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Abstract
This paper presents a graph-based dynamic verification al-
gorithm for deadlock detection and avoidance specialised in
barrier synchronisation. Barriers are used to coordinate the
execution of groups of tasks, and serve as a building block of
parallel computing. The synchronisation patterns enabled by
current barrier-based abstractions can introduce deadlocks,
a major issue in getting parallel applications correct. Bar-
rier deadlocks arise from a cyclic-dependency amongst tasks
that participate on multiple barriers. We propose the use of a
synchronisation-centric model instead a task-centric model,
traditionally used in dynamic deadlock verification.

We present Armus, a platform-agnostic framework for
deadlock verification and introduce two applications of this
framework: Armus-X10 monitors any unchanged X10 pro-
gram for deadlocks; JArmus is a library to verify Java pro-
grams. To evaluate Armus, we benchmark the runtime exe-
cution against the NAS Parallel Benchmark suite and Java
Grade Forum Benchmark suite. Results show that the per-
formance overhead of our deadlock detection technique is
negligible for usual parallel applications and is independent
of the number of the tasks.

1. Introduction
Barrier synchronisation coordinates the execution of inde-
pendent processing units (e.g., tasks, processors, or comput-
ers). The importance of this synchronisation mechanism can
be traced back to the first parallel computers ever designed
in the 1960’s, e.g., Gamma 60 [4].

Barriers are a cornerstone of parallel computing. Their
presence is ubiquitous, ranging from hardware [1] to pro-
gramming models. In particular, the de facto standards
for shared memory (OpenMP [27]) and message passing
(MPI [26]) paradigms are build upon this form of synchro-
nisation. Java 5–8 and .NET 4 incorporate five abstractions
based on barriers: latches, cyclic barriers, futures, a fork/join
programming model, and stream programming. Futures are
also a novelty of C++ version 2011. The cyclic barri-
ers found in Java, are inspired by clocks of the X10 lan-
guage [41], and by phasers of Habanero-Java (HJ) [6].

Current barrier-based abstractions enable new synchroni-
sation patterns that can introduce deadlocks, a class of ne-
farious concurrency failures. Barrier deadlocks arise from a

cyclic-dependency amongst tasks that participate on multi-
ple barriers. Literature usually considers strategies to handle
deadlocks [17]—prevention, avoidance, and detection.

The focus of this paper is on dynamic verification—
deadlock avoidance and detection—where the runtime sys-
tem monitors the application’s state and deals with resolving
the deadlock. The standard approach is to model any run-
time dependencies between tasks and resource requests as a
graph and subsume deadlock detection to some graph oper-
ation, like cycle detection. The requests of resources corre-
sponds to blocking operations, such as awaiting at a barrier,
or acquiring a lock.

When choosing a graph representation, there are three
factors to consider: (1) the information stored in the graph,
(2) the graph operation that represents the deadlock check,
(3) the accuracy of the deadlock check. Each factor influ-
ences the other. Representing more (1) information in the
graph, usually implies (3) having accurate checks, but slows
down the (3) the dynamic checks. There are three main
models to choose from: the Wait-For Graph (WFG) [20]
that models dependencies (edges) between tasks (nodes),
the State Graph (SG) [17] that models dependencies be-
tween requests (nodes), and the Resource-Allocation Graph
(RAG) [28] that models dependencies between tasks (nodes)
and resources (nodes). State-of-the-art in dynamic deadlocks
verification for mutual exclusion [5] uses (1) the RAG, the
check is (2) cycle detection on a specific path configuration,
and (3) is not sound, so there are false positives. There are re-
cent attempts to increase the accuracy of this form of verifi-
cation [31]. Similarly, related work that checks MPI applica-
tions [13] uses (1) the WFG, the check is (2) knot detection
in the graph, and (3) it is not sound. The SG is preferred over
the WFG and the RAG for applications that need to scale on
the number of tasks while the number of resources remains
fixed (like HPC applications), as adding more tasks slows
down verification. The SG makes the detection problem in-
dependent of the number of tasks running in the system, yet,
surprisingly, literature surrounding the SG is scarce.

We address the accuracy and the scalability problems of
dynamic verification of barrier deadlocks. In summary, our
contributions are:

• a novel representation of barrier deadlocks that uses the
SG, that subsumes the deadlock check to cycle detection,
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1 val c = Clock.make();

2 finish {

3 // Spawn I tasks, looping together J times

4 for (i in 1..I) async clocked(c) {

5 for (j in 1..J) {

6 val l = a(i-1);

7 val r = a(i+1);

8 c.advance(); // Cyclic barrier (clock) step

9 a(i) = (l + r) / 2;

10 c.advance();

11 }

12 }

13 } // Join barrier (finish) step: wait on all tasks

14 process(a);

Figure 1: Join and cyclic barrier synchronisation in X10.

and the check is sound and complete, i.e., all identified
deadlocks are true deadlocks, and all possible deadlocks
are detected.

• the first dynamic deadlock verification of barrier dead-
locks for Java and X10; and

• a performance evaluation using the NAS Parallel Bench-
mark [38] (for X10 and Java) and Java Grade Forum
Benchmark [9] (§4).

The benchmark results show that Armus runtime overhead is
negligible and independent of the number of tasks. Armus is
available from [3] with detailed benchmark results and test
cases.

The paper is organised as follows. Sections 2 to 4 present
the contributions listed above. Section 5 discusses related
work and Section 6 concludes the paper.

2. Barrier programs and deadlocks
This section firstly illustrates deadlock errors in two (bugged)
implementations of a small parallel algorithm, using X10
barriers [41] and Java phasers [15]. Secondly, we give a
more general summary of deadlock situations that may arise
in various barrier usage patterns, with X10 examples. As
Armus is based on the more general mechanism of phasers,
which subsumes barriers, we are able to directly apply its
implementation to both X10 and Java.

2.1 X10 barrier programming

The algorithm that we use as a running example has two
stages. In the first stage (a simplified parallel 1-dimensional
iterative averaging [34]), I parallel tasks work on an array
a of I+2 numbers. Each task is responsible for updating one
of the middle I elements to the average of its neighbours
repeatedly over a series of synchronised iterations. After
these tasks have finished, a single task then performs some
final processing on the resulting array values.

Figure 1 lists an X10 implementation. The first stage is
implemented using a cyclic barrier, represented by the clock

created and assigned to c (an immutable val) on Line 1. The
for loop starting on Line 4 spawns 1..I parallel tasks (called
activities in X10) using the async statement. All I child tasks
are registered (clocked) with the clock c; the parent task
was implicitly registered when it created the clock. In the
async body of each task i, the inner loop, repeated J times,
reads the a(i-1) and a(i+1) array values and assigns the
average to a(i). Stepwise looping by these parallel tasks
is coordinated using the blocking advance operation on the
clock. A task executes an advance by waiting until every task
registered with that clock has done so, and then all tasks may
proceed. On Line 8, the tasks synchronise after reading the
current values in the j-th step before writing the new values,
and again after writing on Line 10 before reading the values
in the (j+1)-th step.

The second stage is implemented using a join barrier.
The parent task executes the finish statement starting on
Line 2 by executing the statement body and waiting for all
transitively spawned tasks (i.e., the I sub-tasks) to finish,
before proceeding to its continuation (Line 14).

The ability to dynamically register (and drop) tasks at any
point during the lifetime of the X10 clock, as in the above
code, is an expressive feature, but can be a source of subtle
deadlocks. The above code deadlocks because all of the I

tasks are stuck on the first advance, since the (implicitly reg-
istered) parent thread never calls advance. The most straight-
forward solution is to have the parent task to call c.drop()
between Lines 13 and 14 to deregister itself from the clock.

As the example shows, finish join barriers and Clock

cyclic barrier are distinct abstractions in X10. With finish

barriers, the parent task observes when a group of (other)
tasks reaches the barrier, while the tasks that can observe
a Clock barrier are its members. The finish barrier is ob-
served by the parent task once, whereas a Clock can be
reused (as above) to allow the member tasks to wait for
each other periodically. Join barriers are commonly used
in fork/join patterns and with futures [12] (where tasks can
observe the asynchronous evaluation of functions), both of
which feature in Java and X10. Cyclic barriers are also found
in the SPMD programming model, where “collective” oper-
ations are repeatedly invoked by all members of a task group
to communicate data with implicit barrier synchronisations.

2.2 Generalised barrier synchronisation using phasers

Phasers [33] were proposed in HJ as an extension of X10
clocks, and a limited form of phasers were later included
in Java 7. A phaser is used to count and observe events
generated by a group of tasks, akin to event counters [29],
a classical synchronisation mechanism.

Figure 2 lists a Java version of the previous example, us-
ing the java.util.concurrent.Phaser API to encode both
the cyclic and join barriers. The cyclic barrier is managed
by the phaser assigned to c. The integer constructor argu-
ment (Line 1) creates the phaser with an initial count of
pre-registered tasks for the first phase: here, the count is ini-
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1 c = new Phaser(1); // "Cyclic barrier" phaser

2 b = new Phaser(1); // "Join barrier" phaser

3 for (int i = 1; i <= I; i++) {

4 c.register();

5 b.register();

6 new Thread() { // Spawn task i

7 public void run() {

8 for (int j = 1; j <= J; j++) {

9 l = a[i-1];

10 r = a[i+1];

11 c.arriveAndAwaitAdvance();

12 a[i] = (l + r) / 2;

13 c.arriveAndAwaitAdvance();

14 }

15 c.arriveAndDeregister();

16 b.arriveAndDeregister();

17 }

18 }.start();

19 }

20 b.arriveAndAwaitAdvance();

21 handle(a);

Figure 2: The example implemented using Java phasers.

tialised to 1 to signify the registration of the parent task to
this phaser. On Line 4, each of the I tasks (threads) is reg-
istered with the c-phaser. Intuitively, each task is assigned
a non-negative monotonic integer, called the local phase,
that is incremented when the task arrives at an event on
the phaser; a phaser event is then observed by a task if
the local phase of every member is at least at the value of
the event. Analogously to the X10 code, the cyclic barrier
synchronisations are thus performed by each task invoking
arriveAndAwaitAdvance on c on Lines 11 and 13 to arrive
at and observe each synchronisation event.

The join barrier is managed by the phaser assigned to b.
The join synchronisation is achieved by each task i in-
voking on Line 16 the non-blocking arriveAndDeregister

method on b when finished, which the parent task observes
by arriveAndAwaitAdvance on Line 20. Corresponding to
Figure 1, this Java implementation will deadlock at the first
c-phaser synchronisation because the registered parent task
does not arrive at this event; the fix is to have the parent task
do c.arriveAndDeregister() between Lines 19 and 20.
Note that avoiding this deadlock by changing the code to
simply not register the parent task with the c-phaser (i.e.,
by setting its constructor argument to 0) is not sufficient:
in this case, the synchronisations on c would proceed non-
deterministically between already running threads and those
that have yet to be started.

Although Java phasers can express X10 cyclic and join
barriers, they are limited compared to the “full” phasers sup-
ported in HJ (and formalised in Armus). Similarly to X10
clocks, correct usage of Java phasers requires all registered
tasks to eventually observe (i.e., await) every synchroni-
sation event. In contrast, HJ phasers (1) decouple a non-

blocking operation to arrive at a phase from the blocking
operation to await a phase advance (when all registered tasks
have arrived at that phase), such that (2) it is not necessary
for the task to await the phase after arriving before proceed-
ing to the next. HJ phasers thus permit tasks to await arbi-
trary phases. Works on phasers include synchronisation al-
gorithms [25, 36], data-flow programming models [34, 35],
and OpenMP extensions [37]. By designing Armus to sup-
port HJ phasers, we subsume deadlock detection for X10 and
Java barrier programs under one central abstraction, which
can also be readily applied to the barrier concurrency mech-
anisms in the other languages summarised in the next sub-
section.

3. Armus: a framework for dynamic
deadlock verification

Armus is a language-agnostic framework to perform dead-
lock verification, optimised for barrier synchronisation. We
present two verification tools that use Armus: JArmus to
check Java programs, and Armus-X10 to check X10 pro-
grams.

The verification tools work by “weaving” the verification
in a given program. The input of a verification tool is the
compiled program we want to verify (Java bytecode). The
output is a verified program (Java bytecode) that includes
dynamic checks for deadlock detection/avoidance. The Ar-
mus framework manages the SG and checks it for cycles.
The JArmus and Armus-X10 layers instrument the program
to supply JArmus with edges before any task blocks.

3.1 Overview of Armus

The Armus framework maintains a graph-representation of
dependencies between resources, and performs cycle detec-
tion. The graph is incrementally built using three operations:
(1) before synchronisation tasks put edges in the shared
graph; (2) the tool checks for cycles; and (3) after synchro-
nisation, tasks take the added edges out of the graph.

Resources r correspond to synchronisation events. To
uniquely represent a synchronisation event we pair the bar-
rier with an event counter, e.g., resource b : 1 represents the
first time barrier b is used for synchronisation. For a given
task t that synchronises, the runtime environment must pro-
vide the set of resources the task synchronises with, R1,
and the set of blocked resources, R2. In X10, R1 is the set
of clocks and finish barriers the task is registered with; R2

is the clock or finish barrier in which the task is blocked.
The runtime environment generates an edge (r1, r2) for each
r1 ∈ R1 and r2 ∈ R2. Armus-X10 considers finishes to al-
ways be at phase 1.

Figure 3 lists a deadlock between two tasks executing
the running example, in Figure 1, instrumented with Armus-
X10. In Line 13, task 1 is registered with clock c, thus R1 =
{c : 1}, and it is blocked at the end at the end of the finish,
so we have R2 = {f : 1}. The generated edge for task 1
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Task 1:

1 val c = Clock.make();

2 finish { // f

3

4 for (i in 1..I) async clocked(c) {

12 } // R1 = {c}

13 } // {(c:1, f:1)}

14 process(a);

Task 2:

5 // R1 = {c, f}

6 val l = a(i-1);

7 val r = a(i+1);

8 c.advance(); // {(c:2, c:1), (f:1, c:1)}

9 a(i) = (l + r) / 2;

10 c.advance(); // {(c:3, c:2), (f:1, c:2)}

Cycle!

Figure 3: Edge generation of the running example.

is therefore (c : 1, f : 1). In Line 8, task 2 is registered with
clock c at phase 2 (since the task advanced the clock) and
with finish f, so R1 = {c : 2, f : 1}; the task is awaiting
other tasks to reach phase 1, so R2 = {c : 1}. Task 2 gener-
ates edges (c : 1, f : 1) and (c : 2, c : 1). The cycle happens
from edge (c : 1, f : 1) to edge (f : 1, c : 1).

SG vs WFG There is a property we note to favour the SG
over the WFG for barrier deadlock detection, besides the dif-
ference in the complexity of cycle detection. Constructing a
SG generates less contention than for the WFG, since build-
ing the SG relies entirely on the barriers the task is registered
with (task-local information). Instead, constructing a WFG
requires the participants registered with the barrier (informa-
tion spread across tasks).

3.2 Internals of the Armus framework

The Armus framework is divided into (i) the state graph
layer and (ii) the verification strategy layer. Layer (i) stores
edges and performs cycle detection with an off-the-shelf li-
brary called JGraphT [16]. Layer (ii) mediates the use of the
graph: it defines when to invoke cycle detection, and pro-
vides a façade for tasks to add and to remove edges from the
graph. Armus provides two strategies: deadlock avoidance
and deadlock detection. The framework is available as a re-
mote service, a necessary feature to support the verification
of distributed applications.

Deadlock avoidance strategy only permits tasks to syn-
chronise if it is safe to continue, i.e., the task is not going
to deadlock because of the synchronisation it is about to per-
form. Before blocking on a barrier, the strategy layer places
the edges in the graph, checks for cycles, and then throws an
exception if a cycle is found. The programmer can catch the
exception to recover from the avoided deadlock. The buffer
of edges in the graph layer must be able to cope with con-

current requests of adding (removing) edges, and of cycle
detection.

Deadlock detection strategy allows tasks to synchronise
at will, possibly reaching a deadlocked state. This strategy
tackles two factors with a major impact on the performance
of the deadlock avoidance strategy, namely (i) cycle detec-
tion occurs whenever a task synchronises, and (ii) the state
graph is a source of contention. To address (i) we centralise
cycle detection in a single task, called the monitor, that pe-
riodically checks for cycles. This way, at synchronisation
points, tasks only need to add and remove edges from the
state graph. To address (ii) we use a double buffer tech-
nique. Before synchronising, tasks place their edges in the
first buffer. Periodically, the monitor task moves all edges
from the first buffer to the graph layer (that acts as a second
buffer). Nevertheless, the use of two buffers complicates the
removal of edges. When the runtime environment requests
for an edge removal, the platform marks the edge as be-
ing expired. We include an additional task that periodically
garbage collects expired edges from the buffers. Removals
from the second buffer only occurs after checking for cy-
cles. The tools is parametric on both the monitoring and the
garbage collection time intervals.

3.3 The design of the verification tools

Both JArmus and Armus-X10 share the same usage and
design. The implementation each of these verification tools
is divided into two components: the resource mapper and
the task observer. The resource mapper converts blocking
calls and impeding synchronisation as resources. The task
observer intercepts blocking calls to inform Armus that the
current task is blocked with a set of resource edges. The
set of edges is constructed from the blocking call to each
impeding resource. The task observer is programmed with
Aspect-Oriented programming, through AspectJ [19].

3.4 JArmus

JArmus verifies class operations of Thread, CountDown-
Latch, CyclicBarrier, Phaser, and ReentrantLock.
In Java, the relationship between the participants of barrier
synchronisation and tasks is implicit. For example, when
using a CyclicBarrier the programmer declares the num-
ber of participants and then shares the object with those
many tasks. It is not specified which tasks participate in the
synchronisation. JArmus has no way of reconstructing this
information for the CountDownLatch, CyclicBarrier,
and Phaser classes, so the programmer must annotate its
code to supply the barriers a task is registered with, invok-
ing JArmus.register(b) for barrier b. The verification of
Thread and ReentrantLock do not require manual anno-
tations. Support for verifying mutual exclusion deadlocks
is still experimental, as it may suffers from potential false
deadlocks, a usual limitation of current deadlock verifica-
tion techniques [5].
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3.5 Armus-X10

Armus-X10 can verify any program that uses clocks and
finishes. There is support for distributed X10 applications,
as long as all parts are instrumented and connect to the
same remote Armus service. X10 can be compiled to Java
bytecode, called Managed X10, and to machine code, called
Native X10. Our tool only supports Managed X10.

The instrumentation in Armus-X10 is completely auto-
matic. This is made possible by the information provided by
X10 runtime. To generate the edges, Armus-X10 emits the
set of impeding resources, that comprises the clock phases
and finishes a in which a given task is registered. We con-
sider that a task is registered with a finish if the task executes
within the scope of that finish.

4. Evaluation
The aim of the evaluation process is to ascertain whether the
performance impact of Armus scales well with the increase
in the number of tasks. For that we benchmark Armus’ ex-
ecution overhead against two suites of parallel applications,
as we increment the number of tasks.

4.1 Benchmark suites description

We use the NAS Parallel Benchmark (NPB) [9] and the
Java Grande Forum [38] (JGF) benchmark suites to evaluate
Armus. All benchmarks check the validity of the produced
output. Next, we describe each benchmark suite.

NPB The NPB suite of benchmarks ranges from kernels
to pseudo-applications, taken primarily from Computational
Fluid Dynamics (CFD) applications. The benchmarks in-
clude computational kernels and pseudo-applications that
exhibit the communication and computational patterns com-
monly found in CFD applications. We used the following
benchmarks:

BT is a pseudo-application that solves 3-dimensional (3-D)
compressible Navier-Stokes equations;

CG is a computational kernel that uses a Conjugate Gradient
method to compute approximations to the smallest eigen-
values of a sparse unstructured matrix;

FT is a computational kernel of a 3-D Fast Fourier Trans-
form;

LU is a pseudo-application that uses the symmetric succes-
sive over-relaxation method to solve the discrete Naive-
Stokes equations by splitting it into block lower and up-
per triangular systems;

MG is a computational kernel that uses the V-cycle multi grid
method to compute the solution of the 3-D scalar Poisson
equation;

SP is a pseudo-application that employs the Beam-Warming
approximate factorisation in a system of scalar penta-
diagonal linear equations.

The synchronisation patterns in the NPB-JAV suite is
similar for most cases, except for LU. The synchronisation
is implemented with condition variables. Their algorithms
are iterative, and tasks use a cyclic barrier to synchronised
stepwise.

In the LU benchmark there is a pipeline dependence be-
tween workers, enforced with a relay-race task synchronisa-
tion, that uses one barrier per a task.

We converted the FT benchmark to X10, and call it NPB-
X10 suite. The source code is available through our project’s
page [3]. The translation is semi-automatic; the biggest dif-
ferences between Java and X10 amounts to type declara-
tions. For cyclic barrier synchronisation we opt for clocks
instead of condition variables.

JGF The Java Grande Forum benchmark suite is divided
into three groups of applications: micro-benchmarks, com-
putational kernels, and pseudo-applications. We selected one
pseudo-application, RT, that emulates a 3-D ray tracer. The
algorithm is iterative and tasks use a cyclic barrier to syn-
chronised stepwise.

4.2 Benchmark results

Setup The hardware used to run the benchmarks has four
AMD Opteron 6376 processors, each with 16 cores, making
a total of 64 cores. There are 64GB of available RAM.
The operating system is Ubuntu 13.10 and the OpenJDK
Runtime Environment is IcedTea 2.4.4.

We follow the start-up performance methodology de-
tailed in [10]. We take 31 samples of the execution time of
each benchmark and discard the first sample. Next, we com-
pute the mean of the 30 samples with a confidence interval
of 95%, using the standard normal z-statistic. The bench-
marks are verified in deadlock detection mode, as it is the
most optimised of the two modes.

All benchmarks accept the size of the input as a parame-
ter. We choose the smallest input size such that the applica-
tion scales (runs faster) as we add more tasks. For the sake
of reproducibility we list the code of the input as specified
in each benchmark: BT uses size A, CG uses size C, the Java
version of FT uses size B, LU uses size W, MG uses size C, SP
uses size W, RT uses B, the X10 version of FT uses size A.

The input set chosen for benchmarks LU and SP only lets
them scale up to 34 and 31 tasks, respectively. For simplicity,
in the evaluation we consider that these benchmarks scale
up to 32 tasks. Larger input sets take at least one month per
benchmark to complete with our hardware configuration, so
we opt for using a smaller input set.

Results Figure 4 summarises the comparative study of the
execution time for each benchmark. The results show that,
for up to 64 tasks, scaling the application has no impact in
the verification.

The results for the NPB and JGF benchmark suites are
depicted in Figures 4a to 4g. This metric indicates that ver-
ification is unaffected when scaling the benchmark. Adding
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tasks does not suggest an increase of the overhead. For ex-
ample, the execution overhead between 32 and 64 tasks only
increases on 2 out of 5 benchmarks (BT and LU).

Figure 4c and Figure 4h represent a similar overhead for
the same benchmark implemented in Java and X10, respec-
tively. The verification algorithm is the same, so the biggest
change is the language implementation. The metrics indicate
that there is no impact in X10.

5. Related work
This section lists related work forcussing on deadlock in
HPC program languages. For more extensive comparisons,
including an historical summary of barrier synchronisations,
see [7, § 2].

Deadlock prevention. The literature around source code
analysis to prevent global barrier deadlocks is vast, see
[7, § 2] for related work on deadlock preventions of MPI,
OpenMP and OpenSHMEM.

The fork/join programming model is easily restricted syn-
tactically to prevent deadlocks from happening. Lee and
Palsberg presented a calculus for a fork/join programming
model [23], suited for inter-procedural analysis through type
inference, and establishes the deadlock freedom property.
This work also includes a type system that is used to identify
may-happen-parallelism, further explored in [2].

Our work in [8] also proposes a static typing system to
essure correctness of phased activities. In [8], there is no
single await primitive so that any example that has more than
two phasers and performs await(c) cannot be expressed.
Thus none of X10 and Java programs in § 2 can be verified
by [8].

There is some work surrounding the formalisation of bar-
rier semantics that considers more complex idioms of bar-
rier synchronisation, but do not establish deadlock-freedom.
For example, Saraswat and Jagadeesan formalise a subset of
X10 that prevents deadlocks [32], comprising join barriers
and clocks. Le et al. devise a verification for the correct use
of a cyclic barrier in a fork/join programming language [22].
In [39], Vasudevan et al. perform static analysis to specialise
the implementation and thus improve performance of the
synchronisation algorithm.

The tool X10X [11] is a model checker for X10. Model
checkers perform source code analysis and can be used to
discover potential deadlocks. This class of tools suffers from
the state explosion problem: the analysis grows exponen-
tially with the possible interleaves of the program. Thus,
X10X may not be able to verify complex programs. In gen-
eral, prevention is too limiting to be applied to the whole
system, so language designers use this strategy to eliminate
just a class of deadlocks.

Deadlock avoidance. To our knowledge, techniques that
avoid deadlocks, in the context of barrier synchronisation,
only handle certain classes of deadlocks. Unlike our pro-
posal, these techniques are not complete with regards to our

definition. In X10 and HJ, tasks deregister from all barriers
upon terminating, this mitigates deadlocks that arise from
missing participants. HJ includes two dynamic mechanisms
to avoid deadlocks that originate from the interaction be-
tween phasers and finish blocks. The runtime disallows tasks
spawned within a finish to be registered with phasers defined
outside the scope of that finish. Plus, at the end of a finish
block (before blocking) tasks automatically deregister from
phasers created within a finish block.

Deadlock detection. The deadlock detection techniques
that handle most barrier idioms are the ones targeting MPI,
as it is only incapable of describing producer-consumer bar-
rier synchronisation. Literature concerning MPI deadlock
detection takes a top-bottom approach, the general idea is
given but mapping it to the actual semantics of the lan-
guage is left as an exercise to the reader. Umpire [13] and
MUST [14] (a successor of Umpire) use a graph-based dead-
lock detection algorithm that subsumes deadlock detection
to cycle detection in a graph, but omit a formal description
on how the graph is actually generated from the language.
There are some works on SPMD languages with global col-
lective operations: Titanium [18] (an extension of Java with
SPMD support) and UPC [30]. Finally, there are some tools
that consider the stated deadlock after a period of inactiv-
ity that cannot guarantee correctness: DAMPI [40], Mar-
mot [21], and MPI-CHECK [24].

As far as we are aware, our work is the first deadlock de-
tection/avoidance mechanism which is applicable to repre-
sentable barriers in Java and X10. The correctness of our im-
plementation is backed up by the soundness and complete-
ness results between graph algorithms and langauge seman-
tics.

6. Conclusion
We put forward a dynamic verification technique for barrier
deadlocks. The verification technique is graph based, and
subsumes deadlock identification to cycle detection. The
runtime overhead of our deadlock detection algorithm is
shown to be negligible and independent of the number of
tasks, for up to 64 tasks. We introduce two applications of
this framework: Armus-X10 monitors any unchanged X10
program for deadlocks; JArmus is a library to verify Java
programs.

Our next step is to add support for the verification of
mutual exclusion without suffering from false deadlocks.
We intend to build a tool for HJ to exercise the expres-
siveness of Armus. This language features abstractions with
complex synchronisation patterns, such as multiple bounded
producer-consumer.
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Figure 4: Comparative execution time for each benchmark (lower means faster).
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