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Summary
Learn how to design a framework to prove properties about programs 
(We will develop the Floyd-Hoare Logic.)

Assigning Meanings to Programs. Robert W. Floyd. 1967

An axiomatic basis for computer programming. C. A. R. Hoare. 1969

Introduce pre and post-conditions on commands
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How do we specify an algorithm?
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How do we specify an algorithm?
A formal speci�cation describes what a system does

(and not how a system does it)
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How do we observe

what an Imp program does?

What are its inputs and outputs?
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We observe an Imp program

via its input/output state
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Specifying Imp programs

How do we reason about the inputs/outputs?

Input/output of an Imp program is a state.

Let us call the formalize reasoning about an Imp state as an assertion, notation ,

for some proposition  that accesses an implicit state:

Definition Assertion �= state �> Prop.

{P}
P
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Specifying Imp programs

Example assertions

1.  written as fun st �> st X = 3{x = 3}
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Specifying Imp programs

Example assertions

1.  written as fun st �> st X = 3
2.  written as fun st �> st X �� st Y

{x = 3}
{x ≤ y}
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Specifying Imp programs

Example assertions

1.  written as fun st �> st X = 3
2.  written as fun st �> st X �� st Y
3.  written as fun st �> st X = 3 \/ st X �� st Y

{x = 3}
{x ≤ y}

{x = 3 ∨ x ≤ y}
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Specifying Imp programs

Example assertions

1.  written as fun st �> st X = 3
2.  written as fun st �> st X �� st Y
3.  written as fun st �> st X = 3 \/ st X �� st Y
4.  written as

fun st �> st Z * st Z �� st X /\ ~ (((S (st Z)) * (S (st Z))) �� st X)

{x = 3}
{x ≤ y}

{x = 3 ∨ x ≤ y}
z × z ≤ x ∧ ¬((z + 1) × (z + 1) ≤ x)
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Specifying Imp programs

Example assertions

1.  written as fun st �> st X = 3
2.  written as fun st �> st X �� st Y
3.  written as fun st �> st X = 3 \/ st X �� st Y
4.  written as

fun st �> st Z * st Z �� st X /\ ~ (((S (st Z)) * (S (st Z))) �� st X)
5. What about fun st �> True?

{x = 3}
{x ≤ y}

{x = 3 ∨ x ≤ y}
z × z ≤ x ∧ ¬((z + 1) × (z + 1) ≤ x)
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Specifying Imp programs

Example assertions

1.  written as fun st �> st X = 3
2.  written as fun st �> st X �� st Y
3.  written as fun st �> st X = 3 \/ st X �� st Y
4.  written as

fun st �> st Z * st Z �� st X /\ ~ (((S (st Z)) * (S (st Z))) �� st X)
5. What about fun st �> True?

6. What about fun st �> False?

{x = 3}
{x ≤ y}

{x = 3 ∨ x ≤ y}
z × z ≤ x ∧ ¬((z + 1) × (z + 1) ≤ x)
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A Hoare Triple

Combining assertions with commands

A Hoare triple, notation , holds if, and only if, from  and ceval  we can

obtain  for any states  and .

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop �=
  forall st st',
  P st �>          (* If [P st] holds *)
  ceval st c st' �> (* And [c] runs with an input state [st] yielding a state [st'] *)
  Q st'.           (* Then [Q st'] holds *)

{P} c {Q} P (s) s c s

Q(s )′ s s′
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Exercise

Which of these programs are provable?

1. {⊤} x := 5; y := 0 {x = 5}
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Exercise

Which of these programs are provable?

1. Provable{⊤} x := 5; y := 0 {x = 5}
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Exercise

Which of these programs are provable?

1. Provable

2. 

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}
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Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}
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Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. 

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}

CS720 / Lecture 14  ��  Tiago Cogumbreiro 9 / 23



Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume 

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1
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Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume 

4. 

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}
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Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume 

4. Improvable, because the conclusion is not provable.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}
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Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume 

4. Improvable, because the conclusion is not provable.

5. 

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}
{x = 1} while x  = 0 do x := x + 1 end {x = 100}
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Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume 

4. Improvable, because the conclusion is not provable.

5. Provable, because the loop is

not provable, so we can reach a contradiction.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}
{x = 1} while x  = 0 do x := x + 1 end {x = 100}
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Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume 

4. Improvable, because the conclusion is not provable.

5. Provable, because the loop is

not provable, so we can reach a contradiction.

6. 

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}
{x = 1} while x  = 0 do x := x + 1 end {x = 100}

{x = 1} skip {x ≥ 1}
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Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume 

4. Improvable, because the conclusion is not provable.

5. Provable, because the loop is

not provable, so we can reach a contradiction.

6. Provable, the state is unchanged, but we can conclude.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}
{x = 1} while x  = 0 do x := x + 1 end {x = 100}

{x = 1} skip {x ≥ 1}

CS720 / Lecture 14  ��  Tiago Cogumbreiro 9 / 23



Let us build a theory on Hoare triples over Imp
(That is, de�ne theorems to help us prove results on Hoare triples.)
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Skip
Theorem (H-skip): for any proposition  we have that .

Theorem hoare_skip : forall P,
     {{P}} skip {{P}}.

P {P} skip {P}
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Sequence
Theorem (H-seq): If  and , then{P} c   {Q}1 {Q} c   {R}2
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Sequence
Theorem (H-seq): If  and , then .

Theorem hoare_seq : forall P Q R c1 c2,
  {{P}} c1 {{Q}} �>
  {{Q}} c2 {{R}} �>
  {{P}} c1;c2 {{R}}.

{P} c   {Q}1 {Q} c   {R}2 {P} c  ; c   {R}1 2
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We have seen how to derive theorems for some commands,

Let us derive a theorem over the assignment
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Assignment
How do we derive a general-enough theorem over the assignment?

Idea: try to prove False and simplify the hypothesis.

Goal forall P a,
  {{ fun st �> P st }} X �= a {{ fun st �> P st /\ False }}.
Proof.
  intros.
  intros s_in s_out Ha Hb.
  invc Ha.

Yields

Hb : P s_in
______________________________________(1/1)
P (X !�> aeval s_in a; s_in) /\ False
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Deriving the rule for the assignment
The proof state tells us that the pre-condition does not have enough information.

Hb : P s_in
______________________________________(1/1)
P (X !�> aeval s_in a; s_in) /\ False
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Deriving the rule for assignment
The following result should is provable.

Goal forall P a,
  {{ fun st �> P st /\ st X = aeval st a }}
  X �= a
  {{ fun st �> P st }}.
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Deriving the rule for assignment
The following result should is provable.

Goal forall P a,
  {{ fun st �> P st /\ st X = aeval st a }}
  X �= a
  {{ fun st �> P st }}.

Proof.
  intros.
  intros s_in s_out Ha [Hb Hc].
  invc Ha.
  rewrite <� Hc.
  rewrite t_update_same.
  assumption.
Qed.
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Deriving the rule for assignment

Making the code read more like the paper

  {{ fun st �> P st /\ st X = aeval st a }} X�= a {{ fun st �> P st }

becomes

  {{P [X |�> a]}} X �= a {{P}}
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Abstracting a state update with evaluation

Another level of indirection

Read P [ X |�> a ] as:

assertion P where X is assigned to the value of expression a

Definition assn_sub X a (P:Assertion) : Assertion �=
  fun (st : state) �>
    P (X !�> aeval st a ; st).

Notation "P [ X |�> a ]" �= (assn_sub X a P)
  (at level 10, X at next level, a custom com).
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Understanding the notation

  (X �� 5) [X |�> 3]
  \______/
     P = (fun st' �> st' X �� 5)

= P [ X |�> 3 ]                                (1. unfold notation)
= assn_sub X 3 P                               (2. apply assn_sub to args)
= fun st �>
    P (X !�> aeval st 3; st)                   (3. apply aeval to args)
= fun st �>
    P (X !�> 3; st)                            (4. unfold P)
= fun st �>
    (fun st' �> 0 <� st' X �� 5) (X !�> 3; st) (5. apply function to arg)
= fun st �>
    (X !�> 3; st) X �� 5                       (6. apply function to arg)
= fun st �>
    3 �� 5
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Backward style assignment rule
Theorem (H-asgn): .

Theorem hoare_asgn: forall a P,
  {{ fun st �> P (st ; { X ��> aeval st a }) }}
    X �= a
  {{ fun st �> P st }}.

{P [x ↦ a]} x := a {P}
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Exercise

Does  hold?

Goal {{ (fun st : state �> st X = 2) [X |�> X + 1] [ X |�> 1] }}
       X �= 1; X �= X + 1
     {{ fun st �> st X = 2 }}.

{x = 2[x ↦ x + 1][x ↦ 1]} x := 1; x := x + 1 {x = 2}
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Exercise

Does  hold?

Goal {{ (fun st : state �> st X = 2) [X |�> X + 1] [ X |�> 1] }}
       X �= 1; X �= X + 1
     {{ fun st �> st X = 2 }}.

Yes.

{x = 2[x ↦ x + 1][x ↦ 1]} x := 1; x := x + 1 {x = 2}
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Exercise

Does  hold?

Goal {{ (fun st : state �> st X = 2) [X |�> X + 1] [ X |�> 1] }}
       X �= 1; X �= X + 1
     {{ fun st �> st X = 2 }}.

Yes. Does  hold? And, can we prove it T-seq and T-

asgn?

Goal {{ fun st �> True }}   X �= 1; X �= X + 1   {{ fun st �> st X = 2 }}.

{x = 2[x ↦ x + 1][x ↦ 1]} x := 1; x := x + 1 {x = 2}

{⊤} x := 1; ; x := x + 1 {x = 2}
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Exercise

Does  hold?

Goal {{ (fun st : state �> st X = 2) [X |�> X + 1] [ X |�> 1] }}
       X �= 1; X �= X + 1
     {{ fun st �> st X = 2 }}.

Yes. Does  hold? And, can we prove it T-seq and T-

asgn?

Goal {{ fun st �> True }}   X �= 1; X �= X + 1   {{ fun st �> st X = 2 }}.

No. The pre-condition has to match what we stated H-asgn. But we know that the above
statement holds. Let us write a new theorem that handles such cases.

{x = 2[x ↦ x + 1][x ↦ 1]} x := 1; x := x + 1 {x = 2}

{⊤} x := 1; ; x := x + 1 {x = 2}
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Summary
Here are theorems we've proved today:

{P} SKIP {P} (H-skip)

 (H-seq)
{P} c  ; c   {R}1 2

{P} c   {Q} {Q} c   {R}1 2

{P [x ↦ a]} x := a {P} (H-asgn)
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Summary
Learn how to design a framework to prove properties about programs 
(We will develop the Floyd-Hoare Logic.)

Introduce pre and post-conditions on commands

Notations keep the formalism close to the mathematical intuition

While doing the proofs you need to know every level of the notations
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