Logical Foundations of Computer Science

Lecture 14: Program verification

Tiago Cogumbreiro

CS720/Lecture14 ¢ Tiago Cogumbreiro



e Learn how to design a framework to prove properties about programs
(We will develop the Floyd-Hoare Logic.)

o Assigning Meanings to Programs. Robert W. Floyd. 1967
o An axiomatic basis for computer programming. C. A. R. Hoare. 1969
e Introduce pre and post-conditions on commands

CS720/Lecture14 ¢ Tiago Cogumbreiro 2/23


https://link.springer.com/chapter/10.1007/978-94-011-1793-7_4
https://dl.acm.org/doi/10.1145/363235.363259

How do we specify an algorithm?




How do we specify an algorithm?

A formal specification describes what a system does

(and not how a system does It)

3/23




How do we observe

what an Imp program does?

What are its inputs and outputs?



We observe an Imp program

via Its input/output state



How do we reason about the inputs/outputs?

e Input/output of an Imp program is a state.
e o Letuscallthe formalize reasoning about an Imp state as an assertion, notation {P}
for some proposition P that accesses an implicit state:

Definition Assertion := state —> Prop.

CS720/Lecture14 ¢ Tiago Cogumbreiro 6/23



Example assertions

1.{x = 3} writtenas fun st = st X = 3

CS720/Lecture14 ¢ Tiago Cogumbreiro



Example assertions

1.{x = 3} writtenas fun st = st X = 3
2.{z <y} writtenasfun st = st X < st Y

CS720/Lecture14 ¢ Tiago Cogumbreiro



Example assertions

1.{x = 3} writtenas fun st = st X = 3
2.{z <y} writtenasfun st = st X < st Y
3.{x =3V a < y}writtenasfun st = st X =3 \/ st X < stV

CS720/Lecture14 ¢ Tiago Cogumbreiro



Example assertions

1.{x = 3} writtenas fun st = st X = 3
2.{z <y} writtenasfun st = st X < st Y
3.{x =3V a <y}writtenasfun st = st X =3 \/ st X < stV

4.zxz<zxzA-((z+1) x (z+1) < x)writtenas
funst =>stZ*stZ<stX/\~ (((S(stZ) *(S(stZ)) < stX)

CS720/Lecture14 ¢ Tiago Cogumbreiro



Example assertions

1.{x = 3} writtenas fun st = st X = 3
2.{z <y} writtenasfun st = st X < st Y
3.{x =3V a < y}writtenasfun st = st X =3 \/ st X < stV

4.zxz<zxzA-((z+1) x (z+1) < x)writtenas
funst =>stZ*stZ <stX/\~ (((S(stZ) *(S(stz)) < stX)

5. What about fun st = True?

CS720/Lecture14 ¢ Tiago Cogumbreiro



Example assertions

1.{x = 3} writtenas fun st = st X = 3
2.{z <y} writtenasfun st = st X < st Y
3.{x =3V a < y}writtenasfun st = st X =3 \/ st X < stV

4.zxz<zxzA-((z+1) x (z+1) < x)writtenas

fun st = st Z*stzZ < st X /\~(((S(stz))*(S(stZ))) = stX)
5. What about fun st = True?
6. What about fun st = False?

CS720/Lecture14 ¢ Tiago Cogumbreiro



Combining assertions with commands

A Hoare triple, notation { P} ¢ {Q}, holds if, and only if, from P(s) and ceval s ¢ s we can
obtain Q(s’) for any states s and s’

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st',
P st =
ceval st ¢ st' —
Q st'.

CS720/Lecture14 ¢ Tiago Cogumbreiro



Which of these programs are provable?

1{T}z:=5;y:=0{x =5}

CS720/Lecture14 ¢ Tiago Cogumbreiro



Which of these programs are provable?

1.{T} x:=5;y:=0{x =5} Provable

CS720/Lecture14 ¢ Tiago Cogumbreiro



Which of these programs are provable?

1.{T} x:=5;y:=0{x =5} Provable
2{x=2Nzx =3}z :=5{zx =0}

CS720/Lecture14 ¢ Tiago Cogumbreiro



Which of these programs are provable?

1.{T} x:=5;y:=0{x =5} Provable

2.{z =2 ANz =3} x:=5 {x = 0} Provable, because the pre-condition is false

CS720/Lecture14 ¢ Tiago Cogumbreiro



Which of these programs are provable?

1.{T} x:=5;y:=0{x =5} Provable
2.{z =2 ANz =3}z :=5 {x = 0} Provable, because the pre-condition is false
3{T}x:=z+1{x=2}

CS720/Lecture14 ¢ Tiago Cogumbreiro



Which of these programs are provable?

1.{T} x:=5;y:=0{x =5} Provable
2.{z =2 ANz =3}z :=5 {x = 0} Provable, because the pre-condition is false

3.{T} x :=z + 1 {x = 2} Improvable, because there's not enough information to
assumex = 1

CS720/Lecture14 ¢ Tiago Cogumbreiro



Which of these programs are provable?

1.{T} x:=5;y:=0{x =5} Provable
2.{z =2 ANz =3}z :=5 {x = 0} Provable, because the pre-condition is false

3.{T} x :=z + 1 {x = 2} Improvable, because there's not enough information to
assumezx = 1

4.{T} skip{ L}

CS720/Lecture14 ¢ Tiago Cogumbreiro



Which of these programs are provable?

1.{T} x:=5;y:=0{x =5} Provable
2.{z =2 ANz =3}z :=5 {x = 0} Provable, because the pre-condition is false

3.{T} x :=z + 1 {x = 2} Improvable, because there's not enough information to
assumezx = 1

4.{T} skip { L} Improvable, because the conclusion is not provable.

CS720/Lecture14 ¢ Tiago Cogumbreiro



Which of these programs are provable?

1.{T} x:=5;y:=0{x =5} Provable

2.{z =2 ANz =3}z :=5 {x = 0} Provable, because the pre-condition is false

3.{T} x :=z + 1 {x = 2} Improvable, because there's not enough information to
assumezx = 1

4.{T} skip { L} Improvable, because the conclusion is not provable.
5{zx =1} whilex #0dox :=z + 1 end {z = 100}

CS720/Lecture14 ¢ Tiago Cogumbreiro



Which of these programs are provable?

1.{T} z:=5;y:=0{x =5} Provable

2.{z =2 ANz =3}z :=5 {x = 0} Provable, because the pre-condition is false

3.{T} x :=z + 1 {x = 2} Improvable, because there's not enough information to
assumezx = 1

4.{T} skip { L} Improvable, because the conclusion is not provable.

5 {zx =1} while z # 0do z := = + 1 end {x = 100} Provable, because the loop is
not provable, so we can reach a contradiction.

CS720/Lecture14 ¢ Tiago Cogumbreiro 9/23



Which of these programs are provable?

1.{T} z:=5;y:=0{x =5} Provable

2.{z =2 ANz =3}z :=5 {x = 0} Provable, because the pre-condition is false

3.{T} x :=z + 1 {x = 2} Improvable, because there's not enough information to
assumezx = 1

4.{T} skip { L} Improvable, because the conclusion is not provable.

5 {zx =1} while z # 0do z := = + 1 end {x = 100} Provable, because the loop is
not provable, so we can reach a contradiction.

6.{x =1} skip {z > 1}

CS720/Lecture14 ¢ Tiago Cogumbreiro 9/23



Which of these programs are provable?

1.{T} z:=5;y:=0{x = 5} Provable

2.{z =2 ANz =3}z :=5 {x = 0} Provable, because the pre-condition is false

3.{T} x :=z + 1 {x = 2} Improvable, because there's not enough information to
assumezx = 1

4.{T} skip {_L} Improvable, because the conclusion is not provable.

5 {zx =1} while z # 0 do z := = + 1 end {x = 100} Provable, because the loop is
not provable, so we can reach a contradiction.
6.{x = 1} skip {x > 1} Provable, the state is unchanged, but we can conclude.

CS720/Lecture14 ¢ Tiago Cogumbreiro 9/23



Let us build a theory on Hoare triples over Imp

(Thatis, define theorems to help us prove results on Hoare triples.)



Theorem (H-skip): for any proposition P we have that { P} skip {P}.

Theorem hoare_skip : forall P,

{{P}} skip {{P}}.

CS720/Lecture14 ¢ Tiago Cogumbreiro



Theorem (H-seq): If { P} ¢; {Q} and {Q} ¢; {R}, then

CS720/Lecture14 ¢ Tiago Cogumbreiro



Theorem (H-seq): If { P} c¢; {Q} and {Q} ¢; {R}, then{P} c1;¢ {R}.

Theorem hoare_seq : forall P Q R c1 c2,

{{P}} c1 {{Q}} =
1103} c2 {{R}} >
{{P}} c1;c2 {{R}}.

CS720/Lecture14 ¢ Tiago Cogumbreiro



We have seen how to derive theorems for some commands,

Let us derive a theorem over the assignment



How do we derive a general-enough theorem over the assignment?

I Idea: try to prove False and simplify the hypothesis.

Goal forall P a,

{{ fun st = P st }} X := a {{ fun st = P st /\ False }}.
Proof.

intros.

intros s_in s_out Ha Hb.

invc Ha.

Yields

P (X !> aeval s_in a; s_in) /\ False

CS720/Lecture14 ¢ Tiago Cogumbreiro



The proof state tells us that the pre-condition does not have enough information.
Hb : P s_in

P (X '= aeval s_in a; s_in) /\ False

CS720/Lecture14 ¢ Tiago Cogumbreiro



The following result should is provable.

Goal forall P a,
{{ fun st = P st /\ st X = aeval st a }}
X = a
{{ fun st = P st }}.

CS720/Lecture14 ¢ Tiago Cogumbreiro



The following result should is provable.

Goal forall P a,
{{ fun st = P st /\ st X = aeval st a }}
X = a
{{ fun st = P st }}.

Proof.
intros.
intros s_in s_out Ha [Hb Hc].
invc Ha.
rewrite < Hc.
rewrite t_update_same.
assumption.

Qed.

CS720/Lecture14 ¢ Tiago Cogumbreiro




Making the code read more like the paper

{{ fun st = P st /\ st X = aeval st a }} X:=a {{ fun st = P st }
becomes

{P [X |=al}} X := a {{P}}

CS720/Lecture14 ¢ Tiago Cogumbreiro



Another level of indirection
ReadP [ X |—= a ]as:

| assertion P where X is assigned to the value of expression a

Definition assn_sub X a (P:Assertion) : Assertion :=
fun (st : state) =
P (X '= aeval st a ; st).

Notation "P [ X |—= a ]|" := (assn_sub X a P)
(at level 108, X at next level, a custom com).

CS720/Lecture14 ¢ Tiago Cogumbreiro



(X = 5) [X |- 3]

P=(fun st' = st' X < 5)

=P[ X |=> 3] (1. unfold notation)
= assn_sub X 3 P (2. apply assn_sub to args)
= fun st =

P (X '=> aeval st 3; st) (3. apply aeval to args)
= fun st =

P (X !> 3; st) (4. unfold P)
= fun st =

(fun st' = 0 < st' X = 5) (X !> 3; st) (5. apply function to arg)
= fun st =

(X 1=> 3; st) X <5 (6. apply function to arg)
= fun st =

3 =5H

CS720/Lecture14 ¢ Tiago Cogumbreiro



Theorem (H-asgn): { P|z — a|} = := a {P}.

Theorem hoare_asgn: forall a P,

{{ fun st = P (st ; { X — aeval st a }) }}
X = a

{{ fun st = P st }}.

CS720/Lecture14 ¢ Tiago Cogumbreiro



IDoes{a::2[:cr%:c+1][:cl—>1]}:c:: L;z:=x+1{z =2} hold?

Goal {{ (fun st : state => st X =2) [X |[= X+ 1] [ X |= 1] }}
X 1= 1; X 1= X + 1
{{ fun st = st X = 2 }}.

CS720/Lecture14 ¢ Tiago Cogumbreiro



IDoes{w:2[:cr%:c+1][wl—>1]}:c:: L;z:=x+1{z =2} hold?

Goal {{ (fun st : state => st X =2) [X |[= X+ 1] [ X |= 1] }}
X 1= 1; X 1= X + 1
{{ fun st = st X = 2 }}.

| Yes.

CS720/Lecture14 ¢ Tiago Cogumbreiro



IDoes{w:2[:cr%:c+1][wl—>1]}:c:: l;z:=x+1{z = 2} hold?
Goal {{ (fun st : state = st X =2) [X |=> X+ 1] [ X |= 1] }}

X = 1: K = X + 1
f{ fun st = st X = 2 }}.

Yes.Does{T} x :=1;;x := x + 1 {x = 2} hold? And, can we prove it T-seq and T-
asgn?

Goal {{ fun st = True }} X :=1; X =X+ 1 {{ fun st = st X = 2 }}.

CS720/Lecture14 ¢ Tiago Cogumbreiro



IDoes{w:2[wHw+1][wH1]}w:: l;z:=x+1{z = 2} hold?
Goal {{ (fun st : state = st X =2) [X |=> X+ 1] [ X |= 1] }}

X = 1: K = X + 1
f{ fun st = st X = 2 }}.

| Yes.Does{T} x :=1;;x := x + 1 {x = 2} hold? And, can we prove it T-seq and T-
asgn?

Goal {{ fun st = True }} X :=1; X =X+ 1 {{ fun st = st X = 2 }}.

No. The pre-condition has to match what we stated H-asgn. But we know that the above
statement holds. Let us write a new theorem that handles such cases.

CS720/Lecture14 ¢ Tiago Cogumbreiro



Here are theorems we've proved today:

{P} SKIP {P} (H-skip)

{P}a{Q} {Q}c{R}
{P}cje {R}

{Plz > a|} z := a {P} (H-asgn)

CS720/Lecture14 ¢ Tiago Cogumbreiro



Learn how to design a framework to prove properties about programs
(We will develop the Floyd-Hoare Logic.)

Introduce pre and post-conditions on commands
Notations keep the formalism close to the mathematical intuition
While doing the proofs you need to know every level of the notations

CS720/Lecture14 ¢ Tiago Cogumbreiro 23/23



