UNIVERSIDADE DOS ACORES
DEPARTAMENTO DE MATEMATICA

A compiler for the m-Calculus:

the frontend

Tiago Cogumbreiro

Orientador

Doutor Francisco Cipriano da Cunha Martins

February 2, 2007

Acknowledgements

I wish to express a big thank you to my tutor Professor Francisco Martins.
His rigour and experience made me a better scholar, on more fields than
computer science, like writing better English, and for sprouting my interest
for investigation. Without him this work could not be possible.

A sincere word of appreciation to Professor Vasco Vasconcelos, for the
opportunity and for the conditions he created.

To the Departamento de Informatica da Universidade de Lisboa for pro-
viding the conditions necessary for the realization of this work. To the groups
LabMOL and NLX, of that university, for the friendly reception and integra-
tion.

I would like to thank the Departamento de Matematica da Universidade
dos Acores, for the flexibility of allowing me to assist the classes from abroad.

Finally, I wish to thank the Centro de Investigagao em Informética e Tec-
nologias da Informacao, of the Universidade Nova de Lisboa, for the finnan-
cial support.

Contents

2.2 The m-Calculus Syntax|
[2.2.1 Syntax of Processes|
[2.2.2 Syntax of types|

2.3 Semantics

[3.2 Lexical Analysis|. L
[3.3 Syntactical Analysis| L.
3.4 Static Semantido
8.4.1 The Visitor Patternl.
[3.4.2 Type Checkingl
(3.5 Test Driven Development|{.

[4.2.1 Refactoring the Visitor|
[4.2.2 'The Backend of the Compiler|

i

Chapter 1

Abstract

Chip multiprocessors is part of an emerging market. Parallel and concurrent
programming needs to be mastered in order to take advantage of chip multi-
processors’ architecture [16]. The m-calculus is a process algebra that reasons
about concurrent interactive systems [15] and is promoted as a foundation
for concurrency theory.

We present the frontend of a compiler for a language based on the -
calculus. This compiler is useful for putting in practice the expressiveness
brought by the m-calculus.

Our work is divided into two parts: the first part introduces the -
calculus, while the second part provides a practical approach on the construc-
tion of a compiler. To develop the compiler we follow the design presented
in [1].

The next chapter describes the m-calculus. We study its motivation, its
use, and its rules. In the third chapter we talk about the compiler. We
analyse each step taken and the choices of design when building the compiler.
Finally, the closing chapter discusses future work, namely the backend of the
compiler, targeted on a multithreaded typed assembly language.

Chapter 2

The m-Calculus

2.1 Introduction

A process is a sequence of actions performed by a system, be it software,
a machine, or a human being. Processes also stand for the behaviour of a
system. A process algebra is a formal mathematical system consisting of a
set of processes and operations on those processes [2].

Computational behaviour was initially conceived considering a simple
model: to regard a behaviour as an input/output function. This model
of behaviour is present on the Turing machine [20], register machines and
the lambda calculus. Register machines and the Turing machine represent
input and output by reading and writing on memory cells. On the lambda
calculus the input is provided as an argument to a function and the output
is its return value.

Modern computing became more complex. The complexity growth is as-
sociated with the algorithms being treated and with the increasing number of
systems interacting. Process algebra models behaviour through interaction,
rigorously defining the behaviour of concurrent interactive systems, some-
thing impossible with the former model of behaviour.

The m-calculus, developed by Robin Milner, Joachim Parrow, and David
Walker [15], is a process algebra that describes mobility. The m-calculus is
used to model a network of interconnected processes interacting amongst each
other through connection links. In the m-calculus, processes communicate by
sending and receiving references to other processes, allowing the dynamic
reconfiguration of the network.

Hi! b

Figure 2.1: Communication with an echo server

Figure 2.2: Communication with a host behind a firewall

When process A receives a reference to process B, we say that process B
is moving towards process A. This movement characterizes the m-calculus as
a mobile process algebra.

As an example, consider an echo server, which bounces every message
the client sends it. Figure [2.1]illustrates the communication between an echo
server and a client. The echo server receives a message, through port a,
containing the text *Hi!’ and a reference where it should echo the message
to the client, the port b. Afterwards, the server sends the text Hi!’ back
to the client, trough port b.

Another example is a firewall that can be configured to forward packets
from the internet to a computer inside a LAN (Local Area Network), which
we refer as the host. The host moves from the LAN to the Internet, when
the firewall exposes its link to a computer on the Internet. This scenario can
be easily modeled by the m-calculus and it is illustrated in Figure 2.2

Values

v = T,a name
| basval basic value
Processes
PQ::= 0 nil
(V) output
z(d).P input

(va: (T)) P restriction

|

|

| P|@Q parallel

|

| P replication

The syntax of T is illustrated in Figure

Figure 2.3: Process syntax

2.2 The m-Calculus Syntax

2.2.1 Syntax of Processes

The adopted m-calculus syntax is based on [14] with extensions presented
in [I8]: typed, asynchronous, and polyadic.

The syntax is divided into two categories: names and processes. Names
are denoted by lower case letters: z, a. Values, v, can symbolise either a
name or a primitive value. Processes, denoted by upper case letters, have
their syntax depicted in Figure [2.3, The vector above a name or a type
abbreviates a possibly empty sequence of names or types (e.g. @ stands for
g, A1,y .. Qy).

We start by discussing an informal semantics of the m-calculus. The main
goal of the calculus is to describe communications between processes. The
building blocks of such interactions are input processes, output processes,
and names. Processes may be grouped as elementary and composite. This
distinction helps understanding how process expressions are built. Elemen-
tary processes comprise the nil process, 0, corresponding to the inactive
process, and the output process, (¥, outlining the action of sending data,

U, to another process through a channel, x. Composite processes consists of
the input, the parallel, the restriction, and the replication. By composing
hierarchies and sending links throughout the network we can express how the
network reacts to interactions between processes.

The input process, x(a@).P, can receive a sequence of values via channel
r and continue as P, with the received names substituted for the received
values. The parallel composition process, P | @, represents two active pro-
cesses that run concurrently. The restriction process, (vz: (T)) P, is used
to create a new channel definition that can only be used inside process P.
The replicated process, | P, represents an infinite number of active processes
composed with the parallel operator.

The following example, is a possible implementation of the echo server
depicted in Figure [2.1

lecho(msg, reply).reply(msg)y (2.1)

This process is ready to receive a message, msg, and a communication chan-
nel, reply. After receiving the values, it echoes the message through the reply
channel.

The firewall example, illustrated in Figure 2.2 can be expressed as

lhost(y).P | ! firewall(c).c(host) |

firewall{client) | client(z).7{data) (2:2)
The host that resides inside the firewall is analogous to the process lhost(y).P.
We use the replication process to be able to communicate with multiple
clients. The client must send a message, firewall{client), to the firewall,
[firewall(c).c(host), to obtain the reference to the host. In this example, the
client simply sends a chunk of data to the host after receiving the channel to
the host, client(x).z{data).

2.2.2 Syntax of types

Types enforce correctness to languages by imposing constraints [5]. Lan-
guages that guarantee type consistency at run-time are called strongly typed.
If, just by analysing the code, we can extract the type of every expression,
the language is statically typed. Statically typed languages are, therefore,
strongly typed. With static typing, typing errors are found at compile time,

Types
T,5::= B basic value type

| (T) link type

Basic value types
B ::= nt integer type
| str string type

Type environments

Figure 2.4: Type syntax

leading to safer code being developed. Monomorphic languages ensure that
every symbol (i.e., a variable) is of only one type.

Our language is monomorphic and statically typed. We assign types to
channels and to basic values. A basic value type is either a string, str, or
an integer, ¢nt; the channel type describes types of the value communicated
through the channel, composed by a sequence of types. For example, the
definition of a channel that may carry an empty tuple:

()

If we look back at Process we can try to infer the type of each
argument of the input channel

echo(msg, reply). reply{msg) (2.3)

The channel echo has two arguments: msg and reply, thus its type must
also have two arguments, let us name them 7} and 7T,. The channel echo will
be typified by

(71, Tz)

The second value being communicated, the name reply, is a channel that
outputs a string.

reply{msg)

6

So, 15 must be of channel type, with one argument of type string
(str)
and the type of the channel echo can be rewritten as
(Ty, (str))

The first argument of the channel echo, the name msg, is sent through
the channel reply, hence T; must be of type string, str. Hence, the name

echo of the Process [2.3]is of type:

(str, (str))

2.3 Semantics

The semantics of the m-calculus allows us to express the behaviour of a pro-
cess. With a rigorous semantics we can identify if two processes have the
same structural behaviour, observe how a process evolves as it interacts, and
analyse how links move from one process to another.

For clarity’s sake, we omit the type from the restriction operator.

2.3.1 Structural Congruence

The syntax differentiates processes that, intuitively, represent the same be-
haviour [I7]. For example, process P | and process @ | P are syntactically
different, although our intuition about concurrent processes is that order
does not matter. The process (v z)y{z) and the process (v z)y(z) are also
syntactically different, but both processes represent an output channel send-
ing a private channel that communicates an empty tuple, regardless of the
different choice of names.

The structural congruence relation, =, is the smallest congruence relation
on processes closed under rules given in Figure 2.5 Structural congruence
allows to identify processes that represent the same behaviour structure.
Structural congruence can be used to transform the structure of a process.

The bound name function can be inductively defined as

(S1) change of bound names (see Figure [2.3.1)
(S2) Plo=P

(S3) PlQ=Q|P

(S4) Pl (QIR)=(P|Q)|R
(S5) (wa: (T)(P|Q)=P | (va: (T)Q ifx¢(P) (see Figure [2.3.2)
(S6) (v: (T)0=0
(S7) (va: (1) (vy: (S) P=(vy: (3) (va: (T) Pifw #y
(S8) 'P=P|!P

S7

Figure 2.5: Structural congruence rules

Definition 2.3.1 (The bound name function).

bn(0) =
bn(P|Q)=b()Ubn()
bn(z(a).P) = {a} v bn(P)
bn(z(v)) = &

bn((vz: (T)) P) = {z} U bn(P)
The free name function can also be defined inductively:

Definition 2.3.2 (The free name function).

n(0) = &
(P | Q) = m(P)uh(Q)
in(x(a@).P) = {z} v in(P)
ftn(z(v)) = {x, v}
f((va: (T)) P) = tn(P)\{x}

The rule S1 says that a change of bound names maintains structural
congruence. The bound names of Process are:

bn(echo(msg, reply).reply{msgy) = {msg, reply}

8

Now we rename each bound name: msg by x and reply by y

echo(msg, reply).reply{msgy{msg/x}{reply/y} is echo(z,y).y{x)

If we apply rule S1, the process affected by the change of bound names,
echo(z,y).y{x), is structurally congruent with the original:

echo(z,y).y(x) = echo(msg, reply).reply{msg)

Rule S2 asserts that the nil process is neutral concerning the parallel
operator. Rule S3 and rule S4 bring reflexivity and associativity to the
parallel process. Rule S5, we can remove a process, P, from within a re-
striction, (vz: (T))(P | Q), and run it in parallel with that restriction,
P | (vz: (T))Q, if the name of the new channel, z, is free in P. It also
sets forth the opposite: we can move a process that runs in parallel with the
restriction, inside of that restriction. The restriction process

(rb) (a().0 | b().0) (2.4)

is composed by two processes: a().0 and b().0. The process on the right,
a().0, has no occurrences of the name b, hence we can rearrange it to the
outside of the restriction process:

a().0 | (vb)b().0 = (1) (a().0 | b().0)

These two processes, however, are not structurally congruent:

b()-0 | (vb) a().0 # (vb) (a().0 | b().0)

The name b is free in the process b().0, thus we cannot rearrange it to the
inside of a restriction process that is abstracting a channel named b. To
perform this transformation we need to apply rule S1 to rename the name b
of the input process, b().0, to a name not free in (v b) a().0.

Rule S6 and rule S7 are related to the restriction operator; rule S8 is
related to the replicated operator. With rule S6 we discard or add the re-
striction operator to the nil process. Two consecutive restriction operands,
that target different names, are interchangeable, if we use rule S7. Rule S8,
unfolds copies of the process being replicated.

The next example illustrates two processes and verifies their structural
congruence. The process

echo(msg, reply).reply{msg) | (vr)echo{'hello world! r) (2.5)

9

and the process
(vy) (echo(z,y).y{z) | (0 | echo{'hello world!’ y))) (2.6)

behave the same. Each process represents a client that sends a message to
an echo server and, afterwards, discards the reply from the server. We will
use structural congruence to transform Process [2.6] into Process 2.5}

(vy) (echo(z,y) y(x) | (0] echo('hello world!, y))) S3
Step 1
= (vy) (echo(x,y).y(x) | (echo{'hello world!, y) &)) S4
Step 2
= (vy) (echo(x,y).y{z) | echo{'hello world!’ y)) S5
Step 3
= echo(z,y).7(x) | (vy)echo'hello world!’ y) S1
Step 4

= echo(msg, reply).reply{msg) | (vy)echo('hello world! y) S1

-

Step 5

= echo(msg, reply).reply{msg) | (vr) echo('hello world!’ r)

In the first step we rearrange the process 0 | echo(’hello world!, y), by
using rule S3, to remove the needless inactive process, step two. In the
process echo(z,y).y{x), the name y is bound. On step 4 we apply rule S5 to
move the input process out of the restriction process, because y is not a free
name in the moved process. On the last two steps we apply two changes of
bound names and obtain Process 2.5

2.3.2 Reaction Rules

The m-calculus models computational behaviour through interaction, as usual
in all process algebras. Each computational step corresponds to processes’
interaction.

The reduction relation —, defined over processes, in Figure [2.6] estab-
lishes how a computational step transforms a process [13]. The formula
P — @ means that process P can interact and evolve (reduce) to process ().

The axiom REACT is the gist of the reaction rules, it represents the com-
munication along a channel [12]. An output process, Z{¥), can interact with

10

REACT
z(a@).P | z(0) | @ — P{v/a} | Q

P—-P P— P

PAR = = REs
PlQ—P[Q (va: (T)) P — (va: (T)) P’

P—-P P=Q P=q
Q—Q

STRUCT

Figure 2.6: Reaction Rules

an input process, x(a@).P, if they have the same channel’s name, z. The out-
put message, ¢, moves along channel = to process P and replaces the entry
points, d, resulting P{v/d}. The term P{v/d} means that the names @, in
process P, are to be replaced by the values ¢. The process

a(x).7() | aly) [y()-0

is ready to react. We apply rule REACT and obtain the reduction

a(x).z) | ay) | y().0 = 7O [y().0

The application of this rule sets forth the communication between process
a(x).Z{) and process a(y), where name y is sent through channel a.

The remaining three rules are: PAR, RES, and STRucT. Rule PAR ex-
presses that reduction can appear on the right side of a parallel composition.
REs rules that reduction can occur inside the restriction operator. Rule
STRUCT brings congruence rules to the reduction relation.

It is important to understand the relevance of structural congruence to
the reaction rules. With structural congruence, we are able to reorder and
rearrange processes, so that they can react. Structural congruence and pro-
cess reduction also bring non-determinism to the m-calculus, because we can
arrange different processes to react differently.

We illustrate the echo server’s communication with a client. The process

echo(msg, reply).reply{msg) | (vr) echo{'hello world! r)

represents, respectively, the echo server being run concurrently with a client
that creates a new name sends it, along with a message, through channel

11

echo, to the server. The following steps describe the reaction between both
processes:

echo(msg, reply).reply{msg) |

Step 1

(vr) echo(’hello world!, r) S5
= (vr) (echo(msg, reply).reply{msg) |

echo('hello world!’ r)) S3

) Step 2 ’
= (vr) (echo(msg, reply).reply{msg) |

echo('nello world!,r) | 0) RES, REACT
— (vr) (T{'hello world!"y | 0) S3

= (vr)7('hello world!")

We want the restriction to be the outer process, so client and server communi-
cate. Since the name r is free in the process echo(msg, reply).reply{msg), we
can move the restriction to the root of the process tree, using the structural
congruence rule S5. Rule REs defines that the reduction can happen inside
the restriction process, hence we apply the rule REAcT, then communication
takes place. Finally we discard the inactive process, with the application of
rule S3.

By using rules S5 and S3, from structural congruence, and rules REACT
and REs, from process reaction, we have illustrated the interaction between
the server and the client. The resulting process, (v7)7('hello world!’), is a
pending output process that contains the message we first sent to the echo
server.

The next example is the application of reaction rules to the the Pro-

12

cess [2.0]
(vy) (echo(z,y).y{z) | (0 | echo{'hello world!, y))) S4

Step 1
= (vy) (echo(x,y).y{z) | echo('hello world!,y)> | 0) RES, REACT

Step 2
— (vy) (y{hello world!) |0) S3
~——
Step 3
= (vy)y(hello world!") S1
Step 4

= (vr)7('hello world!)

On the first step, we rearrange the inactive process, using the structural con-
gruence rule S4, so that the input and the output processes can react. On step
two, we apply rule REs and rule REACT to generate communication between
processes, inside the restriction process. On step three, with the application
of rule S3, we discard the inactive process. Then, we change the bounded
name y into r, with rule S1. The final process, (v) 7('hello world!), is the
same process from the previous example.

What happens if we have two processes available to communicate with
the echo server? Let us examine this process:

echo(x,y).y(x) | echo{’Proc 1',a) | echo{’Proc 2, b) (2.7)

It is ready for reduction:

echo(x,y). y(x) | echo('Proc 1',a) | echo{’Proc 2',b) REACT
— a{'Proc 1"y | echo{'Proc 2',b)
Now let us use the initial process, Process [2.7] and rearrange the output

processes, by using structural congruence rule S4. The resulting process is
also ready for reduction:

echo(z,y).y{x) | echo{'Proc 1',a) | echo{’Proc 2’/ b) S4
= echo(x,y).y{z) | echo{’Proc 2',b) | echo('Proc 1',a) REACT
— b{"Proc 2') | echo(’Proc 1',a)

This example clearly shows the underteministic nature of the m-calculus. The
same process, after reduction, can generate more then one process.

13

baseval € B

Tv-NAME

Tv-BASE .]
I + baseval: B Do:Trwa: T

'-P~P

— Tv-NIL
— Tv-REP
I'+0 [P

L'z (T) T,ao: To,...,a;: T — P
I' + z(a).P

Tv-IN

o (T) TrHu:T, Yiel
T+ (7

Tv-Out

-

'-P I'Q yz: (T P
Tv-PAR Tv-RES

I'-P|Q [+ (va: (T) P

Figure 2.7: Typing rules for the m-calculus

2.3.3 Typing Rules

To check if a certain process is well typed we navigate through each element it
comprises and we verify two conditions: if the names being used are known
and if there are no type mismatches. For this operation we need a type
environment; this data structure holds defined names and the associated
type. The type environment’s syntax is present on Figure [2.4, This is an
example of its usage:

O, x: stryy: (str, (str))

This type environment contains two type definitions: the name x is de-
fined with type str and the name y is defined with the type (str, (str)).

We will now discuss the rules present on Figure[2.7] Rule Tv-BASE states
that primitive values (strings and numbers) are well typed. Rule Tv-NaMmE
sets forth that a name is well typed if it is defined in the type environment and
the type used matches the name’s declaration. The inactive process 0 is al-
ways well typed, rule Tv-NiL. Using rule Tv-RES, a restriction, (v z: (f)) P,
is well typed if, by adding the association between name of the restriction, x,
and the type, (f), to the type environment, the contained process, P, is well
typed. Tv-IN rules that the input process, x(a@).P, is well typed if the name

14

of the input channel, z, is defined with the link type and if, by mapping each
name of the input channel’s arguments to the corresponding type of z, the
contained process, P, is well typed. The output process, Z(¥), is well typed
if its name, x, is declared as link type and if its arguments are correctly
typed, rule Tv-OuTt. The consistency of the replicated process depends on
the consistency of the process being replicated, rule Tv-REp. The parallel
process is well typed if each of the composing processes are well typed, rule
Tv-PAR.

There are two processes that can be used to abstract names: the input
and the restriction. The restriction process is used to abstract the number
and the type of values a channel can communicate. The input process is used
to declare names and the associated types that will be used in the contained
process.

As shown in Figure 2.7 our type system ensures the correct usage of
values and names on channels. It also constrains us to typify each name we
use. Finally, it safeguards the link usage throughout a scope by disallowing
arity and type mismatches.

Let us verify if Process 2.3 is well typed:

echo ¢ & = J f echo(msg, reply).reply(msgy Tv-IN

Since the name echo is not present in our typing environment, ¢, the
rule Tv-IN fails to typify the process. Hence, in order to correctly typify
Process [2.3| we have to declare the name echo with the link type:

(vecho: (str,(str))) echo(msg, reply).reply{msg) (2.8)

The expression (v echo: (str, (str))) can be read as: create a new channel,
named echo, that communicates a string and a channel. The channel, on the
second argument, communicates a string. The name echo can only be used
in the process held by the restriction process, the held process is Process [2.3]

Now, we show that Process [2.8|is well typed. Using rule Tv-REs we have
the derivation

O, echo: (str, (str)) - echo(msg, reply).reply{msg)

— Tv-RES
I+ (vecho: (str,(str))) echo(msg, reply).reply{msg)

Let I' %' &5 echo: (str, (str)). We need to prove that the new typing

15

environment, I, typifies Process [2.3] applying rule Tv-In:

I, msg: str,reply: (str) — reply{msgy T’ echo: (str,(str))

— Tv-IN
I - echo(msg, reply).reply(msg)

Rule Tv-NAME ensures that I - echo: (str, (str)) holds. Now, let
" €1 msg: str,reply: (str)

We are left with the second sequent, that also holds

Tv-NAME Tv-NAME
I b reply: (str) I+ msg: str

S Tv-Out
I' = reply{msg)

16

Chapter 3

The Frontend of the Compiler

3.1 Introduction

A compiler is a program that translates a high-level programming language
into machine code [I1]. The high-level language is also known as source
language. Some compilers, however, do not generate machine code, they
generate an intermediate language that is translated by another program
into machine code.

The compilation process may be divided into three main stages: the syn-
tactic analysis, the semantic analysis, and the code generation. The syntactic
analysis consists on the identification of tokens, patterns of characters, on a
file. These tokens can be a number, a word, or a more complex format like a
string. The semantic analysis stage comprises the validation of the structure
of syntactic tokens and the application of rules to the syntactic structure.
Code generation synthesises a low-level language from the verified represen-
tation. Optimization techniques can be used, in the last stage, to generate
faster or smaller code.

A compiler may be separated into two parts: a frontend and a backend.
The frontend comprises the syntactical analysis and the semantic analysis.
The backend is the code generation part.

The architecture of compilers has been thoroughly studied, so it is possible
to develop a compiler in well isolated components. Each component normally
represents a compilation stage.

Our compiler’s design follows closely [I], covering the chapters from 1 to 5.
However, we made some different design choices, still negligible. For treating

17

59

72

5

53
74

symbols and symbol tables, we reuse a package, from the TyCo compiler [21].

3.2 Lexical Analysis

The focus of the lexical analysis is to identify patterns of data in an input
stream from the source language. These patterns, called tokens, represent
different combinations of data, for example, one token can represent a number
whilst another one can represent a keyword. The generated tokens are used
by the syntactical analysis process. If the input stream contains garbled data,
the lexer produces an error and terminates the lexing stage.

The tool used to implement the lexical analysis, was JFlex [9]. This
program has a Domain Specific Language (DSL) that is used to generate
Java code that implements our lexer.

A JFlex file encompasses three sections: user code, options and decla-
rations, and lexical rules. The user code section contains Java code that is
copied verbatim to the generated class. In the options and declaration sec-
tion we can fine tune the generated class. The lexical rules section is used to
map regular expressions to actions. An example of a lexical rule is:

"7 { return token (sym.ZERO); }

The regular expression that matches the character 0 is mapped to the action
that returns a token with the symbol sym.ZERQ.
The lexical rule to identify the keyword int is straightforward:

7int” { return token (sym.INTTYPE); }
The following code listing shows the parsing of a name:

[a—2zA—Z|[a—2A—7Z0—-9]x { return token (sym.ID, yytext());
}

JFlex has the concept of states. Each state defines an independent sec-
tion of rules. One of the possible actions performed, when an expression is
matched, is to change to a different state. States are very useful to declare
otherwise complex regular expressions like multi-line comments and strings
with escape characters. The following excerpt illustrates the handling of
strings:

<YYINITTAL> {
\7” { scanner.startString (); yybegin(STRING); }

18

81
92
93
94
95
96
97

98
99
100
101

t
<STRING>{

AN { scanner.append(”\
\\\” { scanner.append(”\
\\n { scanner.append(”\
\\ t { scanner.append(”\
\7” { yybegin (YYINITIAL

STRING, scanner.closeString ()
\n { scanner.append(”\
\r { }

} { scanner.append(yytext()); }

For the sake of brevity we omit unrelated code. We use an auxiliary data
structure to keep the parsed string, the scanner. The contents of the string
are fed, on line 100, until the scanner finds a double quotes character, on
line 97. Special characters can be escaped with the backslash character, on
lines 93-96. When the double quotes character is found, the scanner state is
changed back to YYINITIAL and the token sym.STRING is returned, holding
the scanned text.

3.3 Syntactical Analysis

The syntactical analysis is the verification of the structure of the input code.
During the identification of tokens, the syntactical analysis verifies if they
have a valid structure, through the use of a language grammar. The result
of the syntactical analysis is an abstract representation of our language, an
Abstract Syntactic Tree (AST). The AST is used for latter steps of the
compiler, where we need to analysis the meaning of this structure.

The tool used to generate the parser was JavaCup [19]. JavaCup’s DSL
defines a grammar annotated with Java code, that is used to create the AST.
JavaCup’s parser copes with multiple syntactic errors, by replacing invalid
AST branches with default values and then proceeding with the analysis.

An AST maps the language’s grammar. The structure of each class fol-
lows conventions that help keep the code predictable and maintainable.

The type hierarchy of the AST is the direct representation of the gram-
mar it implements. Figure depicts the hierarchy of m processes that we
implemented. Each symbol is a class that extends the root class Absyn. Each

19

Absyn

pos : int
comment : String[]

ZF

PiProcess

<<create>> PiProcess(comment : String[],pos : int)
accept(v : ProcessVisitor) : void

Output

P Nil
name : Symbol
args : List

InputPrefix Parallel Restriction Replication

process : PiProcess left : PiProcess process : PiProcess process : PiProcess

name : Symbol right : PiProcess name : Symbol

args : List

Figure 3.1: Classes related to the symbol process

20

\)

157
158
159
174

13
18
28

29
30
31
33

production corresponds to a class that extends the symbol class. For example
the symbol Proc, a process, is implemented by the class PiProcess. The
nil process is the production Proc ::= 0, therefore it must extend the class
PiProcess.

public class Nil extends PiProcess {

//
}

This is an excerpt of the grammar that generates the inactive process:

simple_proc ::=
ZERO:z {:
RESULT = new Nil (new String[0], zleft);
1
The symbol simple_proc is analogous to the class PiProcess. The lexical
token ZERO is a production of the symbol that represents processes. The
reserved variable RESULT keeps the value associated with this production.
Each symbol is associated with meta-data related to its contextual loca-
tion in the source code and in the syntactical structure. These meta-data
are implemented by simple class attributes. Each class attribute is affected
by the public and the final modifiers, to pertain their immutable nature.
The Absyn class, and therefore all symbols, has an attribute that identifies
the symbol’s offset (its position) in the source code and an attribute that is
a user comment. The code listing below is the implementation of the class
Absyn:

public abstract class Absyn {
public final int pos;

public final java.lang.String [] comment;

public Absyn (java.lang.String [| comment, int pos)
{
this.comment = comment;

this.pos = pos;

}

The implementation is straightforward. The modifier abstract enforces the
class’ nature to be extended only.

The following example shows the implementation of the parallel process:
defined by the Parallel class. This class is composed by two attributes: the

21

10
11
12
22

23
24
25
26
28
29
30
47

14
24

25
26
27
35
36
37
52

right process corresponds to the public final PiProcess right attribute
and the left process corresponds to the public final PiProcess left. The
code for class Parallel is sketched below:

public class Parallel extends PiProcess {

public final PiProcess left;

public final PiProcess right;

public Parallel (String [| comment, int pos,
PiProcess left , PiProcess right) {
super (comment , pos);
this.left = left;
this.right = right;

}

public Parallel (PiProcess left , PiProcess right) {
this (new String[0], 0, left, right);

}

The string value, one of the basic values (¥), encapsulates a Java string,
implemented by the attribute public final String value. Its implemen-
tation is as follows:

public class StringValue extends Value {

public final String value;

public StringValue(String [] comment, int pos,
String value) {
super (comment, pos);
this.value = value;

}

public StringValue(String value) {
this (new String[0], —1, value);

}

The remaining classes are implemented in a similar way, following strictly
the syntax defined in Figure 2.3

22

3.4 Static Semantic

Static semantic validity is the application of the typing rules in Figure
to the AST. The process of applying typing rules is performed by navigating
the syntactic tree. Our Compiler uses the Visitor pattern [7] to navigate
the AST [I]. We start by presenting this pattern and analyse how the type
checking is attained.

3.4.1 The Visitor Pattern

The objective of design patterns is to identify a recurring problem and pro-
vide a solution to this problem [7]. Design patterns are catalogued with
a comprehensible name that helps the communication of software develop-
ers, the description of the problem it targets, the solution proposed to the
problem, and the consequences of applying the pattern.

The visitor is a behavioural design pattern, which address the interaction
between objects and the assignment of responsibilities. The visitor pattern
outlines the application of an operation to a hierarchy of objects, facilitating
the addition of new operations without modifying the transversed objects.

This pattern encapsulates behaviour in one object: the visitor. It works
by navigating a structure of objects and allowing the user to specify logic code
when each element is visited. The visitor has a method named visit that
accepts an argument, the class of the visited element; this method may be
overloaded if there are more than one class of visited elements. The method
visit implements a dispatching algorithm that maps the type of the element
to a method of the visitor.

For example, consider the classes: Replication and Nil. Both classes
share the same superclass, PiProcess. This means the method visit has
the following signature:

public void visit (PiProcess element);

The name of the methods used for dispatching follows a convention of the
concatenation of case with the name of the class being dispatched (e.g.,
Replication). Their signatures are:

public void caseReplication (Replication element);
public void caseNil(Nil element);

If we call the method visit with an instance of the class Replication, the

23

method caseReplication is invoked. The situation is the same for instances
of class Nil.

We have only covered the dispatching, but we mentioned the transversing
of a structure. Class Replication has one attribute of type PiProcess:

class Replication extends PiProcess {
public final PiProcess process;
}

A visitor class must navigate this structure, so, when the method visit is
called with an argument of type Replication, the method caseReplicaton
is invoked first and then the method visit is called to navigate its attribute.

Each compiler’s step entails transversing the AST. The visitor pattern
enables the representation of each compilation stage with a visitor class. By
using this pattern the compiler becomes modular and extensible. Compila-
tion steps can be added gradually without affecting other packages, because
adding new operations does not affect the AST, nor existing classes.

The compiler works on three structure of objects: processes, values, and
types. We have created a visitor interface to navigate process trees (Process-
Visitor), one to transverse the type trees (TypeVisitor), and another for
value trees (ValueVisitor).

There are various implementations of the Visitor pattern, each of which
uses a different dispatching algorithm. We use the Double Dispatch [7] im-
plementation for the Visitor pattern, pointed by [I]. This pattern delegates
the dispatching algorithm to each visited element. The Double Dispatch de-
sign pattern has a name that suggests its implementation. Every call to a
visit will be dispatched by two objects. The first dispatch is from the visitor
to the visited object (via dynamic binding). The second dispatch is from the
visited back to the visitor (via a method call).

Figure illustrates the dispatching algorithm. FEach visited element
must contain the method accept:

public void accept(ProcessVisitor v);

The method has one argument, the visitor. It is the responsibility of the
visited element to call the method with the dispatched code. In the case of
the class Nil:

class Nil extends PiProcess {
public void accept(Visitor v) {
v.caseNil (this);

24

I
| Visitor:ProcessVisitor

1

I

I

I t

I accep

i » 7
I

I

I

I

caseReplication -

i
I
1
1
accept)
. >
1
I
[
! caseNil

Figure 3.2: Visiting a Replication object containing a Nil object

}

The implementation of the method visit, of the visitor, is very simple:

class DepthVisitor implements ProcessVisitor {
public void visit (PiProcess element) {
element . accept (this);

}
}

When the method visit is called with an instance of Nil, then the method
accept of class Nil is called (the first dispatch). Then, the method caseNil,
of the class DepthVisitor, is called and the user code is executed (the second
dispatch).

The analysis of structurally composite objects, like the class Parallel, is
important to the understanding of where the navigation code is implemented
in the Double Dispatch pattern. The navigation algorithm is implemented
in the visitor class, not in the visited elements. Hence, the method accept
of class Replication is very similar to the one in class Nil:

25

46

48
49
20
o1
92
93

class Replication extends PiProcess {
public final PiProcess process;
public void accept(ProcssVisitor v) {
v.caseReplication (this);
}

}

The implementation of the method caseReplication will transverse deeper
into the structure:

class DepthVisitor implements ProcessVisitor {
public void visit (PiProcess element) {
element . accept (this);
}

public void caseReplication (Parallel element) {
visit (element . process);
}

//

A triggered event corresponds to the invocation of a dispatched method.
The convention for the naming of methods that map events is the name of
the event concatenated with the name of the class, for example the event in
and the class Output will be mapped to the method named inOutput. Most
of the nodes, in this compiler, contain three events: case, in, and out. The
case event is dispatched by the visitor. The event in is triggered after the
case event, but before transversing deeper into the tree. The out event is
raised when the visitor leaves the element.

The next code listing shows the how events of class Parallel are raised,
in class DepthVisitor:

public void caseParallel (Parallel s) throws Exception

{
inParallel (s);

visit (s.left);
betweenParallel (s);
visit (s.right);
outParallel(s);

}

Class Parallel, has the event between, that is emitted, on line 50, after the

26

94

95
96
97
98
100

101

102
103

104

105
106

process on the left has been transversed, but before the visitor navigates
deeper into the process on the right.

The navigation behaviour has been separated from the event reaction, by
using the Decorator pattern, which is a structural design pattern. Structural
design patterns focus on the composition of objects to assemble larger or more
functional structures. The Decorator pattern extends an operation dynam-
ically, by wrapping an object and delegating existing functionalities to the
decorated object. The decorator class, in our compiler, is the DepthVisitor.
This class transverses the AST and dispatches the events to the wrapped
visitor, hence encapsulating the transversing behaviour.

We show the code listing of the method caseInputPrefix (of class Depth-
Visitor):

public void caselnputPrefix (InputPrefix p) throws
Exception {

visitor.caselnputPrefix (p);

inlnputPrefix (p);

visit (p.process);

outInputPrefix (p);

}

The algorithm is depicted in Figure The event case is used to navigate
deeper into the tree and to dispatch the events in and out, line 96 and line
98. Events are then propagated to the decorated visitor, for example, the
method inInputPrefix has this implementation

public void inInputPrefix(InputPrefix p) throws
Exception {
visitor .inlnputPrefix (p);

}

and the outInputPrefix has this code

public void outInputPrefix(InputPrefix p) throws
Exception {
visitor .outInputPrefix(p);

}

The order in which events are dispatched defines the order in which the
tree is transversed. For example, the method caseInputPrefix begins with
the propagation of the case event to the decorated object (line 95). After-
wards, the in event is triggered, which, as we have seen already, propagates

27

decor: ProcessVisitor

vis: DepthVisitor

in: InputPrefix

¢

accept

caselnputPrefix

outinputPrefix

¢ caselnputPrefix
I'nlnputPrefix
< inlnputPrefix |
I
peak
|| < visit
e
outinputPrefix
-
-—

Figure 3.3: The decorated visitor dispatching the InputPrefix

28

97

46

47
48
49
20
o1
52
23
o4
95
o6
27

58
29
60
61
62

the event to the decorated object. Then, the visitor goes deeper into the
tree, by transversing the child process

visit (p.process);

Finally the event out is dispatched, the event, propagating the event to the
wrapped object.
Another example of event dispatching is the handling of the class Parallel:

public void caseParallel(Parallel s) throws Exception
{

visitor.caseParallel (s);

inParallel (s);

visit (s.left);

betweenParallel (s);

visit (s.right);

outParallel(s);

}

public void inParallel (Parallel s) throws Exception {

visitor.inParallel(s);

}

public void betweenParallel(Parallel s) throws
Exception {

visitor.betweenParallel (s);

}

public void outParallel(Parallel s) throws Exception {

visitor.outParallel(s);

}

On line 47, we propagate the event to the decorated object. Afterwards, we
emit the event in. Then, we go deeper into the tree of processes, by visiting
the element on the left. Next, we trigger the event between and we visit the
element on the right, lines 50-51. Finally, we raise the event out.

The structure used on the InputPrefix also applies to the class Parallel.
On each method that implements an event, first we dispatch it to the dec-
orated visitor. In the case event we navigate deeper into the contained ele-
ments and emit the appropriate events before (or after) visiting each nested
element.

29

84

85
88
89
90
91
94
95
96
97
98
104
110
111
112

3.4.2 Type Checking

We implement the typing rules (Figure with the visitor SemanticChecker.
The transversing of the AST is handled by the DepthVisitor, therefore we
only need to reason about the application of each rule. Typing rules have a
direct representation in the class SemanticChecker.

The typing environment is a mapping between symbols and a type def-
initions. The map, however, lacks the concept of scopes, needed by rules
Tv-INn and Tv-REs. Thus, the type environment needs to be represented by
a symbol table, implemented by class org.tyco.common.Table.

Rule Tv-Bask and rule Tv-NaME infer the type of a value. If the value
is a name, we can use the type environment to obtain the type, but if it is
a basic value we need another strategy. The class TypeMapper uses the type
environment and simple comparison of the class of the value to retrieve the
type of a value.

The rule Tv-NIL is an axiom. Rules Tv-PAr and Tv-REP are validated
as the visitor transverses the AST.

Rule Tv-In is enforced on the following code listing:

public void inlnputPrefix(InputPrefix p) throws
SemanticException {
symbols . beginScope () ;
LinkType Ink = getLink(p, p.name, p.args.size());
if (Ink = null) {
return;
}
Iterator <NameValue> iter = p.args.iterator ();
for (PiType t: Ink.args) {
NameValue v = iter .next () ;
symbols.put (v.symbol, t, v.pos);
¥
¥

public void outInputPrefix (InputPrefix p) {
symbols . endScope () ;

}

Line 85 creates a new scope, where the arguments of the input channel will
be declared (lines 94-98). Next, on lines 88-91, we verify if the name of
the channel is declared as a channel type with matching arguments (premise

30

145

146
147
148
149
150
151
152
153
159

160
161

I+ z: (T)). Afterwards, on lines 94-98, we declare the names of the argu-
ments as denoted on the premise I',ag: Ty, ...,a;: T; = P. Finally, method
outInputPrefix ends the scope as the visitor leaves this element.

Rule Tv-REs asserts the declaration of a name in a process. The code
listing below covers the implementation of this rule:

public void caseRestriction(Restriction s) throws
Exception {
symbols . beginScope () ;

if (s.type instanceof LinkType) {
symbols . put (s.name, s.type, s.pos);

} else {

log . restrictionsForChannelsOnly (s, s.name, s.type);

}
}

public void outRestriction(Restriction s) throws
Exception {
symbols . endScope () ;

}

When visiting an instance of class Restriction, a new scope is created (line
146) and the names are declared (line 149). Then, after the visitor leaves
the object the created scope is terminated (line 160). The implementation
of rule Tv-Our is similar to rule Tv-IN.

3.5 Test Driven Development

The compiler was developed with Test Driven Development (TDD) in mind [3].
TDD bestows a methodology to develop software and it is supported by a
simple framework, the xUnit. The xUnit is implemented in various languages,
on Java it is called JUnit, and, for instance, on Python it is called pyunit.

Unit tests validate a unit of source code, usually a class, providing a
written contract that the unit must abide. The xUnit furnishes a framework
of common tests and of tools for running tests together, called test suites.

JUnit is part of the Integrated Development Environment (IDE) we used
to develop our compiler, the Eclipse IDE. Having an automated and inte-
grated way to test our code helps the adoption of the TDD.

31

37
38
39

49
20

o1

02

When developing with TDD, the interface is tested before the implemen-
tation. The development follows a three step procedure. The first step is
to create the test case for the new feature. The second step is to make the
test case pass. The third, and final, step is to remove code duplication, by
refactoring the code just written.

TDD foments a safe and gradual progression. Providing tests right from
the beginning. Each component is built upon tested ones. The developer
knows what is working and can concentrate in the next step.

The created tests may serve as additional documentation. Tests are used
to show what an object may and may not do, working as examples that
highlight the behaviour of objects.

Each step of the compiler’s frontend was subject to tests. The tests used
on the compiler’s development are kept in the package pi.test. We used
the JUnit library [4], authored by Kent Beck, one of the most important
proponents of the TDD. The class ParserTest tests the scanner, the parser,
and the creation of the AST. The class PrettyPrinterTest tests the depth
visitor and the pretty printer. The class OutputTest tests both the scanner
and the pretty printer. The static semantic analysis tests are performed on
the class SemanticCheckerTest.

The first module to test is the AST, from package pi.absyn. We verify
the visitor algorithm present in DepthVisitor, by testing a simple client
class, the PrettyPrinter, in the class PrettyPrinterTest. This test works
by comparing the string generated by the pretty printer with the one we
expect. For example, an instance of the class Nil must generate the string
707

public void testNil() throws Exception {
assertProc (” Nil_object”, 707, new Nil());

}

Testing the class Restriction is similar:

public void testRestriction () throws Exception {

assertProc (” Restriction _with.sum”, ” (new.a:())(a().0.
[-b().0)7,
new Restriction(”a”, new LinkType(new ArrayList<
PiType>()) ,
new Parallel (new InputPrefix(”a”, new Nil()), new

a
InputPrefix (”b”, new Nil()))));

32

23

54
55

o6
o7
o8

92
93

94

117
118
119
120
121
122

assertProc (” Restriction._with_parallel”, 7 (new.a:(int)
) (0-]-0)7,
new Restriction(”a”, new LinkType(Arrays
.asList ((PiType) BasicType.INT)), new Parallel(
new Nil (),
new Nil()))):

To test the parser we need to be able to compare the parsed AST with the
expected tree. Each type present in the AST must implement the method
equalsTo, in order to perform the comparison of trees. The parser tests
are implemented in the class ParserTest. We have implemented a helper
factory of the parser that generates the AST from a string. The tests cover
combinations of processes, of values, and of types. This code listing shows
the tests performed on class Parallel:

public void testParallel () throws Exception {
assertCode (”0.|.0", new Parallel (new Nil(), new Nil ()

));

Constructing the AST by hand is a tedious task. This is an argument
promoting the creation of less tests. In order to make the testing process
easier, we created tests comparing a source code to the generated pretty
printed code in the class OutputTest. The source code, provided as a string,
is parsed and an AST is generated. Next, this AST is pretty printed and the
provided string is compared with the generated string. Finally, the pretty
printed string is parsed once more and the two AST’s are compared. On
this stage three verifications are performed and the tests are easier to create
than the previous two tests. However, this test is only possible when all the
parts that compose it are already well tested. As an example we list the code
showing the testing on arithmetic operations:

public void testAritmetics () throws Exception {
assertCode (7a<lox_.2.+.3>");
assertCode ("a<l_+.2.%.3>");
assertCode (7a<—1>");
assertCode ("a<lox.—1>");
assertCode ("a<l./_.—1>");

33

123
124
125
126
127
128
129
130

131

61
62

63
64
65

66

67

68

69

70

71

assertCode ("a<l.+.—1>");

assertCode ("a<—1.%.—1>") ;

assertCode (" parenthisis”, 7a<(1)>", "a<1>");
assertCode (” parenthisis”, "a<(l4+.1)>", "a<l.4+.1>");
assertCode (” parenthisis”, 7a<(lox_1)>", "a<lox.1>");
assertCode (" parenthisis” |, 7a<(—1)>", "a<—1>");
assertCode (” parenthisis”, "a<(1l)_4.(1)>", "a<l4+.1>")

Y

assertCode (” parenthisis”, "a<(1) %-(1)>", "a<1 %.1>")

}

The tests covering the semantic analysis, in class SemanticCheckerTest,
validate the implementation of the typing rules. In these tests we can create
erroneous code and verify if the errors raised by the parser (or not) are the
ones we expect. We can also create valid code and verify how the parser
copes with it:

I

public void testChecker () throws Exception {

assertInvalid ("a().0”, ErrorCode.UNDEFSYMBOL); // a
1s undifined

assertValid (7 (newca:())a().0");

assertInvalid ("z.is_undifined”, ”(new.a:(int))a<z._+1>
7, ErrorCode .UNDEFSYMBOL); // z is wundifined

assertInvalid (” (new.a:(int)) (newc.b:(str))b(z).a<z.+1>
7, ErrorCode . TYPEMISMATCH) ; // z should be an
integer

assertInvalid ("a.is_defined_on_other._scope”, "a(b).0.
| o(new.a:()).0”, ErrorCode.UNDEFSYMBOL) ;

assertInvalid (7 ((new.a:()).0).]ca(b).0”, ErrorCode.

UNDEF_SYMBOL) ;

assertInvalid ("restriction_applies_to_nil_and_not_to.
parallel”, 7 (new.a:()).0_].a(b).0”, ErrorCode.
UNDEF_SYMBOL) ;

assertValid (7 (newc,a:())(a().0o]c(newca:(int))a(b).0)”
)

assertInvalid (” (new.a:int)0”, ErrorCode.
SYNTATIC ERROR, ErrorCode.SYNTATIC ERROR) ;

34

72

The TDD was useful to stress the correctness of the various parts of the
frontend. Tests do not ensure that the code is correct, but they do show
what conditions have been considered. Automated tests also help maintain
the quality of the code because regressions are detected quicker.

35

Chapter 4

Conclusion and Further Work

4.1 Conclusion

We presented the w-calculus along with a frontend of a compiler for a lan-
guage based on this calculus. Our study of the m-calculus, compulsorily, fell
upon computer science topics like mobile computing, process algebra [2], and
concurrency. The study on the 7-calculus was also backed up by other topics,
like the microprocessors’ future [16] and the theory of types [5].

By following Andrew Appel’s [1] design and simple conventions we were
able to construct a modular and maintainable compiler’s frontend. The Vis-
itor design pattern imposed the modular design we achieved and defined the
compiler’s architecture.

The development of the compiler was guided by important software en-
gineering techniques like Test Driven Development, Design Patterns, and
Refactoring. TDD helped validate the work done. Refactoring made the
code cleaner, with less redundancy. Design patterns helped with solutions to
known problems.

4.2 Further Work

The compiler is left unfinished, the backend is missing. In this section we
show a possible refactoring to the visitor we have implemented and introduce
the backend of the compiler.

36

37

38
39

4.2.1 Refactoring the Visitor

The Double Dispatch pattern is hindered by a cross cutting concern [§]. The
dispatching functionality is scattered along the depth visitor and along each
visited element. The functionality present in each visited elements contains
code that it is highly repetitive and error prone, hinting us to code that may
need refactoring.

Concerning code redundancy first, each visited element contains a method
named accept that calls a visitor’s method following the convention we ex-
plained before. Following is the dispatching code present on the Nil class:

public void accept(ProcessVisitor v) throws Exception
{
v.caseNil (this);

}

The Java reflection Application Programming Interface (API) allows dy-
namic introspection of an object. With this API we can obtain properties
of a class, such as which methods it comprises. It also enables invoking a
method by its name. Introspection is useful for automating repetitive code
that follows a convention.

Using introspection, the method can be implemented as:

Method meth = v.getClass () .getMethod(” caseNil” , Nil.
class);
meth.invoke (v, this);

The visitor’s method caseNil is obtained dynamically, then it is invoked,
passing the same arguments as before. Note that the variable v is now
passed explicitly when the method caseNil is called.

The next step is to perform the refactoring pattern Pull Up [6]. That
refactoring moves repeating code existing on classes that share the same
superclass to the superclass. To do so, we abstract the name of the class and
the class object passed to the method getMethod:

String cls_.name = this.getClass () .getSimpleName /() ;

Method meth = v.getClass () .getMethod(” case” + cls_name
this.getClass());

meth.invoke (v, this);

Now the code is ready to be moved to the class PiProcess.

37

The use of introspection slows down the execution, but optimization tech-
niques may be used regain performance. One optimization technique could
be achieved by the application of the Flyweight pattern [7] to cache the
retrieval of the Method object.

Even after refactoring, the dispatching algorithm is scattered between
PiProcess and DepthVisitor classes. The method accept, of class Pi-
Process, is generic enough to be moved outside its holding class, because
it does not depend on any private attribute. If we move the dispatching
algorithm to the class DepthVisitor, we remove the cross cutting concern.

A Visitor that uses reflection (introspection) to the dispatching mech-
anism and is decoupled from the visited classes is called a Reflective Visi-
tor [10]. This kind of Visitor removes the dependency from the type hierarchy
and facilitates adding new operations.

4.2.2 The Backend of the Compiler

Another task we want to address in the forthcoming future is the creation of
the backend of the compiler. Our compiler is going to target a multi-threaded
typed assembly language, MIL [22]. We are going to study the MIL language
and code generation algorithms. It will also be of relevant importance of the
study concurrency theory, particularly locks algorithms, and the study of
typed assembly languages.

38

Bibliography

1]

Andrew W. Appel. Modern Compiler Implementation in Java, 2nd edi-
tion. Cambridge University Press, 2002.

Jos C. Baeten. A brief history of process algebra. Theoritical Computer
Science, 335(2-3):131-146, 2005.

Kent Beck. Test Driven Development: By Fxample. Addison-Wesley
Professional, 2002.

Kent Beck and Erich Gamma. JUnit. http://www.junit.org/.

Luca Cardelli and Peter Wegner. On understanding types, data ab-
straction, and polymorphism. ACM Computing Surveys, 17(4):471-523,
1985.

Martin Fowler. Refactoring: Improving the Design of Ezisting Code.
Addison-Wesley, 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Aksit and Satoshi Matsuoka, editors, Pro-
ceedings European Conference on Object-Oriented Programming, volume
1241, pages 220-242. Springer-Verlag, 1997.

Gerwin Klein. JFlex. http://jflex.sourceforge.net/.

Yun Mai and Michel de Champlain. A pattern language to visitors. 8th
Conference on Pattern Languages of Programs, 2001.

39

[11]
[12]

[13]

[16]

[17]

[18]

[19]
[20]

[21]

Ronald Mark. Writing Compilers and Interpreters. 1996, Wiley.

Francisco Martins. Controlling Security Policies in a Distributed Enuvi-
ronment. PhD thesis, Faculty of Sciences, University of Lisbon, 2005.

Robin Milner. The polyadic m-calculus: A tutorial. In Friedrich L.
Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic and
Algebra of Specification, volume 94 of Series F. NATO ASI, Springer,
1993. Available as Technical Report ECS-LFCS-91-180, University of
Edinburgh, 1991.

Robin Milner. Communicating and Mobile Systems: the m-Calculus.
Cambridge University Press, 1999.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part I/I1. Journal of Information and Computation, 100:1-77,
1992.

Kunle Olukotun and Lance Hammond. The future of microprocessors.
Queue, 3(7):26-29, 2005.

Joachim Parrow. An introduction to the pi-calculus. In Jan Bergstra,
Alban Ponse, and Scott Smolka, editors, Handbook of Process Algebra,
pages 479-543. Elsevier Science, 2001.

Davide Sangiorgi and David Walker. The m-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

TUM team. JavaCup. http://ww2.cs.tum.edu/projects/cup/.

Alan Turing. On computable numbers, with an application to the
entscheidungsproblem. In Proceedings of the London Mathematical So-
ciety, 2-42, pages 230-265, 1936.

Vasco T. Vasconcelos. Core-TyCO, appendix to the language definition,
yielding version 0.2. DI/FCUL TR 01-5, Department of Informatics,
Faculty of Sciences, University of Lisbon, 2001.

Vasco T. Vasconcelos and Francisco Martins. A multithreaded typed
assembly language. In Proceedings of TV06 - Multithreading in Hardware
and Software: Formal Approaches to Design and Verification, 2006.

40

	Abstract
	The pi-Calculus
	Introduction
	The pi-Calculus Syntax
	Syntax of Processes
	Syntax of types

	Semantics
	Structural Congruence
	Reaction Rules
	Typing Rules

	The Frontend of the Compiler
	Introduction
	Lexical Analysis
	Syntactical Analysis
	Static Semantic
	The Visitor Pattern
	Type Checking

	Test Driven Development

	Conclusion and Further Work
	Conclusion
	Further Work
	Refactoring the Visitor
	The Backend of the Compiler

