
CS720

Logical Foundations of Computer Science

Lecture 14: Program verification

Tiago Cogumbreiro

CS720 / Lecture 14 �� Tiago Cogumbreiro 1 / 23

Summary
Learn how to design a framework to prove properties about programs
(We will develop the Floyd-Hoare Logic.)

Assigning Meanings to Programs. Robert W. Floyd. 1967

An axiomatic basis for computer programming. C. A. R. Hoare. 1969

Introduce pre and post-conditions on commands

CS720 / Lecture 14 �� Tiago Cogumbreiro 2 / 23

https://link.springer.com/chapter/10.1007/978-94-011-1793-7_4
https://dl.acm.org/doi/10.1145/363235.363259

How do we specify an algorithm?

3 / 23

How do we specify an algorithm?
A formal specification describes what a system does

(and not how a system does it)

3 / 23

How do we observe

what an Imp program does?

What are its inputs and outputs?

4 / 23

We observe an Imp program

via its input/output state

5 / 23

Specifying Imp programs

How do we reason about the inputs/outputs?

Input/output of an Imp program is a state.

Let us call the formalize reasoning about an Imp state as an assertion,
notation ,

for some proposition that accesses an implicit state:

Definition Assertion := state -> Prop.

{P}
P

CS720 / Lecture 14 �� Tiago Cogumbreiro 6 / 23

Specifying Imp programs

Example assertions

1. written as fun st => st X = 3{x = 3}

CS720 / Lecture 14 �� Tiago Cogumbreiro 7 / 23

Specifying Imp programs

Example assertions

1. written as fun st => st X = 3
2. written as fun st => st X <= st Y

{x = 3}
{x ≤ y}

CS720 / Lecture 14 �� Tiago Cogumbreiro 7 / 23

Specifying Imp programs

Example assertions

1. written as fun st => st X = 3
2. written as fun st => st X <= st Y
3. written as fun st => st X = 3 \/ st X <= st Y

{x = 3}
{x ≤ y}

{x = 3 ∨ x ≤ y}

CS720 / Lecture 14 �� Tiago Cogumbreiro 7 / 23

Specifying Imp programs

Example assertions

1. written as fun st => st X = 3
2. written as fun st => st X <= st Y
3. written as fun st => st X = 3 \/ st X <= st Y
4. written as

fun st => st Z * st Z <= st X /\ ~ (((S (st Z)) * (S (st Z))) <= st X)

{x = 3}
{x ≤ y}

{x = 3 ∨ x ≤ y}
z × z ≤ x ∧ ¬((z + 1) × (z + 1) ≤ x)

CS720 / Lecture 14 �� Tiago Cogumbreiro 7 / 23

Specifying Imp programs

Example assertions

1. written as fun st => st X = 3
2. written as fun st => st X <= st Y
3. written as fun st => st X = 3 \/ st X <= st Y
4. written as

fun st => st Z * st Z <= st X /\ ~ (((S (st Z)) * (S (st Z))) <= st X)
5. What about fun st => True?

{x = 3}
{x ≤ y}

{x = 3 ∨ x ≤ y}
z × z ≤ x ∧ ¬((z + 1) × (z + 1) ≤ x)

CS720 / Lecture 14 �� Tiago Cogumbreiro 7 / 23

Specifying Imp programs

Example assertions

1. written as fun st => st X = 3
2. written as fun st => st X <= st Y
3. written as fun st => st X = 3 \/ st X <= st Y
4. written as

fun st => st Z * st Z <= st X /\ ~ (((S (st Z)) * (S (st Z))) <= st X)
5. What about fun st => True?

6. What about fun st => False?

{x = 3}
{x ≤ y}

{x = 3 ∨ x ≤ y}
z × z ≤ x ∧ ¬((z + 1) × (z + 1) ≤ x)

CS720 / Lecture 14 �� Tiago Cogumbreiro 7 / 23

A Hoare Triple

Combining assertions with commands

A Hoare triple, notation , holds if, and only if, from
 and ceval we can

obtain for any states
 and .

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
 forall st st',
 P st -> (* If [P st] holds *)
 ceval st c st' -> (* And [c] runs with an input state [st] yielding a state [st'] *)
 Q st'. (* Then [Q st'] holds *)

{P} c {Q} P (s) s c s

Q(s)′ s s′

CS720 / Lecture 14 �� Tiago Cogumbreiro 8 / 23

Exercise

Which of these programs are provable?

1. {⊤} x := 5; y := 0 {x = 5}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable{⊤} x := 5; y := 0 {x = 5}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable

2.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume

4.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume

4. Improvable, because the conclusion is not provable.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume

4. Improvable, because the conclusion is not provable.

5.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}
{x = 1} while x ​= 0 do x := x + 1 end {x = 100}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume

4. Improvable, because the conclusion is not provable.

5. Provable, because the loop is

not provable, so we can reach a contradiction.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}
{x = 1} while x ​= 0 do x := x + 1 end {x = 100}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume

4. Improvable, because the conclusion is not provable.

5. Provable, because the loop is

not provable, so we can reach a contradiction.

6.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}
{x = 1} while x ​= 0 do x := x + 1 end {x = 100}

{x = 1} skip {x ≥ 1}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Exercise

Which of these programs are provable?

1. Provable

2. Provable, because the pre-condition is false

3. Improvable, because there's not enough information to

assume

4. Improvable, because the conclusion is not provable.

5. Provable, because the loop is

not provable, so we can reach a contradiction.

6. Provable, the state is unchanged, but we can conclude.

{⊤} x := 5; y := 0 {x = 5}
{x = 2 ∧ x = 3} x := 5 {x = 0}

{⊤} x := x + 1 {x = 2}
x = 1

{⊤} skip {⊥}
{x = 1} while x ​= 0 do x := x + 1 end {x = 100}

{x = 1} skip {x ≥ 1}

CS720 / Lecture 14 �� Tiago Cogumbreiro 9 / 23

Let us build a theory on Hoare triples over Imp
(That is, define theorems to help us prove results on Hoare triples.)

10 / 23

Skip
Theorem (H-skip): for any proposition we have that .

Theorem hoare_skip : forall P,
 {{P}} skip {{P}}.

P {P} skip {P}

CS720 / Lecture 14 �� Tiago Cogumbreiro 11 / 23

Sequence
Theorem (H-seq): If and , then{P} c ​ {Q}1 {Q} c ​ {R}2

CS720 / Lecture 14 �� Tiago Cogumbreiro 12 / 23

Sequence
Theorem (H-seq): If and , then
 .

Theorem hoare_seq : forall P Q R c1 c2,
 {{P}} c1 {{Q}} ->
 {{Q}} c2 {{R}} ->
 {{P}} c1;c2 {{R}}.

{P} c ​ {Q}1 {Q} c ​ {R}2 {P} c ​; c ​ {R}1 2

CS720 / Lecture 14 �� Tiago Cogumbreiro 12 / 23

We have seen how to derive theorems for some commands,

Let us derive a theorem over the assignment

13 / 23

Assignment
How do we derive a general-enough theorem over the assignment?

Idea: try to prove False and simplify the hypothesis.

Goal forall P a,
 {{ fun st => P st }} X := a {{ fun st => P st /\ False }}.
Proof.
 intros.
 intros s_in s_out Ha Hb.
 invc Ha.

Yields

Hb : P s_in
______________________________________(1/1)
P (X !-> aeval s_in a; s_in) /\ False

CS720 / Lecture 14 �� Tiago Cogumbreiro 14 / 23

Deriving the rule for the assignment
The proof state tells us that the pre-condition does not have enough
information.

Hb : P s_in
______________________________________(1/1)
P (X !-> aeval s_in a; s_in) /\ False

CS720 / Lecture 14 �� Tiago Cogumbreiro 15 / 23

Deriving the rule for assignment
The following result should is provable.

Goal forall P a,
 {{ fun st => P st /\ st X = aeval st a }}
 X := a
 {{ fun st => P st }}.

CS720 / Lecture 14 �� Tiago Cogumbreiro 16 / 23

Deriving the rule for assignment
The following result should is provable.

Goal forall P a,
 {{ fun st => P st /\ st X = aeval st a }}
 X := a
 {{ fun st => P st }}.

Proof.
 intros.
 intros s_in s_out Ha [Hb Hc].
 invc Ha.
 rewrite <- Hc.
 rewrite t_update_same.
 assumption.
Qed.

CS720 / Lecture 14 �� Tiago Cogumbreiro 16 / 23

Deriving the rule for assignment

Making the code read more like the paper

 {{ fun st => P st /\ st X = aeval st a }} X:= a {{ fun st => P st }

becomes

 {{P [X |-> a]}} X := a {{P}}

CS720 / Lecture 14 �� Tiago Cogumbreiro 17 / 23

Abstracting a state update with evaluation

Another level of indirection

Read P [X |-> a] as:

assertion P where X is assigned to the value of expression a

Definition assn_sub X a (P:Assertion) : Assertion :=
 fun (st : state) =>
 P (X !-> aeval st a ; st).

Notation "P [X |-> a]" := (assn_sub X a P)
 (at level 10, X at next level, a custom com).

CS720 / Lecture 14 �� Tiago Cogumbreiro 18 / 23

Understanding the notation

 (X <= 5) [X |-> 3]
 ______/
 P = (fun st' => st' X <= 5)

= P [X |-> 3] (1. unfold notation)
= assn_sub X 3 P (2. apply assn_sub to args)
= fun st =>
 P (X !-> aeval st 3; st) (3. apply aeval to args)
= fun st =>
 P (X !-> 3; st) (4. unfold P)
= fun st =>
 (fun st' => 0 <- st' X <= 5) (X !-> 3; st) (5. apply function to arg)
= fun st =>
 (X !-> 3; st) X <= 5 (6. apply function to arg)
= fun st =>
 3 <= 5

CS720 / Lecture 14 �� Tiago Cogumbreiro 19 / 23

Backward style assignment rule
Theorem (H-asgn): .

Theorem hoare_asgn: forall a P,
 {{ fun st => P (st ; { X --> aeval st a }) }}
 X := a
 {{ fun st => P st }}.

{P [x ↦ a]} x := a {P}

CS720 / Lecture 14 �� Tiago Cogumbreiro 20 / 23

Exercise

Does hold?

Goal {{ (fun st : state => st X = 2) [X |-> X + 1] [X |-> 1] }}
 X := 1; X := X + 1
 {{ fun st => st X = 2 }}.

{x = 2[x ↦ x + 1][x ↦ 1]} x := 1; x := x + 1 {x = 2}

CS720 / Lecture 14 �� Tiago Cogumbreiro 21 / 23

Exercise

Does hold?

Goal {{ (fun st : state => st X = 2) [X |-> X + 1] [X |-> 1] }}
 X := 1; X := X + 1
 {{ fun st => st X = 2 }}.

Yes.

{x = 2[x ↦ x + 1][x ↦ 1]} x := 1; x := x + 1 {x = 2}

CS720 / Lecture 14 �� Tiago Cogumbreiro 21 / 23

Exercise

Does hold?

Goal {{ (fun st : state => st X = 2) [X |-> X + 1] [X |-> 1] }}
 X := 1; X := X + 1
 {{ fun st => st X = 2 }}.

Yes.
Does hold? And, can we prove it T-seq and T-

asgn?

Goal {{ fun st => True }} X := 1; X := X + 1 {{ fun st => st X = 2 }}.

{x = 2[x ↦ x + 1][x ↦ 1]} x := 1; x := x + 1 {x = 2}

{⊤} x := 1; ; x := x + 1 {x = 2}

CS720 / Lecture 14 �� Tiago Cogumbreiro 21 / 23

Exercise

Does hold?

Goal {{ (fun st : state => st X = 2) [X |-> X + 1] [X |-> 1] }}
 X := 1; X := X + 1
 {{ fun st => st X = 2 }}.

Yes.
Does hold? And, can we prove it T-seq and T-

asgn?

Goal {{ fun st => True }} X := 1; X := X + 1 {{ fun st => st X = 2 }}.

No. The pre-condition has to match what we stated H-asgn. But we know
that the above
statement holds. Let us write a new theorem that handles such cases.

{x = 2[x ↦ x + 1][x ↦ 1]} x := 1; x := x + 1 {x = 2}

{⊤} x := 1; ; x := x + 1 {x = 2}

CS720 / Lecture 14 �� Tiago Cogumbreiro 21 / 23

Summary
Here are theorems we've proved today:

{P} SKIP {P} (H-skip)

​ (H-seq)
{P} c ​; c ​ {R}1 2

{P} c ​ {Q} {Q} c ​ {R}1 2

{P [x ↦ a]} x := a {P} (H-asgn)

CS720 / Lecture 14 �� Tiago Cogumbreiro 22 / 23

Summary
Learn how to design a framework to prove properties about programs
(We will develop the Floyd-Hoare Logic.)

Introduce pre and post-conditions on commands

Notations keep the formalism close to the mathematical intuition

While doing the proofs you need to know every level of the notations

CS720 / Lecture 14 �� Tiago Cogumbreiro 23 / 23

