Logical Foundations of Computer Science

Lecture 20: How to verify?

Tiago Cogumbreiro

CS720: Lecture 20 ¢ Tiago Cogumbreiro

HW9S/HW10 recap

Our goal (homework) is to formalize and prove Theorem 1, for an abstract expression
language that enjoys strong progress. We will also introduce a type system to identify
sequential programs.

Featherweight X10: A Core Calculus for Async-Finish Parallelism. Jonathan K. Lee, Jens
Palsberg. In PPoPP'10. DO0OI:10.1145/1693453.1693459.

e Our language does not have arrays, nor function calls, nor imperative features

CS720: Lecture 20 ¢ Tiago Cogumbreiro

https://doi.org/10.1145/1693453.1693459

(p, A,/ > T2) — (p, A, T2) (1)

(p, A, Tv) — (p, A", 1Y)

(p, A, T1>T2) — (p, A", T] > T>) @
(p, A,V || T2) — (p, A, T2) 3)
(p, A, T1 [V) — (p, A, Th) (4)

(p, A, T1) — (p, A, T1) 5)

(p, A, Ty || T2) — (p, A", TV || T2)

(p, A Tz) — (p, A, T3) ©)

(p, AT || T2) — (p, AT || T3)
We can now state the deadlock-freedom theorem of Saraswat
and Jagadeesan. Let —™ be the reflexive, transitive closure of —.

THEOREM 1. (Deadlock freedom) For every state (p, A, T),
either T = +/ or there exists A', T’ such that
(p, A,T) — (p, A", T).

Proof. See Appendix A. [l

See Figurel

A statement:
s ::=skip | e;s | async{s};s | finish{s};s
A task tree:

T:=TrT | T||T | (s) | v

CS720: Lecture 20 ¢ Tiago Cogumbreiro

See Figure 2

e = ¢
e;c = (€';¢)

value(e)
e;c = (c) skip = v/
async{ci };co = (c1) || {e2) finish{ci };c2 = (c1) > (e2)

CS720: Lecture 20 ¢ Tiago Cogumbreiro

See rules (1) to (6) in page 28

T1:>T1/
\/DT:>T T1>T2:>T1’>T2

VIIT=T T|v=T

T1:>T1/ T2:>T2/
T1HT2:>T1,HT2 T1HT2 :>T1HT2I
c=T
(c) =T

CS720: Lecture 20 ¢ Tiago Cogumbreiro

How to verity?

What can | use?

 What kind of problem do you have?
e How much do you know of the code?
e Let me guide you through various verification techniques

Disclaimer: This is not a comprehensive list. Many of the techniques covered may be
useful in different contexts.

CS720: Lecture 20 ¢ Tiago Cogumbreiro

o Context: No access to the source code
e Goal: Does the program behave unexpectedly?

CS720: Lecture 20 ¢ Tiago Cogumbreiro

o Context: No access to the source code
e Goal: Does the program behave unexpectedly?

Try fuzzing: randomized testing to search for bugs

e generate random inputs, check if the tool's behaviors

e generate random inputs, compare multiple tool's outputs
(languages are starting to include fuzzing, eg go)

e Research questions:
o how to generate interesting inputs?
o can we use the source code to guide code generation?
o compiler fuzzing [OOPSLA19]

CS720: Lecture 20 ¢ Tiago Cogumbreiro

https://dl.acm.org/doi/pdf/10.1145/3360581

o Context: Have access to source code, small domain knowledge
e Goal: Does the program behave unexpectedly?

CS720: Lecture 20 ¢ Tiago Cogumbreiro

o Context: Have access to source code, small domain knowledge
e Goal: Does the program behave unexpectedly?

Try property testing

e Define "theorems" as test cases
e Has the notion of V binders through sampling

from hypothesis import given
from hypothesis.strategies import text

def test_decode_inverts_encode(s):
assert decode(encode(s)) = s

CS720: Lecture 20 ¢ Tiago Cogumbreiro

o Context: Have access to source code, small domain knowledge
e Goal: Does the program behave unexpectedly?

CS720: Lecture 20 ¢ Tiago Cogumbreiro

o Context: Have access to source code, small domain knowledge
e Goal: Does the program behave unexpectedly?

Try symbolic execution

e runs program with "symbolic variables”

tries to iterate over all possible executions
groups executions and reports input/output pairs
we can include asserts to test some conditions
we can test outputs

CS720: Lecture 20 ¢ Tiago Cogumbreiro

Klee tutorial

See Symbolic Execution for Software Testing

int get_sign(int x) {
if (x = 0) return 0;
if (x < @) return -1;
else return 1;

e generates a test-case per output

o will try to exercise all paths of the code

e analysis may not terminate, relies on SAT solvers which may give up
e reports errors (memory safety, exit codes, etc)

e even with partial results, may be useful (like fuzzing is)

CS720: Lecture 20 ¢ Tiago Cogumbreiro

http://klee.github.io/tutorials/testing-function/
https://dl.acm.org/doi/pdf/10.1145/2408776.2408795

Hoare logic

Add pre-/post- conditions to regular languages
Tool will prove that they are met for all inputs
Dafny, F*, Why3, Frama-C

Challenging when the tool cannot prove the results

let malloc_copy_free (len:uint32 { @ul < len })
(src:1buffer len uint8)
: ST (1lbuffer len uint8)
(requires fun h -
live h src /\
freeable src)
(ensures fun h@ dest h1 —
live h1 dest /\
(forall (j:uint32). j < len => get h@ src j = get h1 dest j))
= let dest = malloc @uy len in
memcpy len Qul src dest;
free src;
dest

e Context: Have access to source code and understand the code
e Goal: Can we assert something for every possible execution?

CS720: Lecture 20 ¢ Tiago Cogumbreiro

e Context: Have access to source code and understand the code
e Goal: Can we assert something for every possible execution?

» Symbolic execution allows us to search for one possible bad execution ()

e Model checking lets us brute force all execution paths (V)
e Limited to small problem sizes
e Usually a domain-specific language

e Write an algorithm in a model checking language, prove that a certain assertion is always
met

e Struggles with unbounded data
e Success stories: locking algorithms, distributed systems, hardware circuits

CS720: Lecture 20 ¢ Tiago Cogumbreiro

TLA+: Arbitrage example

while actions < MaxActions do
either
Buy:
with v \in V, i \in Items \ backpack do
profit := profit - market[<«v, i>].sell;
backpack := backpack \union ;

end with;
or
Sell:
with v \in V, i \in backpack do
profit := profit + market[<«v, i>>].buy;
backpack := backpack \ :
end with;
end either;
Loop:
actions := actions + 1;
end while;

* Is there a potential for arbitrage?
NoArbitrage == profit = 0

CS720: Lecture 20 ¢ Tiago Cogumbreiro

https://learntla.com/models/example/

e When you can reduce your problem into a formula

e SMTLIB2/Z3

e Rosette: a solver-aided programming language that extends Racket

e Many verification tools use SAT solvers behind the scenes (eg, symbex)

Int('x")
Int('y")

Solver()
.add(x > 2)
.add(y < 10)
.add(x + 2 *y = 7)

~< X
in 1l

nu u n um

print(s.check())
print(s.model())

CS720: Lecture 20 ¢ Tiago Cogumbreiro

https://emina.github.io/rosette/

e Graph-based problems
e Queries of interesting relations
o Souffle; Formulog is datalog+SMT solver

.decl alias(a:var, b:var) output

alias(X,X) :- assign(X,_).

alias(X,X) :- assign(_,X).

alias(X,Y) :- assign(X,Y).

alias(X,Y) :- 1d(X,A,F), alias(A,B), st(B,F,Y).

.decl pointsTo(a:var, o:obj)

.output pointsTo

pointsTo(X,Y) :- new(X,Y).

pointsTo(X,Y) :- alias(X,Z), pointsTo(Z,Y).

CS720: Lecture 20 ¢ Tiago Cogumbreiro

https://souffle-lang.github.io/
https://github.com/HarvardPL/formulog

e Full control of the theory
e Limited support to generating executable code

CS720: Lecture 20 ¢ Tiago Cogumbreiro

