Logical Foundations of Computer Science

Lecture 15: Program verification (part 2)

Tiago Cogumbreiro

CS720: Lecture15 ¢ Tiago Cogumbreiro

In this class we are learning about three techniques:
» formalize the PL semantics (eg, formalize an imperative PL)
o prove PL properties (eg, composing Hoare triples)
e verify programs (eg, proving that an algorithm follows a given specification)

CS720: Lecturel5 ¢ Tiago Cogumbreiro

Consequence Theorem
Conditional Theorem
While-Loop Theorem
Axiomatic Hoare Logic

CS720: Lecturel5 ¢ Tiago Cogumbreiro

Goal {{ (fun st : state = st X =2) [X |[=> X+ 1] [X |= 1] }}
X 2= 1;; X ti= X + 1
{{ fun st = st X = 2 }}.

Two alternative proofs

Proof. Proof.
apply hoare_seq unfold hoare_triple.
with (Q:=(fun st = st X=2)[X |—=> X+1]). { intros st_in st_out runs H_holds.
apply hoare_asgn. invc runs.
invc H1.
apply hoare_asgn. invc H4.
Qed. reflexivity.
Qed.

CS720: Lecture15 ¢ Tiago Cogumbreiro

Goal {{ fun st = True }}
X i= 1: K = X + 1
{{ fun st = st X = 2 }}.

CS720: Lecture15 ¢ Tiago Cogumbreiro

Goal {{ fun st = True }}
X i= 1: K = X + 1
{{ fun st = st X = 2 }}.

 Provable, but not using H-asgn and H-seq.

CS720: Lecture15 ¢ Tiago Cogumbreiro

How can we prove these results

and still use H-asgn and H-seq?

6/22

Let us build a theory on assertions

o Define A implies assertion B, notation A — B, if, and only if, for any state s,
A(s) = B(s).

« Define assertion equivalence between A and B, notation A «— B, if, and only if,
A(s) <= B(s) for any state s.

lL{zx =3} »{z=3Vz <y}

CS720: Lecture15 ¢ Tiago Cogumbreiro

o Define A implies assertion B, notation A — B, if, and only if, for any state s,
A(s) = B(s).

» Define assertion equivalence between A and B, notation A «— B, if, and only if,
A(s) <= B(s) for any state s.

L{zx =3} »{z=3Vz <y}
2{x #z} » {x =3}

CS720: Lecture15 ¢ Tiago Cogumbreiro

o Define A implies assertion B, notation A — B, if, and only if, for any state s,
A(s) = B(s).

« Define assertion equivalence between A and B, notation A «— B, if, and only if,
A(s) <= B(s) for any state s.

lL{zx =3} »{z=3Vz <y}

2A{x £z} » {z =3}
3{z <y}t «r»{z<yve=y}

CS720: Lecturel5 ¢ Tiago Cogumbreiro

o Define A implies assertion B, notation A — B, if, and only if, for any state s,
A(s) = B(s).

» Define assertion equivalence between A and B, notation A «— B, if, and only if,
A(s) <= B(s) for any state s.

L{zx =3} »{z=3Vz <y}

2A{x £z} > {z =3}

3{z <y}t«r»{z<yvez=y}

4{x =2z — x+ 1]z — 1|} «>» {T}

CS720: Lecture15 ¢ Tiago Cogumbreiro

o Define A implies assertion B, notation A — B, if, and only if, for any state s,
A(s) = B(s).

» Define assertion equivalence between A and B, notation A «— B, if, and only if,
A(s) <= B(s) for any state s.

L{zx =3} »{z=3Vz <y}

2A{x £z} > {z =3}

3{z <y}t«r»{z<yvez=y}

4{x =2z — x+ 1]z — 1|} «>» {T}

Goal ((fun st = st X =2) [X |[= X+ 1] [X |= 1]) <> (fun st = True).
Proof.

unfold assn_sub, assert_implies; auto.

Qed.

CS720: Lecture15 ¢ Tiago Cogumbreiro

Weakening and strengthening pre-/post conditions
We know that { T} = := 1;z := x + 1 {x = 2} holds.

l{y =1}z :=Lz:=z2+ 1 {z =2}

CS720: Lecture15 ¢ Tiago Cogumbreiro

Weakening and strengthening pre-/post conditions
We know that { T} = := 1;z := x + 1 {x = 2} holds.

1l{y =1}z :=1;z:=x + 1 {z = 2} Holds.
Strengthen pre-condition:{y = 1} - {T}

CS720: Lecturel5 ¢ Tiago Cogumbreiro

Weakening and strengthening pre-/post conditions
We know that { T} = := 1;z := x + 1 {x = 2} holds.
1{y =1}z :=1;z: =2+ 1 {z = 2} Holds.
Strengthen pre-condition: {y = 1} —» {T}
2{x=10}z:=L;x:=z+ 1 {z =2}

CS720: Lecture15 ¢ Tiago Cogumbreiro

Weakening and strengthening pre-/post conditions
We know that { T} = := 1;z := x + 1 {x = 2} holds.

1l{y =1}z :=1;z:=x + 1 {z = 2} Holds.
Strengthen pre-condition: {y =1} — {T}
2{x =10} z:=1;x :=z + 1 { = 2} Holds.
Strengthen pre-condition: {x = 10} —» { T}

CS720: Lecturel5 ¢ Tiago Cogumbreiro

Weakening and strengthening pre-/post conditions
We know that { T} = := 1;z := x + 1 {x = 2} holds.

1l{y =1}z :=1;z:=x + 1 {z = 2} Holds.
Strengthen pre-condition:{y = 1} - {T}
2{x =10} z:=1;x :=z + 1 { = 2} Holds.
Strengthen pre-condition: {x = 10} —» { T}

3{T}z=Lz:=x+1{z=2A Ny =1}

CS720: Lecturel5 ¢ Tiago Cogumbreiro

Weakening and strengthening pre-/post conditions
We know that { T} = := 1;z := x + 1 {x = 2} holds.

1{y =1}z :=1;z: =2+ 1 {z = 2} Holds.
Strengthen pre-condition: {y =1} - {T}
2{x =10} z:=1;x :=z + 1 { = 2} Holds.
Strengthen pre-condition: {x = 10} —» { T}
3{T}z:=Lz:=x+1{x =2y =1} DoesNOT hold.
Strengthen post-condition: {z =2 ANy = 1} —» {z = 2}

CS720: Lecture15 ¢ Tiago Cogumbreiro

Weakening and strengthening pre-/post conditions
We know that { T} = := 1;z := x + 1 {x = 2} holds.

1{y =1}z :=1;z: =2+ 1 {z = 2} Holds.
Strengthen pre-condition: {y = 1} —» {T}
2{x =10} z:=1;x :=z + 1 { = 2} Holds.

Strengthen pre-condition: {x = 10} —» { T}
3{T}z:=Lz:=x+1{x =2y =1} DoesNOT hold.
Strengthen post-condition: {z =2 ANy = 1} —» {z = 2}

A{T}z:=Lz:=x+1{T}

CS720: Lecture15 ¢ Tiago Cogumbreiro

Weakening and strengthening pre-/post conditions
We know that { T} = := 1;z := x + 1 {x = 2} holds.

1l{y =1}z :=1;z:=x + 1 {z = 2} Holds.
Strengthen pre-condition: {y =1} — {T}
2{x =10} z:=1;x :=z + 1 { = 2} Holds.

Strengthen pre-condition: {x = 10} —» { T}
3{T}z:=Lz:=x+1{x =2y =1} DoesNOT hold.
Strengthen post-condition: {z =2 ANy = 1} —» {z = 2}

4{T}z:=1;z: =2+ 1{T } Holds.
Weaken post-condition: {x = 2} — {T}

CS720: Lecture15 ¢ Tiago Cogumbreiro

Weakening and strengthening pre-/post conditions

We know that { T} = := 1;z := x + 1 {x = 2} holds.

1{y =1}z :=1;z: =2+ 1 {z = 2} Holds.
Strengthen pre-condition: {y = 1} —» {T}
2{x =10} z:=1;x :=z + 1 { = 2} Holds.

Strengthen pre-condition: {x = 10} —» { T}
3{T}z:=Lz:=x+1{x =2y =1} DoesNOT hold.
Strengthen post-condition: {z =2 ANy = 1} —» {z = 2}

4{T}z:=1;z:=2+1{T } Holds.
Weaken post-condition: {x = 2} — {T}
5{T}z:=Lz:=x+1{L}

CS720: Lecture15 ¢ Tiago Cogumbreiro

Weakening and strengthening pre-/post conditions

We know that { T} = := 1;z := x + 1 {x = 2} holds.

1{y =1}z :=1;z: =2+ 1 {z = 2} Holds.
Strengthen pre-condition: {y =1} - {T}
2{x =10} z:=1;x :=z + 1 { = 2} Holds.

Strengthen pre-condition: {x = 10} —» { T}
3{T}z:=Lz:=x+1{x =2y =1} DoesNOT hold.
Strengthen post-condition: {z =2 ANy = 1} —» {z = 2}

4{T}z:=1;z:=2+1{T } Holds.
Weaken post-condition: {x = 2} — {T}
5{T}z:=1;2: =2+ 1{L} DoesNOT hold.
Strengthen post-condition: { L} — {z = 2}

CS720: Lecture15 ¢ Tiago Cogumbreiro

Theorem hoare_consequence_pre : forall (P P' Q : Assertion) c,

{P'3} c {{0}} =

P —=> P' —>

{{P}} c {{Q}3}.

Theorem hoare_consequence_post : forall (P Q Q' : Assertion) c,

{{P}} c {{Q'3} =

Q' =>> Q —

{{P}} c {{Q}}.

Theorem hoare_consequence : forall (P P' Q Q' : Assertion) c,

{{P'3} c {{0'3} =

P—=> P' —>
Q' =>> Q —

{{P}} c {{Q}3}.

CS720: Lecture15 ¢ Tiago Cogumbreiro

Goal {{fun st = True}}
X i= 1: K = X + 1
{{fun st = st X = 2}}.

CS720: Lecture15 ¢ Tiago Cogumbreiro

Theorem (H-cond): If { P} ¢; {Q} and {P} ¢, {Q}, then {P} if b then ¢, else ¢c; {Q}.

Theorem hoare_cond: forall P Q b c1 c2,

{{P}} o1 {{Q}} -

{{P}} c2 {{0}} -
{{P}} if b then c1 else c2 {{0Q}}.

Prove that

{Tty=2{z<y} {Tly:==z+1{z <y}

H-cond
{T}if x =0theny:=2elsey:=xz+1{x <y} con

CS720: Lecture15 ¢ Tiago Cogumbreiro

Proving else:

{T} »{x <yly— x+ 1]} {(z<yly—z+1]}yo=z+1{z Sy}H—asgm

{Ty =2+ 1{z < y}
{T}ifx =0theny :=2elseyu=z+1{z <y}

H-cons-pre
H-cond

CS720: Lecture15 ¢ Tiago Cogumbreiro

Proving else:

H-
{T} »{x <yly— x+ 1]} {fe<yly—z+lj}ly:=a+1{z <yj asglQH-(:ons—pre
{Tly i=z+1{z <y} H-cond
{T}ifz =0theny :=2elsey =z +1{z <y}
Proving then:
777
T =21 <
{Tty 1z <y} H-cond

{T}ifz =0theny:=2elsey:=x+1{zx <y}

CS720: Lecture15 ¢ Tiago Cogumbreiro

Proving else:

H-
{T} »{x <yly— x+ 1]} {fe<yly—z+lj}ly:=a+1{z <yj asglQH-(:ons—pre
{Tly i=z+1{z <y} H-cond
{T}ifz =0theny :=2elsey =z +1{z <y}
Proving then:
777
T =21 <
{Tty 1z <y} H-cond

{T}ifz =0theny:=2elsey:=x+1{zx <y}

I We are missing that £ = 0, which would help us prove this result!

CS720: Lecture15 ¢ Tiago Cogumbreiro

Theorem (H-if): If { P A b} ¢c; {Q} and {P A —b} c2 {Q}, then
{P} if b then c; else ¢z {Q}.

CS720: Lecture15 ¢ Tiago Cogumbreiro

Definition bassn b : Assertion := fun st = (beval st b = true).

Theorem hoare_if : forall P Q b c1 c2,
{{fun st = P st /\ bassn b st}} c1 {{Q}} —
{{fun st = P st /\ ~(bassn b st)}} c2 {{0}} —
{{P}} (if b then c1 else c2 FI) {{0}}.

Proof.
intros.

CS720: Lecture15 ¢ Tiago Cogumbreiro

Goal
{{fun st = True}}
if X =0
then Y = 2
else Y = X + 1
{{fun st = st X < st Y}}.

CS720: Lecture15 ¢ Tiago Cogumbreiro

1.{P} while bdo cend {P}

CS720: Lecture15 ¢ Tiago Cogumbreiro

1.{P} while bdo cend {P}

2.{P} while bdo cend {P A —b}

We know that b is false after the loop. Can we state something about the body of the
loop?

CS720: Lecture15 ¢ Tiago Cogumbreiro

1.{P} while bdo cend {P}

2.{P} while bdo cend {P A —b}
We know that b is false after the loop. Can we state something about the body of the
loop?

3.1f{P} c{P}, then {P} while bdo cend { P A\ —b}
We know that the loop body must at least preserve {P} Why? Can we do better?

CS720: Lecture15 ¢ Tiago Cogumbreiro

1.{P} while bdo cend {P}

2.{P} while bdo cend {P A —b}
We know that b is false after the loop. Can we state something about the body of the
loop?

3.1f{P} c{P}, then {P} while b do cend { P N\ —b}
We know that the loop body must at least preserve {P} Why? Can we do better?

Theorem (H-while): If { P A b} ¢ { P}, then { P} while bdo c end {P A —b}.

Theorem hoare_while : forall P b c,

{{fun st = P st /\ bassn b st}} c {{P}} —

{{P}} while b do ¢ end {{fun st = P st /\ ~ (bassn b st)}}.
Proof.

unfold hoare_triple; intros.

CS720: Lecture15 ¢ Tiago Cogumbreiro

Example while_example :
{{fun st = st X < 3}}
while X = 2
do X := X + 1 end
{{fun st = st X = 3}}.

Proof.

CS720: Lecture15 ¢ Tiago Cogumbreiro

« We introduced Hoare triples { P} ¢ {@Q} as a framework to specify programs

e We introduced a set of theorems (syntax-oriented) to help us prove results on Hoare
triples.

CS720: Lecture15 ¢ Tiago Cogumbreiro

{P} skip {P} (H-skip) {P|lx > a]} x ::=a {P} (H-asgn)

{P}a{Q} {Q}ca{R}
{P} c1;¢c2 {R}
P—»P {P}c{Q} Q —»Q
{P}c{Q}

{PAb} i {Q} {PA-b} e {Q}
{P} if bthen c; else c; {Q}

(H-seq)

(H-cons)

(H-if)

{P Ab} c{P}
{P} while bdo c end {P A —b}

(H-while)

CS720: Lecture15 ¢ Tiago Cogumbreiro

e The set of theorems in slide 12 can describe Hoare's Logic axiomatically
« Necessary condition (sound):hoare_proof(P,c, Q) — {P} c{Q}

« Sufficient condition (complete): { P} ¢ {Q} — hoare_proof(P,c, Q)

Inductive hoare_proof : Assertion —> com —> Assertion — Type :=
| H_Skip : forall P, hoare_proof P (SKIP) P
| H_Asgn : forall Q V a, hoare_proof (assn_sub V a Q) (V ::=a) Q
| H.Seq : forall P ¢ Q d R, hoare_proof P ¢ Q — hoare_proof Q d R = hoare_proof P (c;;d) R
| H_If : forall P Q b c1 c2,
hoare_proof (fun st = P st /\ bassn b st) c1 Q —
hoare_proof (fun st = P st /\ ~(bassn b st)) c2 Q =
hoare_proof P (IFB b THEN c1 ELSE c2 FI) Q
| H_While : forall P b c,
hoare_proof (fun st = P st /\ bassn b st) ¢ P —
hoare_proof P (WHILE b DO ¢ END) (fun st = P st /\ ~ (bassn b st))
| H_Consequence : forall (P Q P' Q' : Assertion) c,
hoare_proof P' ¢ Q' — (forall st, P st = P' st) = (forall st, Q' st = Q st) — hoare_proof P c Q.

CS720: Lecture15 ¢ Tiago Cogumbreiro

Consequence Theorem
Conditional Theorem
While-Loop Theorem
Axiomatic Hoare Logic

CS720: Lecture15 ¢ Tiago Cogumbreiro

