ix) dom[" = domI”, (x) Vp € domI”: I'(p) = u,
(xi) U; I = (B,b). We know that domI' = dom["” = domI” and that Vp €
domI': I'(p) = I''(p) = u, hence (xii) [ =T".

Finally, since we have (v) X; M =T, ¢t ¢ domT, and M’ = commit(M, t)

(hypothesis), then from Lemma 7.7.10 (vii) X1; M’ + T holds.

Let 7, & (B, b). Hence,

v) M T (i) U; ' 7y (i) Xy ;M =T
YSW{t: VhEMETW{t: 1}

T-Tt™m-C
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7.8 Finish

Lemma 7.8.1. Foranyt if ) - b: (), then (0;0) - (0, {¢t: (0,b)}).
Proof. The following premise (i) holds.

N
DEO DEb: 0
T-PERM-NIL T-T-rR

. 0:0 0;0);0 - (B,b) ;00
{t:(0;0)}; 0 {t: (B,b)}

T-TM-N

T-tMm-C

Let © & {¢: (0:0)}, T < {¢: (B,b)}, N ¥ {t}, and A be such that A(t,¢) =0
and dom A = {(¢,t)}. It is easy to see that (IV, <a) is a total ordering and that

th,tg € N: A(tl,tg) =z = A(tz,tl) = —2Z
Thus, from rule D-wr we have that (ii) NV - A. Hence,

—— T-pP-MAP-NIL
(i) NFA A;NEO Q20T

(A; ) F (M, T)

O

Lemma 7.8.2. If ;T + (B, finish(by);b1) and S = (0, {t2: (0,b2)}), then
there exists a V' such that V';T' = S (B, by).

Proof. Inverting (ii) yields the following premises.

['F finish(by): T (i) T+ by: 0
O(T+B ['F finish(by);b1: 0

where U = (0; ). With Lemma 7.8.1 and () - by: (), we have that there exists
a VU’ such that (v) ¥’/  S. Therefore,

Q)T+ B ()T Fb: 0
W FS (@;@);FF(B,bl)T
U.T'FS>(B,b)

T-T-rR

-T-F
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Lemma 7.8.3. If3; M + T W {t1:(B, finish(bs); b1)} and S=(0,{t2:(0,b2)}),
then there exists a ¥ such that ¥'; M =T W {t;: S (B,b;)}.

Proof. Let 1y o (B, finish(bs);b;) and T} 1y {t1: (B, finish(b);b1)}.
From Lemma 6.3.2, ¥; M = T, and T} (t;) = 71, we get that (1) X = 3, W{t;: U},
(i) ¢y M: T, (1) W; T - 7, and (iv) 215 M - T. Let LS (B, by). We have
that from Lemma 7.8.2, U;T' 71, and S = (0, {t2: (0, b,)}) (hypothesis), we
get that there exists a ¥’ such that (v) ¥/; " F 7. Thus,

Q) Fo, M:T  )U:T k7 ()S;MET
Siw{t: V' METW{t: 7}

T-tM-C

7.9 Join

Lemma 7.9.1. If ;M = T w{t: S (B,b)}, then there exists a >’ such that
S M Tw{t: (B,b)}

Proof. Let o (B,b) and T} 'y {t: 7 }. Applying Lemma 6.3.2 to the
hypothesis and to T3 (t) = 71, we get that (i) X = ¥, w {¢t: U}, (i) - M: T,
(iii)) ¥; ' F 7, and (iv) ¥1; M b T. By inverting (iii) we get that (v) (0; 0); T" -
(B,b). We conclude the proof applying rule T-Tm-c to (ii), (v), and (iv). O

7.10 Control flow

Lemma 7.10.1. If ' b: " and " =0 : TV, then ' -6 - 0': T".

Proof. We know that the program concatenation is total, let by = b - t'. The
proof follows by induction on the definition of b - i. Next, we perform a case
analysis on the derivation of the last rule applied.

« Case (3;0") -V e (b" - V'), where b = i; b”. We invert the hypothesis to
obtain the next premises.

OTFi:T, @), F b T
| R
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Applying the induction hypothesis to (ii) I'; - o: " and I + b': TV
(hypothesis) yields that (iii) I'; = 0" - ¢/: I". Thus,

OTFi:T, G- T
L") T det
L0 T

.« Caseend - b & b', where b = end. By inversion of I' - b: ', we get

that T =T, hence we have I" - ¥/: T". Thus, from end - ¥/ ¢ 4/ and the
latter, we get that ' - end - 0': T

]
Lemma 7.10.2. Ifc;b — U andT' = ¢;b: 0, thenT =0 : (.
Proof. We invert hypothesis ¢; b — o’ and obtain three cases.

« Case R-ski1p:
skip;b — b

where c; b o skip;band V/ & h. We invert hypothesis I' - skip; b: ) to
conclude our case.

CEb:0
I'F skip;b: ()

+ Case R-ITER:
loop(b”);b — b" - (Loop(b”); b)

where ¢; b & loop(b”); b and ¥/ Ly (Loop(b”); b). We invert hypothe-
sis ' - 1oop(b”); b: () and premise (i).

OTHV:T
['F loop(b”): T’
['F loop(b”);0': O

From Lemma 7.10.1, T F ": T'and T' F Loop(d”); V' : () (hypothesis), we
get that T = 0" - (Loop(b”);0): 0.

« Case R-ELIDE:
loop(d"); b —

where ¢;b & loop(b”); V. We invert hypothesis " - Loop(b”);b': () to
conclude our case.

CEY:0
['F loop(b”);0': ()
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Lemma 7.10.3. If ;b — V and V;T' - (B, ¢;b), then U; T+ (B, V).
Proof. By inverting the hypothesis we get the next premises.
@WI'FB T Feb: 0
(0; 0); T+ (B, ¢;b)

From Lemma 7.10.2, ¢;b — b (hypothesis), and T" F ¢;b: (), we know that

' b': (. Hence,
Wr- B @THY:0

(0:0);T - (B,V)

T-T-R

0
Lemma7.10.4. Ifc;b — b andX; M =T w{t: (B,c;b)} then¥; M =T w {t: (B,V)}.

Proof. From Lemma 6.3.2 and the hypothesis we have that (i) X = X" w {¢t: U},
(i) F; M: T, (iii) U; ' - 7, and (iv) X”; M = T. Next, we apply Lemma 7.10.3 to
¢; b — b (hypothesis) and (iii) ¥; I" - 7 to obtain (v) U; ' - (B, V’). Therefore,
@) F M: T V) U;TF (BW{p: n},b) i)' sM~+T
Yw{t: UV METwW{t: (BW{p: n},b)}

7.11 Main result

Theorem 7.11.1 (Subject reduction). If ¥, = S} and S; — Ss, then there exists
a Uy such that Uy | Ss.

Proof. By induction on the derivation of the reduction relation between abstract
machines (—), analysing the last rule applied.

Case R-async.

(M, Tw{t: (B,async(s,b');b)})
—(copy(s, t,t', My), T W {t: (B,b)} W {t': (bounds(s),t)})

where Sy is (M, T W {t: (B,async(s,b');b)}) and S, is

(copy(s,t,t', M), Tw {t: (B,b)} w{t': (bounds(s),t')})
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Let T, ¥ 7w {t: (B,async(s,b');b)}. By inversion of the hypothesis that

abstract machine is well typed we get the following premises.

Let My & M {p: Py {t: (n;a)}}, T 7y {t: (B,b)}, and N o

domT;. To show that (A;Y) F (Mg, Tg) holds, we need to establish the fol-
lowing. Since we have (i) N F A, (ii)) A; N = M, copy(s,t,t', My) = M;
(hypothesis), and t' ¢ N (hypothesis), then from Lemma 7.1.7 there exists a A’
such that (1) dom 75 - A’ and (2) A’; dom 15 = M.

We apply Lemma 7.1.17 to

Y, My - Tw{t: (B,async(s,b');b)}

copy(s,t,t', My) = M, (hypothesis), bounds(s) = B’ (hypothesis), and ¢’ ¢
dom T U {t} (hypothesis), to obtain a ¥’ such that (3) X'; My - T,. We apply
rule T-aMACcH to (1), (2), and (3) and conclude this case.

Case R-PHASER.

@ggbnd) MEMwb{g{t: (0u)}} B E B wg 0}

(M, Tw{t: (By,p=newPhaser();b)}) — (M, T W {t: (Bs,blg/p])})

Let T} & T {t: (By,p = newPhaser();b)} and T &y {t: (B2,blq/p])}-

By inversion of the hypothesis that the state is well typed we get the following
premises.

domT; F A A;dom T + M, XMy ETYy
(A %) F (M, Th)

To show that (A; ) - (Ma, T3) holds, we need to establish the following.
1. We have that dom 7} = dom 75, hence dom T, = A.

2. From Lemma 7.2.9, domT) - A, A;domT) - M, ¢ ¢ dom M, and
t € dom T}, we get that A; dom 75 = M.

3. Applying Lemma 7.2.13 to ;M + T W {t: (B, p = newPhaser();b)},
q ¢ dom M, (since we have M>), and (i) ¢ ¢ bn(b), to obtain ; M, = Ts.

We apply rule T-amAcH to (1), (2), and (3) and conclude this case.
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Case R-DEREG.
(M & {p: Puw{t: v}},TLﬂ {t: (B {p: n},dereg(p);b)})
—(Mwy{p: P}, Ty {t: (B,b)})

where Sy is (MW {p: Py {t: v}},TWw{t: (BW {p: n},dereg(p);b)}) and
Sy is (MW {p: P}, Tw{t: (B,b)}). Let M; My {p: Pw{t: v}} and
YTy {t: (BW {p: n},dereg(p);b)}. By inversion of the hypothesis we
get the following premises.
domT; F A A;dom T + M, XMy ETy
(A; %) (MlaTl)

Let My & M {p: P} and T g {t: (B,b)}. To show that (A;X) -
(MQ, Tg) holds, we need to establish the following.

1. We have that dom 7} = dom 75, hence dom 75, - A.

2. From Lemma 7.3.1, dom7T} - A, A; N = My, Mi(p) = P, and t €
dom Py, then M; = M W {p: P}, P, = PW {t: v}, and A;dom T, +
My {p: P}.

3. Applying Lemma 7.3.3 to ¥; M + T W {¢: (B, p = newPhaser();b)}, ¢ ¢
dom M, (since we have M,), and (i) ¢ ¢ bn(b), to obtain X; My = Ts.

We apply rule T-aMAcCH to (1), (2), and (3) and conclude this case.

Case R-ADVANCE.
(M {p: PW{t: (n,u)}}, TW{t: (B,adv(p);b)})
—(Mwy{p: Py{t: (n,a)}}, TW{t: (B,b)})
where Sy is (M W {p: PW {t: (n,u)}}, T w{t: (B,adv(p);b)}) and S is
(M {p: Pw{t: (n,a)}}, TW{t: (B,b)})

Let M, & M {p: PU{t: (n;u)}} and T3 e {t: (B,adv(p);b)}.
By inversion of the hypothesis that abstract machine is well typed we get
the following premises.
domT1 FA A,dOl’l’lTl H Ml E,M] l_Tl
(A; %) F (M, Th)

Let My & M w {p: Pw{t: (n,a)}} and T 7y {t: (B,b)}. To show

that (A; X) b (M, T») holds, we need to establish the following.
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1. We have that dom 77 = dom 75, hence dom 75 F A.
2. From Lemma 7.4.2, dom T} - A, and A; N - M, then A;dom T, = M.
3. We apply Lemma 7.4.7 to
S; My {p: PY{t: (n;u)}} =T w{t: (B,adv(p);b)}
to obtain >; My F 1.

We apply rule T-aMAcH to (1), (2), and (3) and conclude this case.

Case R-BOUND.

nenN
(M, Tw{t: (BW{p: _},bound(p);b)}) — (M, T w {t: (BW{p: n},b)})

where Sy is (M, T W {t: (BW {p: _}, bound(p); b)}) and S, is
(M,T w{t: (BW{p: n},b)})

Let Ty & T {t: (BW{p: _},bound(p);b)}. By inversion of the hypothe-

sis that abstract machine is well typed we get the following premises.

domT7; F A A;domTi H M XM BTy
(A;%) F (M, Th)

def

Let T = T'W {t: (BW{p: n},b)}. To show that (A;¥) - (M, T5) holds,
we need to establish the following.

1. We have that dom 7} = dom 75, hence dom 75 + A.
2. Since dom 7T} = dom 75, then we have that A;dom 7T, - M.
3. We apply Lemma 7.5.2 to
SSMETwW{t: (BY{p: _}, bound(p);b)}
to obtain X; M F T5.

We apply rule T-amAcH to (1), (2), and (3) and conclude this case.
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Case R-awaiIr.

awaitAll(M, t, B)
(M, Tw{t: (B,await;b)}) — (M, Tw{t: (B,b)})

where Sy is (M, T W {t: (B,await;b)}) and S, is
(M, Tw{t: (B,b)})

Let T} & 7w {t: (B,await;b)}.

By inversion of the hypothesis that abstract machine is well typed we get
the following premises.

domTy A  AjdomTyF M S MFET
(AX) (M. 1)

Let T, & Tw {t: (B,b)}. To show that (A; ) t (M, T3) holds, we need
to establish the following.

1. We have that dom 7} = dom 75, hence dom 75 F A.

2. Again, since dom 7} = dom 75, then we have that A;dom 75, + M.

3. We apply Lemma 7.6.2 to 3; M - T {t: (B,next;b)} to obtain:

SSMETW{t: (B,b)}
We apply rule T-aMAcH to (1), (2), and (3) and conclude this case.

Case R-NEXT.
(M, Tw{t: (B,next;b)}) — (commit(M,t), T w {t: (B,b)})

where S is at the right-hand side and S5 is at the left-hand side of the conclusion.
Let T} & 7w {t: (B,next;b)}.

By inversion of the hypothesis that abstract machine is well typed we get
the following premises.

(i)domT; F A (ii) A;dom Ty = M (iii) X; M Ty
(As%) = (M, Th)

Let T5 e {t: (B,b)}, (iv) M" = commit(M,t), (v) A’ = commitp (A, t)

(from Definition 7.7.1), and N = dom7; = dom75. To show that (A; ) I
(M " TQ) holds, we need to establish the following.
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1. From (i) N - A, (v) A’ = commitp (A, t), and Lemma 7.7.1, we also have
that N - A’

2. Since we have (i) N - A, (ii) A; N - M, (v), (iv), and Lemma 7.7.6, then
we have A'; N - M.

3. From Lemma 7.7.11, 3; M FT; (hypothesis), and (iv) M’ =commit(M, t),
we obtain X/; M’ T,

We apply rule T-amAcH to (1), (2), and (3) and conclude this case.

Case R-FINISH.

S E (0, {t2: (0,02)})

(M, T {t,: (B,finish(bs);b1)}) = (M, T W {t1: S (B,b1)})
where S is at the right-hand side and 55 is at the left-hand side of the conclusion.
Let T3 & 7w {t1: (B, finish(by);b1)}.

By inversion of the hypothesis that abstract machine is well typed we get
the following premises.

domT; F A A;domTy = M oM ET,

Let T, & T {t1: S>(B,b)}. To show that (A; ) b (M, Ty) holds, we

need to establish the following.
1. We have that dom 77 = dom 75, hence dom 75 F A.
2. Again, since dom 7} = dom 75, then we have that A;dom 75 - M.
3. We apply Lemma 7.8.3 to ; M + T} to obtain >'; M + Ts.

We apply rule T-amAcH to (1), (2), and (3) and conclude this case.

Case R-RUN.

53—>S4
(M, Tw{t: 55 (B.b)}) — (M, T & {t: 545 (B,0)})

where S is at the right-hand side and 55 is at the left-hand side of the conclusion.

Let T, & Tw {t: S50 (B,b)}.
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By inversion of the hypothesis that abstract machine is well typed we get
the following premises.
(i)domT; F A (i) A;dom Ty - M (iii) X M =T}
(AiX) (M, 1)

Let T, & T {t: Si>(B,b)}. To show that (A;X) - (M, T3) holds, we

need to establish the following.
1. We have that dom 7} = dom 75, hence dom 75 F A.
2. Since dom 7T} = dom 75, then we have that A;dom 75 - M.

3. Lety & Syp (B,b) We know that 7 (t) = 7. From ¥; M + Ty (hy-
pothesis) and 77 (t) = 71, we get that (iv) X' o {t: U}, (v) by M: T,
(vi) U; ' F 7, and (vii) X'; M - T.

Inverting premise (vi) yields the following.
(viii) ¥ - S (ix) (0;0); T + (B, b)
U:T'+ S (B,b)

Next, we apply the induction hypothesis to ¥ - S5 and S5 — Sy, and get
that there exists a ¥’ such that (x) V' - S;. Hence, we have premise (xi)

@S, (%) (@;0);T+ (B,b)
Tk Syo (B,b)

T-1-F

Thus,
V) e M:T xi) VT Fm (Vi) XM =T

Yu{t: V' METW{t: nn}

We apply rule T-aMAcH to (1), (2), and (3) and conclude this case.

Case R-joIn.

S is halted
(M,TL{rJ{t: SD(B,b)}) — (M,TL{rJ{t: (B,b)})

def

Let Ty = Tw{t: S>(B,b)}.
By inversion of the hypothesis that abstract machine is well typed we get
the following premises.

domT; F A A;domTi M YoM T,
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Let T & T'w {t: (B,b)}. To show that (A; X) + (M, T) holds, we need
to establish the following.

1. We have that dom 7} = dom 75, hence dom 75 F A.
2. Again, since dom 7} = dom 75, then we have that A;dom 7, - M.
3. We apply Lemma 7.9.1 to ¢; b — b" and 3; M T to obtain X'; M + T5.

We apply rule T-amacH to (1), (2), and (3) and conclude this case.

Case R-FLow.

c;b— U
(M, Ty {t: (B,c;b)}) = (M, Tw{t: (B,VV)})

where Sy is (M, T W {t: (B,c;b)}) and S, is
(M, Tw{t: (B,V)})

Let T} & Tw {t: (B, ¢;b)}. By inversion of the hypothesis that abstract

machine is well typed we get the following premises.

domT; F A A;domTy = M oM =T,

Let Ty & T w {t: (BW {p: n},b)}. To show that (A; %) F (M, T;) holds,
we need to establish the following.

1. We have that dom 7} = dom 75, hence dom 75 F A.
2. Since dom 7T} = dom 75, then we have that A;dom 7T, - M.
3. We apply Lemma 7.10.4 to
SSMETWwW{t: (B,c;b)}
to obtain >»; M + T5.

We apply rule T-amacH to (1), (2), and (3) and conclude this case.



Chapter Eight

Progress

A type system that enjoys progress states that any typable term can reduce
or the term is in its elementary form. The “elementary form” depends on the
language. For example, in a numeric- and expression-based language the most
elementary terms can be numbers and variables. In SBRENNER, the elementary
states are halted, only composed by tasks that terminated.

The property of progress implies deadlock freedom. As we capture the notion
of “execution” with the reduction relation, then we can consider that a dead-
locked state S is such that S cannot reduce, i.e., for any state S’ the relation
S — S’ does not hold. If S is rejected by the type system, then we are done.
But by absurd, assume that the deadlocked state S'is well typed. Then, by the
property of progress, state S must reduce, and we reach a contradiction.

The main result of this section is Theorem 8.0.2. The intuition behind the
proof follows. With Lemma 8.0.2 we order the task names in the state with <
and pick the smallest task name ¢. We show that the predicate for the await
holds for task ¢, thus the task addressed by ¢ reduces.

Lemma 8.0.1. I[fdom P ## (), then there exists a task name t € dom P such that
await(P, localPhase P(t)).

Proof. Let X be {t: localPhase P(t) | ¥t € dom P}. It is easy to see that
dom X = dom P. Let t; be such that V¢ € dom X : X (1) < X(¢).

Since dom P # () and dom X = dom P, then dom X # (). We have
that dom X # (), then ¢ exists. Let n = X (¢;) = localPhase P(¢;). Thus,

Vt € dom X : X(t) > X(t)
=Vt € dom P: localPhase(P(t)) > n
= await(P, n)
= await( P, localPhase P(t;))

139
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Definition 8.0.1 (Wait phase).

waitPhase((n, a)) )

Lemma 8.0.2. If ~awaitAll(M,t, B), then there exists phaser name p such that
1. M(p)=P
2. waitPhase P(t) =n
3. —await(P,n)

Proof. If predicate awaitAll(M, ¢, B) does not hold, then by Definition 5.3.13
there exists a p € dom M where M (p) = P and t € dom P such that

(i) P = M(p),
(i) n = localPhase(P(t)) — B(p), and
(ili) —await(P,n).
By Definition 5.3.12 we have that there exists a task name ¢’ such that

localPhase (P(t")) < localPhase(P(t)) — B(p)

Given that B(p) > 0, then localPhase (P(t')) < localPhase(P(t)). Hence,
— await( P, localPhase(P(t'))). O

Lemma 8.0.3. If T'(t) = (B,await;b), M(p)(t) = v, and ;M + T, then
v = (n,a).

Proof. Applying Lemma 6.3.2 to 3; M + T and T'(t) = (B, await;b), we get
that there exist I' and ¥ such that -, M: I" and ¥;I" - (B,await;b). By
inverting the latter, we get that

i)'+ await;b: I’
I'-B 't await;b: ()
0;0);T + (B, await;b)

where U is (();}). By inverting (i) I' I await;b: I we have that (ii) Vp €
domI" = TI'(p) =a. Fromt, M: T, M(p)(t) = v, and Lemma 6.4.3, we get
that v = (n, a). O

Lemma 8.0.4. If (\;X) - (M, T), M(p) = P, P(t) = (n1;a1), and P(ty) =
(ng; as), then A(ty, ty) = ny — no.
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Proof. Inverting (A; ) - (M, T), yields A; N = M where N = dom 7. Since
A; N = M and M(p) = P, then by Lemma 6.3.6 we have that A - P. Apply-
ing N A, AF P, P(t;) = (ny;a1) to Lemma 6.3.8 and we get that there exists
a phaser P’ such that P = P’ W {t1: (ny;a1)} and A;ty;ny = P'. We know
that if P(ty) = (ng;as), then P'(t3) = (ns;as). Finally, since A;ty;ny H P,
P’(ty) = (ngy; ay), then by Lemma 6.3.7 we have that A(t,t3) = ny —ny. O

Lemma 8.0.5. If (A;X) - (M,T), M(p) = P, P(t1) = (ni;_), P(t) =

(ng;_), and A(ty,ty) = z, thenny — ng = 2.

Proof. We apply A; N = M, M(p) = P, P(t1) = (n1;a1), and P(ty) = (ng; as)
to Lemma 8.0.4 and get that A(¢1,t3) = n1 —ns. But by hypothesis A(t1,t5) = 2,
therefore z = ny — no. ]

Corollary 8.0.1. If (A; X)) F (M, T), M(p) = P, tydom P, and t; € dom P,
thent, <a ty <= waitPhase P(t;) < waitPhase P(t5).

Proof. ( =) Since we have t; <A to, then we have A(t1,t;) = nandn < 0.
Applying Lemma 8.0.5 (A; ) + (M, T), M(p) = P,t; dom P, ty € dom P, and
A(ty,t) = z, then ny — ny = z. Thus, by Definition 8.0.1 waitPhase P(t;) <
waitPhase P(t5).

( <= ) From waitPhase P(t;) < waitPhase P(t;) and Definition 8.0.1 we
get that
P(t1) = (n1;a1), P(ta) = (ng;as), and ny < ny. Thus, ny —ny = zand z < 0.
Since (A;X) + (M,T), M(p) = P, tydom P, t, € dom P, P(t;) = (ny;a1),
P(ty) = (n9; as), then A(ty,t2) = 2. Hence, t; <a to. O

Lemma 8.0.6. IfV |- S, S is not halted, then S = (M, T) and there exists a task
namet € domT such that

T(t) = (B,await;b) = awaitAll(M,t, B)
Proof. The proof develops by contradiction. We have that for all { € dom T’
—(T(t) = (B,await;b) = awaitAll(M,t, B))

T(t) = (B,await;b) A —awaitAll(M, ¢, B)
We show how to reach a contradiction where there exists a name ¢ such that
—awaitAll(M, t, B) awaitAll(M, t, B)

Let ¥ = (A;>). From inverting ¥ - S we get dom 7" - A, which by inversion
yields that (<a,dom7T) is a total ordering. Given that dom 7T is finite and
nonempty, then there exists a label ¢ € dom 7" such that

V' e domT: t <a t
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By Lemma 8.0.2, since - awaitAll(M, ¢, B), then there exists a phaser name p
such that (i) M (p) = P, (ii) localPhase P(t) = n, and (iii) - await(P,n).

By Lemma 8.0.1, since dom P # () (as t € dom P), then there must exist
a task name t’' such that (iv) await(P, localPhase P(t')). If task name ¢’ is t,
then we reach a contradiction because we have (iii) — await( P, localPhase P(t))
and (iv) await(P, localPhase P(t)). Otherwise, ¢t # t'. Let localPhase P(t') =
n'. Since (iv) await(P,n’), then V¢t € dom P s.t. localPhase (P(t)) > n’ and
therefore n > n'.

But, if n = n/, then (iii) — await(P, localPhase P(t)) would not hold and we
would reach a contradiction. Hence, localPhase (P(t)) > localPhase (P(t')).

Recall that t <A t/, hence since (A; ) (M7 T), M(p) = P, t;dom P,
ty € dom P, and t; <A t9, then by Corollary 8.0.1

waitPhase P(t;) < waitPhase P(t5)

Applying Lemma 8.0.3to 7'(t) = (B, await;b), M (p)(t) = v,and X; M T,
then a; = a. Similarly, a; = a. Thus, localPhase (P(t)) = waitPhase (P(t)) + 1
and localPhase (P(t')) = waitPhase (P(t')) + 1, which means that

localPhase (P(t)) < localPhase (P(t'))

]

Lemma 8.0.7. Ift, M: T, ;' - 7,5, M + T, T(t) = 7 = (B,i;b), and
i = await => awaitAll(M,t, B), then there exists a state S such that

(M, Tw{t: (B,i;b)}) = S

Proof. The proof follows by inspection of the last typing rule applied. Inverting
U; ' - (B, i;b) yields the next two premises.

()L Fa: I
)T+ B Ckib: ()
(0;0);T' = (B, ;)

Case T-PHASER:

p ¢ domT
I'F p = newPhaser(): 'W {p: u}
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wherei & p = newPhaser()and [ & I'w{p: u}. Let gbe suchthatq ¢ dom M
and ¢ ¢ bn(b). The case concludes with rule R-PHASER:

q ¢ bn(b) M’défML{rJ{q:{t: (O;u)}} B'¥ Buw{q: 0}
(M, Tw{t: (B,p=newPhaser();b)}) — (M', T w{t: (B',blg/p])})

Case T-DEREG:
"W {p: a} - dereg(p): I"
where I' & IV {p: a} and i &« dereg(p). We know that (iii) I'(p) = a. With
Lemma 6.4.3 and (iii) I'(p) = a, we get that M (p)(t) = (n, a) Thus, (iv) M =
My {p: Pw{t: (n; a)}}. From (i) '+ B, p € domT’, and Lemma 6.3.3, then
there exist I and B’ such that B = B’ W {p: n}.
Hence,

(M'w {p: Py {t: v}},TWw {t: (B'W{p: n},dereg(p);b)})
—(M'w {p: P}, Tw{t: (B',b)})

Case T-ADV:
I"W{p: u} Fadv(p): I" W {p: a}

where I" is IV & {p: u} and 7 is adv(p). We have that (iii) ['(p) = u. With
Lemma 6.4.3, -, M : ' (hypothesis), and (iii) I'(p) = wu, we get that M (p)(t) =
(n,u). Thus, (iv) M = M" @ {p: PW {t: (n,u)}}. Hence,

(M’ O] {p: Pw{t: (n,u)}},T&J {t: (B,adv(p);b)})
—(M'w {p: Py {t: (n,a)}},Tw{t: (B,b)})
Case T-awAIT:

Vp € domI': T'(p) = a
I'-await: I’

. . def
where i = await and IV = T.

From the hypothesis, we have that awaitAll(M, ¢, B). Thus, the state reduces
with rule R-AwAIT.

Case T-NEXT:
{pr1:a,...,p,:a} Fnext: {p;:u,...,p,: u}

where I’ d:d{plz a,...,p,:ak i & next, and I (1:6f{p1: u,...,p,: ul.
Since we have ; M : T', Vp € domI': I'(t) = a, and Lemma 8.0.11 we get
that commit(M,¢) = M’ and the state reduces with R-NEXT.
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Case T-AsyYNc:
F"SZFl Fll_bllw

't async(s,by): I

where i & async(s,by) and I’ =8N

From Lemma 8.0.10, —; M : I',and I' I s: I';, then we have that
copy(s,t,t', M) =M’

Hence, we conclude the case with rule R-async.

Case T-FINISH:

OEV:0
['F finish(b): T’

where i & finish(V') and I &' . The case holds by direct application of

rule R-FINISH.

]
Lemma 8.0.8. If(Ml,Tl) — (Mz, Tg), then
(M, Ty W {t: (B,end)}) — (Ms, To W {t: (B,end)})
Proof. By inspection of each reduction rule. [

Lemma 8.0.9. If['y Fs: I'y, thenp € s <= p € domI'y NdomI's.

Proof. The proof follows by induction on the typing relation. We do a case
analysis on the derivation of the last rule applied.

» Case T-a-c:
)Ti(g) =a @@rykFs:T

I'Esw{q}: TwW{q: a}
where 'y is ' W {¢: a} and s is s W {¢}. If p = ¢, then we are done.
Otherwise, p # ¢. Applying the induction hypothesis to (ii)) I'y F s': I’
we get thatp € s <= p € domI'; NdomI'. We have that p # ¢ and
that ¢ ¢ domI'y NdomT, hencep € s <= p € domT'; NdomTs.

» Case T-a-N:
I'EQ:0

where I's is (). We end in a contradiction as we have that p € ().
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Lemma 8.0.10. Ift; M;: 'y and 'y & s: Ty, then copy(s, tq,ta, My) = M.

Proof. The proof follows by induction on the typing relation. We do a case
analysis on the derivation of the last rule applied.

o Case T-PERM-NIL:

"t(Z)ZQ)

where M; = () and I'; is (). Since I'; = (), then we can invert ) - s: I'y
and obtain that s = (). We conclude this case with rule Cpy-NiL.

Case T-PERM-SKIP:

(i) F M: Ty (ii) t ¢ dom P
Fe MW {p: P}: Ty

where M, = MW{p: P}. Weapply -, M : I'; to the induction hypothesis
and get that (iii) copy(s, t1, t2, M) = M’. Since we have t ¢ dom M, (p),
then from Lemma 6.4.3 we know that p ¢ domI';, thus from Lemma 8.0.9
and I'; F s: T'y, we have that (iv) p ¢ s. Hence,

(iii) copy(s,t,t', M)=M" (ivV)p¢s
copy(s,t,t', MW {p: P}) =M w{p: P}

CpPY-SKIP

Case T-PERM-CONS:

G FM: T (i) P(t) = (n;a)
Fe MW {p: P}: TwW{p: a}

where My = M W{p: P} andI'sis ' W {p: a}. We test the membership
ofp € s:

- Case (iv) p € s, then s = ' W {p}. From Lemma 6.3.1 and I';
s: 'y then there exists a typing I's such that (iii) I'; = I's W {p: a},
I'y(p) = a,(iv) Ty F &': T's. Since we have (iii) I'; = I's W {p: a} and
'y =TW{p: a}, then'3 = I" and therefore (v) I'; - §": I'. Applying
the induction hypothesis to (i) -y M : I',and (v) I'y F §': T, yields
(vi) copy(s', t1,ta, M) = M'. Let v &f (n;a) and P’ “puy {t': v}.

(vi) copy(s',ty,ta, M) = M’ (i) P(t) = v

CPY-CONS
copy(s' W {p},t1,ts, M W {p: P}) =MW {p: P'}
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- Case (iv)p ¢ s. Since W {p: a} F s: Ty and p ¢ s, then from
Lemma 6.5.1 ' = s: I'y. We apply the induction hypothesis to
F¢e M: T and I" I s: I'y and obtain (iii) copy(s, t1,t2, M) = M’
Therefore,

(iii) copy(s,t1,te, M) = M’ (iv)p ¢ s
copy(s,t1,to, MW {p: P}) =M W {p: P}

CPY-SKIP

]

Lemma 8.0.11. Ifl; M: T andVp € domT': I'(t) = a, then commit(M,t) =

M.

Proof. The proof follows by induction on the structure of the typing relation.
We proceed with a case analysis on the derivation of the last rule applied.

e Case T-PERM-NIL:

"t@3@

The case holds with rule CoMm-N.

Case T-PERM-SKIP:

(i) F M;: T (ii) t ¢ dom P
Fe MW {p: P}: T

where M is M, W {p: P}. Applying the induction hypothesis to -, M;: '
and Vp € domI': T'(t) = a, we get that commit(M;,t) = M,. Thus, we
conclude this case by applying rule Com-s to the latter and to (i).

Case T-PERM-CONS:

H My W {p: P}: 'y W {p: a}

where M is Miw{p: P}andT'isI'y&{p: a}. FromVp € domI': I'(t) = a
(hypothesis) we get that « = aand I' = T'; W {p: a}. Thus, (iii) Vp €
domTI';: I'y(t) = a. Applying the induction hypothesis to (i) and (iii)
yields that (iv) commit(M;,t) = M,. We conclude this case applying
rule Com-c.

O

Theorem 8.0.2 (Progress). If W = Sy, then Sy is halted or there exists a state S5
such that S; — Ss.
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Proof. 1f S is halted, then we are done. For the remainder of the proof we know
that .57 is not halted, so we must show that there exists an abstract machine S5
such that S; — S5; the proof follows by induction on the reduction relation.

To show that S} reduces we perform a structural induction on S;. From ¥ -
S, S1 not halted, and Lemma 8.0.6

Sl - (M, T)
() Jt: T(t) =7 = (B,await;b) = awaitAll(M,t, B)

Let N = dom T Inverting hypothesis ¥ |- S yields:

HNFA ANFM SMFT

T-amacH
(A 3) (M, T)

where U = (A;¥). From ;M + T, T(t) = 7, and Lemma 6.3.2, we get
there exists a phaser map T; such that (iii) ¥ = X, W {¢t: U, }, (iv) by, M: T,
(v) Uy; Iy = 7, and (vi) 34; M F T;. By inverting (v) ¥y; ['; F 7 there are two
cases to consider: 7 is either a regular task or a finish task.

Case 7is S (B,b). Inverting (v) W; 'y F S > (B, b) results in the following
premises.

QW =S (00T F (B,b)
\Ijt; Ft F SD (B,b)
Applying the induction hypothesis to ¥, |- S yields two sub-cases to consider.

« Sub-case S is halted. Thus, S| can reduce with rule R-joIN.
« Sub-case there exists a S” such that S — S’. Thus, S is ready to reduce
with R-RUN.
Case 7 is (B,b). We do a case analysis on the structure of b:

« Case b is end. Applying Lemma 6.5.6 to ¥ F S, yields that (A;¥)
(M, T,) Applying the induction hypothesis to (A; X) - (M, T;), we get
that (M, Tt) — (M’, Tt’) Hence, from Lemma 8.0.8 the case holds.

« Case bis i;b'. We conclude this case by applying Lemma 8.0.7 to (iv)
M: Ty, V) V; Ty F 7, and (vi) X4 M = T;.

]






Chapter Nine

Conclusion

This thesis proposes two comprehensive solutions for the problem of barrier
deadlocks. First, a general runtime verification technique with an implemen-
tation that is language-agnostic, distributed, and fault-tolerant. Second, a pro-
gramming model that is deadlock-free by construction.

Section 9.1 summarises the thesis and highlights our technical contributions.
Section 9.3 discusses about future directions of our work that include integrating
the programming model of SBRENNER and Armus in a single language, mecha-
nising the theory presented in this thesis, and extending Armus to verify MPI
and HJ applications.

9.1 Contributions

This thesis presents a theoretical framework for reasoning about general barrier
synchronisation patterns in the form of a minimal language called BRENNER.
Programs written in BRENNER use a single abstraction to perform any of the syn-
chronisation patterns surveyed in Section 2.1. We introduce two complementary
verification techniques that handle barrier deadlocks: a runtime technique for
existing programs, and a novel parallel programming model that is deadlock free
by design. The correctness of our runtime verification technique is established
against the semantics of BRENNER. To define our deadlock free programming
model we introduce SBRENNER, an extension of BRENNER that restricts certain
behaviours that may deadlock.

BRENNER [31] Our minimal language is the cornerstone of this thesis, as it
provides the definitions used in our two main contributions. Two factors shape
BRENNER. The first factor is a comprehensive survey of language abstractions
that perform barrier synchronisation to gives us confidence of the generality of
our own abstraction. Our survey categorises the origin of various properties
that influence the barrier synchronisation mechanism throughout the history of
parallel computing, going as far back as the first parallel computers in the 1960s.
The second factor is a search for the fundamental concepts behind phasers [94],
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the unifying abstraction we use in BRENNER. We define phasers as a data
structure that consists of multiple event counters [90], a classic synchronisation
mechanism used in operating system design. Our version of phasers has fewer
and simpler primitives, yet it exhibits more synchronisation patterns than in [94].

Event counters, that inspire our version of phasers, can be seen as a synchro-
nisation mechanism that allows for tasks to await a certain logical time in the
sense of Lamport’s clocks [67]. We leverage the connection between phasers
and logical clocks in the design of Armus. Departing from state-of-the-art tech-
niques, we propose a novel representation of concurrency constraints based on
logical time that dramatically improves the scalability of distributed deadlock
detection.

Technical contributions:

« We introduce BRENNER, a minimal language for reasoning about general
barrier synchronisation and task parallelism.

« BRENNER is mechanised in Coq along with some reduction examples. The
source code is available online.!

Armus [31] We put forward Armus, a runtime verification tool for barrier
deadlocks that features distributed deadlock detection and a scalable graph
analysis technique that automatically switches between two graph models. The
graph-based deadlock verification of Armus is formalised and shown to be
sound and complete against BRENNER. We establish an equivalence theorem
between utilising two graph models (WFG and SG) for deadlock detection; this
result enables us to use the WFG to prove our results, and choose automatically
between the WFG and the SG during verification. Our adaptive model selection
dramatically increases the performance against a fixed model selection. The
runtime overhead of the deadlock detection is low for up to 64 tasks, in most
cases negligible, even when considering distributed benchmarks. We present two
applications: Armus-X10 monitors any unchanged X10 program for deadlocks;
JArmus is a library to verify Java programs. To the best of our knowledge, our
work is the first dynamic verification tool that can correctly detect Java and X10
barrier deadlocks.
Technical contributions:

+ The graph-based deadlock verification of Armus is formalised and shown
to be sound and complete against BRENNER.

« We establish an equivalence theorem between utilising two graph models
(WFG and SG) for deadlock detection. Such result enables us to prove

'https://bitbucket.org/cogumbreiro/brenner-coq/
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our results with the WFG, and let the tool automatically choose from the
two models at run time. Our model selection technique increases the
performance of deadlock checking, against the usual approach of having
a fixed graph model.

+ To the best of our knowledge, our work is the first dynamic verification
tool that can correctly detect Java and X10 barrier deadlocks.

SBRENNER [77, 32] We introduce SBRENNER a minimal deadlock-free lan-
guage for fork/join and cyclic barrier synchronisation, by extending BRENNER.
Chapter 5 defines an operational semantics and a type system that unifies a
deadlock-free semantics of clocks, regular phasers, and phaser beams, but goes
further by allowing tasks to be ahead of others by a bounded number of phases,
available per task and per phaser. A novelty of SBRENNER is to present a deadlock-
free version of two synchronisation patterns available in HJ: bounded phaser
synchronisation, and tasks can advance their phases without waiting for others.
SBRENNER can be used as a blueprint to develop deadlock-free parallel pro-
gramming libraries, so we make available a Java prototype of this programming
model.?
Technical contributions:

« The property of subject-reduction, described in Chapter 7, ensures pro-
grams retain their validity (i.e., well typedness) as they execute, which
means that a program deemed valid does not become invalid by executing.

« The property of progress, described in Chapter 8, shows that valid pro-
grams can always execute, which implies deadlock freedom.

+ The deadlock-free programming model of SBRENNER subsumes those of
Habanero-Java and of X10. Our work is the first to establish the property
of deadlock freedom stated in [92].

« A Java prototype of the deadlock-free programming model put forward
by SBRENNER.

9.2 Summary of personal publications

[77] Francisco Martins, Vasco T. Vasconcelos, and Tiago Cogumbreiro. Types
for X10 Clocks. In Post-proceedings of PLACES’10, volume 69 of EPTCS,
pages 111-129, 2011

*https://bitbucket.org/cogumbreiro/brenner-java/
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[32] Tiago Cogumbreiro, Francisco Martins, and Vasco Thudichum Vasconcelos.
Coordinating phased activities while maintaining progress. In Proceedings
of COORDINATION’13, volume 7890, pages 31-44, 2013

[31] Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida.
Dynamic deadlock verification for general barrier synchronisation. In
Proceedings of PPoPP’15, 2015. To appear

9.3 Future work

We envision three future directions for our work. First, the integration of our
techniques of static and runtime verification. Second, the mechanisation our
theory. And third, extending Armus to verify HJ and MPIL.

Two-stage deadlock verification The overarching goal of this thesis is to
improve the productivity of multicore programmers, by resorting to software
verification. We envision integrating our main contributions in a compiler. The
outcome is a programming language that is aware of all barrier deadlocks. Our
idealised verification technique comprises two steps:

1. The compiler checks if the given program complies with the programming
model in SBRENNER. Compliant programs are safe from deadlocks by
constructions, so they can run without runtime checks.

2. Programs that fail to comply with the programming model of SBRENNER
are instrumented and verified by Armus at run time.

There are some specific tasks that can improve our contributions in static
and runtime verification.

Certified verification For static verification we would like to have: a machine
checked version of our theory, and a certified implementation of phasers. A
certified algorithm is an algorithm that is mechanically checked to comply with
a given formal specification, i.e., the algorithm is accompanied by the proof of
its correction. Some of this work started already. We mechanised in Why3 [38]
the proofs for the invariant of the phase difference (cf. Chapter 8), adapted to
primitives of HJ. The source code is available online.?

Why3 is helpful for prototyping formal results. The tool includes a language
called Why to define functions, syntactic terms, inference rules, and lemmas.
For example, a phaser map M can be defined as a function pm that accepts two

Shttps://bitbucket.org/cogumbreiro/hj-why3
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parameters, phid for p and tid for ¢, and yields an optional taskview for
type v, which means that the function returns either an undefined value or a
task view.

function pm phid tid : option taskview
Similarly, we can define A as follows.
function diff tid tid: option int

We can define axioms for results that are already shown in pen and paper
proofs. For instance, in our formalisation we assume Lemma 8.0.4 with axiom
diff_def, that states that any phase difference in phaser map pm is also in diff.

axiom diff def:
forall t1 t2 i nl n2 tvl tv2 p.
pm p tl = Some tvl -> pm p t2 = Some tv2 ->
wait_phase tvl nl -> wait_phase tv2 n2 ->
i = (i1 - i2)
->
diff tl1 t2 = Some 1

This can be informally written as follows.

Lemma 9.3.1. If M(p)(t;) = (n1,_), M(p)(ta) = (na,_), then A(ty,t3) =

A benefit of Why3 is its integration with automatic theorem provers. In our
mechanisation, lemma total for wait_tids establishes that relation <, is
total. Why3 uses an off-the-shelf theorem prover to automatically prove this
result for us.

lemma total_ for_wait_tids:
forall x y.
wait_tid x -> wait_tid y
->
diff_le x y \/ diff_le y x

Lemmas that cannot be discharged automatically are handled by the user with a
proof assistant like Coq [78].

Finally, there is some work to be done in formalisation of Armus. While our
work in Chapter 4 pushes the state-of-the-art of formal runtime verification of
barrier deadlocks, we still lack a mathematical description of our distributed
algorithm. Since our version is not too different than the original [65], the
opportunity is ripe to produce a certified verification algorithm using a tool like
Coq and Whys3.
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Runtime verification We intend to verify HJ programs, as it will exercise the
expressiveness of Armus. HJ features abstractions with complex synchronisation
patterns, such as the bounded producer-consumer. Armus currently simplifies
the graph generation process by ignoring the ordering of events from the same
phaser. While this simplification of BRENNER increases the performance of
Armus to check all barriers abstractions in X10 and Java, it limits its use in the
context of HJ.

Another direction is the verification of MPI programs, which introduces
point-to-point synchronisation and enable a direct comparison with state-of-
the-art in barrier deadlock detection. One of the biggest difficulties is verifying
of a form of non-deterministic point-to-point synchronisation where a receiver
task selects non-deterministically one message from possible multiple senders.
Hilbrich et al. extended the WFG to support this non-deterministic point-to-
point synchronisation in [51]. We need to investigate the impact of this specific
graph model in our model selection technique.
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