CS720
Logical Foundations of Computer Science

Lecture 15: Program verification (part 2)
Tiago Cogumbreiro
Why are we learning this?

In this class we are learning about three techniques:

- **formalize the PL semantics** (eg, formalize an imperative PL)
- **prove PL properties** (eg, composing Hoare triples)
- **verify programs** (eg, proving that an algorithm follows a given specification)
Summary

- Consequence Theorem
- Conditional Theorem
- While-Loop Theorem
- Axiomatic Hoare Logic
Theorems help us structure our proofs

Goal \{\{ (\text{fun } st : \text{state } \Rightarrow st \ X = 2) \ [X \mapsto X + 1] \ [X \mapsto 1] \}\}
\quad X := 1;; X := X + 1
\quad \{\{ \text{fun } st \Rightarrow st \ X = 2 \}\}.

Two alternative proofs

Proof.
apply hoare_seq
with (Q:=(\text{fun } st \Rightarrow st=X=2)[X \mapsto X+1]). {
apply hoare_asgn.
}
apply hoare_asgn.
Qed.

Proof.
unfold hoare_triple.
intros st_in st_out runs H_holds.
invc runs.
invc H1.
invc H4.
reflexivity.
Qed.
What if the pre- does not match H-asgn?

Goal {{ fun st ⇒ True }}
X := 1; X := X + 1
{{ fun st ⇒ st X = 2 }}.
What if the pre- does not match H-asgn?

Goal {{ fun st ⇒ True }}
 X := 1; X := X + 1
{{ fun st ⇒ st X = 2 }}.

• Provable, but not using H-asgn and H-seq.
How can we prove these results and still use H-asgn and H-seq?
Let us build a theory on assertions
Assertion implication/equivalence

- Define \(A \text{ implies } B \), notation \(A \rightarrow B \), if, and only if, for any state \(s \), \(A(s) \implies B(s) \).

- Define assertion equivalence between \(A \) and \(B \), notation \(A \leftrightarrow B \), if, and only if, \(A(s) \iff B(s) \) for any state \(s \).

1. \(\{ x = 3 \} \rightarrow \{ x = 3 \lor x \leq y \} \)
Assertion implication/equivalence

- Define \textit{A implies} assertion \textit{B}, notation \(A \rightarrow B \), if, and only if, for any state \(s \),
 \[A(s) \implies B(s). \]
- Define assertion equivalence between \textit{A} and \textit{B}, notation \(A \leftrightarrow B \), if, and only if,
 \[A(s) \iff B(s) \] for any state \(s \).

1. \(\{x = 3\} \rightarrow \{x = 3 \lor x \leq y\} \)
2. \(\{x \neq x\} \rightarrow \{x = 3\} \)
Assertion implication/equivalence

- Define A implies assertion B, notation $A \implies B$, if, and only if, for any state s,
 $A(s) \implies B(s)$.

- Define assertion equivalence between A and B, notation $A \iff B$, if, and only if,
 $A(s) \iff B(s)$ for any state s.

1. $\{x = 3\} \implies \{x = 3 \lor x \leq y\}$
2. $\{x \neq x\} \implies \{x = 3\}$
3. $\{x \leq y\} \iff \{x < y \lor x = y\}$
Assertion implication/equivalence

- Define *A implies* assertion *B*, notation $A \rightarrow B$, if, and only if, for any state s, $A(s) \implies B(s)$.
- Define assertion equivalence between *A* and *B*, notation $A \leftrightarrow B$, if, and only if, $A(s) \iff B(s)$ for any state s.

1. $\{x = 3\} \rightarrow \{x = 3 \lor x \leq y\}$
2. $\{x \neq x\} \rightarrow \{x = 3\}$
3. $\{x \leq y\} \leftrightarrow \{x < y \lor x = y\}$
4. $\{x = 2[x \mapsto x + 1][x \mapsto 1]\} \leftrightarrow \{\top\}$
Assertion implication/equivalence

- Define **A implies** assertion **B**, notation \(A \rightarrow B \), if, and only if, for any state \(s \), \(A(s) \implies B(s) \).

- Define assertion equivalence between \(A \) and \(B \), notation \(A \iff B \), if, and only if, \(A(s) \iff B(s) \) for any state \(s \).

1. \(\{ x = 3 \} \rightarrow \{ x = 3 \lor x \leq y \} \)
2. \(\{ x \neq x \} \rightarrow \{ x = 3 \} \)
3. \(\{ x \leq y \} \iff \{ x < y \lor x = y \} \)
4. \(\{ x = 2[x \mapsto x + 1][x \mapsto 1]\} \iff \{ \top \} \)

Goal \(((\text{fun}\ st \Rightarrow st\ X = 2) [X \mapsto X + 1][X \mapsto 1]) \iff (\text{fun}\ st \Rightarrow \text{True})\).
Proof.
- unfold assn_sub, assert_implies; auto.
Qed.
Weakening and strengthening pre-/post conditions

We know that \(\top \) holds.

1. \(\{ y = 1 \} \ x := 1; x := x + 1 \ \{ x = 2 \} \)
Weakening and strengthening pre-/post conditions

We know that \(\{ \top \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) holds.

1. \(\{ y = 1 \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) \textbf{Holds.}

 Strengthen pre-condition: \(\{ y = 1 \} \rightarrow \{ \top \} \)
Weakening and strengthening pre-/post conditions

We know that $\{\top\} \ x := 1; x := x + 1 \ \{x = 2\}$ holds.

1. $\{y = 1\} \ x := 1; x := x + 1 \ \{x = 2\}$ **Holds.**
 Strengthen pre-condition: $\{y = 1\} \rightarrow \{\top\}$

2. $\{x = 10\} \ x := 1; x := x + 1 \ \{x = 2\}$
Weakening and strengthening pre-/post conditions

We know that \(\{ \top \} x := 1; x := x + 1 \{ x = 2 \} \) holds.

1. \(\{ y = 1 \} x := 1; x := x + 1 \{ x = 2 \} \) Holds.
 Strengthen pre-condition: \(\{ y = 1 \} \rightarrow \{ \top \} \)

2. \(\{ x = 10 \} x := 1; x := x + 1 \{ x = 2 \} \) Holds.
 Strengthen pre-condition: \(\{ x = 10 \} \rightarrow \{ \top \} \)
Weakening and strengthening pre-/post conditions

We know that \(\{ \top \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) holds.

1. \(\{ y = 1 \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) **Holds.**
 Strengthen pre-condition: \(\{ y = 1 \} \rightarrow \{ \top \} \)

2. \(\{ x = 10 \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) **Holds.**
 Strengthen pre-condition: \(\{ x = 10 \} \rightarrow \{ \top \} \)

3. \(\{ \top \} \ x := 1; x := x + 1 \ \{ x = 2 \land y = 1 \} \)
Weakening and strengthening pre-/post conditions

We know that \(\{ \top \} \ x := 1; x := x + 1 \ x = 2 \) holds.

1. \(\{ y = 1 \} \ x := 1; x := x + 1 \ x = 2 \) \textbf{Holds.}
 Strengthen pre-condition: \(\{ y = 1 \} \rightarrow \{ \top \} \)

2. \(\{ x = 10 \} \ x := 1; x := x + 1 \ x = 2 \) \textbf{Holds.}
 Strengthen pre-condition: \(\{ x = 10 \} \rightarrow \{ \top \} \)

3. \(\{ \top \} \ x := 1; x := x + 1 \ x = 2 \land y = 1 \) \textbf{Does NOT hold.}
 Strengthen post-condition: \(\{ x = 2 \land y = 1 \} \rightarrow \{ x = 2 \} \)
Weakening and strengthening pre-/post conditions

We know that \(\{\top\} \ x := 1; x := x + 1 \ {x = 2} \) holds.

1. \(\{y = 1\} x := 1; x := x + 1 \ {x = 2} \) **Holds.**
 Strengthen pre-condition: \(\{y = 1\} \rightarrow \{\top\} \)
2. \(\{x = 10\} x := 1; x := x + 1 \ {x = 2} \) **Holds.**
 Strengthen pre-condition: \(\{x = 10\} \rightarrow \{\top\} \)
3. \(\{\top\} x := 1; x := x + 1 \ {x = 2 \land y = 1} \) **Does NOT hold.**
 Strengthen post-condition: \(\{x = 2 \land y = 1\} \rightarrow \{x = 2\} \)
4. \(\{\top\} x := 1; x := x + 1 \ {\top} \)
Weakening and strengthening pre-/post conditions

We know that \(\{ \top \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) holds.

1. \(\{ y = 1 \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) Holds.
 Strengthen pre-condition: \(\{ y = 1 \} \rightarrow \{ \top \} \)

2. \(\{ x = 10 \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) Holds.
 Strengthen pre-condition: \(\{ x = 10 \} \rightarrow \{ \top \} \)

3. \(\{ \top \} \ x := 1; x := x + 1 \ \{ x = 2 \land y = 1 \} \) Does NOT hold.
 Strengthen post-condition: \(\{ x = 2 \land y = 1 \} \rightarrow \{ x = 2 \} \)

4. \(\{ \top \} \ x := 1; x := x + 1 \ \{ \top \} \) Holds.
 Weaken post-condition: \(\{ x = 2 \} \rightarrow \{ \top \} \)
Weakening and strengthening pre-/post conditions

We know that \(\{ \top \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) holds.

1. \(\{ y = 1 \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) Holds.
 Strengthen pre-condition: \(\{ y = 1 \} \rightarrow \{ \top \} \)

2. \(\{ x = 10 \} \ x := 1; x := x + 1 \ \{ x = 2 \} \) Holds.
 Strengthen pre-condition: \(\{ x = 10 \} \rightarrow \{ \top \} \)

3. \(\{ \top \} \ x := 1; x := x + 1 \ \{ x = 2 \land y = 1 \} \) Does NOT hold.
 Strengthen post-condition: \(\{ x = 2 \land y = 1 \} \rightarrow \{ x = 2 \} \)

4. \(\{ \top \} \ x := 1; x := x + 1 \ \{ \top \} \) Holds.
 Weaken post-condition: \(\{ x = 2 \} \rightarrow \{ \top \} \)

5. \(\{ \top \} \ x := 1; x := x + 1 \ \{ \bot \} \)
Weakening and strengthening pre-/post conditions

We know that $\{\top\} x := 1; x := x + 1 \{x = 2\}$ holds.

1. $\{y = 1\} x := 1; x := x + 1 \{x = 2\}$ Holds.
 Strengthen pre-condition: $\{y = 1\} \rightarrow \{\top\}$

2. $\{x = 10\} x := 1; x := x + 1 \{x = 2\}$ Holds.
 Strengthen pre-condition: $\{x = 10\} \rightarrow \{\top\}$

3. $\{\top\} x := 1; x := x + 1 \{x = 2 \land y = 1\}$ Does NOT hold.
 Strengthen post-condition: $\{x = 2 \land y = 1\} \rightarrow \{x = 2\}$

4. $\{\top\} x := 1; x := x + 1 \{\top\}$ Holds.
 Weaken post-condition: $\{x = 2\} \rightarrow \{\top\}$

5. $\{\top\} x := 1; x := x + 1 \{\bot\}$ Does NOT hold.
 Strengthen post-condition: $\{\bot\} \rightarrow \{x = 2\}$
Proving H-cons

Theorem hoare_consequence_pre : forall (P P' Q : Assertion) c,

\[\{\{P'\}\} \ c \ \{\{Q\}\} \to \]

\[P \to P' \to \]

\[\{\{P\}\} \ c \ \{\{Q\}\}. \]

Theorem hoare_consequence_post : forall (P Q Q' : Assertion) c,

\[\{\{P\}\} \ c \ \{\{Q'\}\} \to \]

\[Q' \to Q \to \]

\[\{\{P\}\} \ c \ \{\{Q\}\}. \]

Theorem hoare_consequence : forall (P P' Q Q' : Assertion) c,

\[\{\{P'\}\} \ c \ \{\{Q'\}\} \to \]

\[P \to P' \to \]

\[Q' \to Q \to \]

\[\{\{P\}\} \ c \ \{\{Q\}\}. \]
Exercise

Goal \{\text{fun } st \Rightarrow \text{ True} \}\n\quad X := 1; X := X + 1
\{\text{fun } st \Rightarrow \text{ st } X = 2 \} \}.
Theorem (H-cond): If $\{P\} c_1 \{Q\}$ and $\{P\} c_2 \{Q\}$, then $\{P\}$ if b then c_1 else c_2 $\{Q\}$.

Theorem hoare_cond: for all P Q b c_1 c_2,
$\{\{P\}\} c_1 \{\{Q\}\} \rightarrow \{\{P\}\} c_2 \{\{Q\}\} \rightarrow \{\{P\}\}$ if b then c_1 else c_2 $\{\{Q\}\}$.

Prove that

\[
\{\top\} \ y := 2 \ {x \leq y} \quad \{\top\} y := x + 1 \ {x \leq y} \\
\{\top\} \text{if } x = 0 \text{ then } y := 2 \text{ else } y := x + 1 \ {x \leq y}\]

H-cond
Conditionals

Proving \textbf{else:}

\[\vdash \{ \top \} \rightarrow \{ x \leq y[y \mapsto x + 1] \} \]
\[\vdash \{ x \leq y[y \mapsto x + 1] \} y ::= x + 1 \{ x \leq y \} \]
\[\vdash \{ \top \} y ::= x + 1 \{ x \leq y \} \]
\[\vdash \{ \top \} \text{if } x = 0 \text{ then } y ::= 2 \text{ else } y ::= x + 1 \{ x \leq y \}\]
Conditionals

Proving `else`:

...
{\top} \rightarrow \{ x \leq y[y \mapsto x + 1] \}
\{ x \leq y[y \mapsto x + 1] \} y := x + 1 \{ x \leq y \} \quad \text{H-assign}
\{ \top \} y := x + 1 \{ x \leq y \} \quad \text{H-cons-pre}
\{ \top \} \quad \text{H-cond}

Proving `then`:

???
\{ \top \} y := 2 \{ x \leq y \} \quad \text{H-cond}
\{ \top \} \quad \text{H-cond}

{\top} \if x = 0 \then y := 2 \else y := x + 1 \{ x \leq y \}
Conditionals

Proving else:

\[
\begin{align*}
\{\top\} \rightarrow \{x \leq y[y \mapsto x + 1]\} & \quad \{x \leq y[y \mapsto x + 1]\} y := x + 1 \{x \leq y\} \\
\{\top\} y := x + 1 \{x \leq y\} & \quad \{\top\} \text{ if } x = 0 \text{ then } y := 2 \text{ else } y := x + 1 \{x \leq y\}
\end{align*}
\]

Proving then:

\[
\begin{align*}
\{\top\} y := 2 \{x \leq y\} & \quad \{\top\} \text{ if } x = 0 \text{ then } y := 2 \text{ else } y := x + 1 \{x \leq y\}
\end{align*}
\]

- We are missing that \(x = 0\), which would help us prove this result!
The Hoare theorem for If

Theorem (H-if): If \(\{P \land b\} \ c_1 \ \{Q\} \) and \(\{P \land \neg b\} \ c_2 \ \{Q\} \), then \(\{P\} \text{ if } b \text{ then } c_1 \ \text{ else } c_2 \ \{Q\} \).
The Hoare theorem for If in Coq

Definition bassn b : Assertion := fun st ⇒ (beval st b = true).

Theorem hoare_if : forall P Q b c1 c2,

\[
\begin{align*}
\{\{\text{fun } st ⇒ P st \wedge \text{bassn } b \text{ st}\}\} & \ c1 \ \{Q\} \ → \\
\{\{\text{fun } st ⇒ P st \wedge \sim(\text{bassn } b \text{ st})\}\} & \ c2 \ \{Q\} \ → \\
\{P\} & \ (\text{if } b \ \text{then } c1 \ \text{else } c2 \ \text{FI}) \ \{Q\}.
\end{align*}
\]

Proof.

`intros`.

Example

Goal

```plaintext
{{fun st ⇒ True}}
if X = 0
    then Y := 2
else Y := X + 1
{{fun st ⇒ st X ≤ st Y}}.
```
The Hoare theorem for While

1. $\{P\}$ while b do c end $\{P\}$
The Hoare theorem for While

1. $\{P\}$ while b do c end $\{P\}$
2. $\{P\}$ while b do c end $\{P \land \neg b\}$

We know that b is false after the loop. Can we state something about the body of the loop?
The Hoare theorem for While

1. \{P\} while b do c end \{P\}
2. \{P\} while b do c end \{P \land \neg b\}

We know that \(b\) is false after the loop. Can we state something about the body of the loop?

3. if \{P\} c \{P\}, then \{P\} while b do c end \{P \land \neg b\}

We know that the loop body must at least preserve \{P\}. Why? Can we do better?
The Hoare theorem for While

1. \{P\} while b do c end \{P\}

2. \{P\} while b do c end \{P \land \neg b\}

 We know that \(b\) is false after the loop. Can we state something about the body of the loop?

3. If \{P\} c \{P\}, then \{P\} while b do c end \{P \land \neg b\}

 We know that the loop body must at least preserve \{P\}. Why? Can we do better?

Theorem (H-while): If \{P \land b\} c \{P\}, then \{P\} while b do c end \{P \land \neg b\}.

Theorem hoare_while : \forall P b c,
{{fun st ⇒ P st /\ bassn b st}} c {{P}} \rightarrow
{{P}} while b do c end {{fun st ⇒ P st /\ \neg (bassn b st)}}.

Proof.
unfold hoare_triple; intros.
Example

Example while_example :
{{fun st ⇒ st X ≤ 3}}
while X ≤ 2
do X := X + 1 end
{{fun st ⇒ st X = 3}}.

Proof.
Recap

- We introduced Hoare triples $\{P\} \ c \ \{Q\}$ as a framework to specify programs.
- We introduced a set of theorems (syntax-oriented) to help us prove results on Hoare triples.
Hoare Logic Theory

\{ P \} \text{skip} \{ P \} \quad (\text{H-skip})

\{ P \} c_1 \{ Q \} \quad \{ Q \} c_2 \{ R \} \quad (\text{H-seq})

\begin{align*}
\text{if } b \text{ then } c_1 \text{ else } c_2 \{ Q \} \quad (\text{H-if})
\end{align*}

\begin{align*}
\{ P \} \text{while } b \text{ do } c \text{ end } \{ P \land \neg b \} \quad (\text{H-while})
\end{align*}
Hoare Logic as an Axiomatic Logic

- The set of theorems in slide 12 can describe Hoare’s Logic **axiomatically**
- **Necessary** condition (sound): $\text{hoare_proof}(P, c, Q) \rightarrow \{P\} c \{Q\}$
- **Sufficient** condition (complete): $\{P\} c \{Q\} \rightarrow \text{hoare_proof}(P, c, Q)$

Inductive
\[\text{hoare_proof} : \text{Assertion} \rightarrow \text{com} \rightarrow \text{Assertion} \rightarrow \text{Type} :=\]
\[
\text{H_Skip} : \forall P, \text{hoare_proof} P (\text{SKIP}) P
\]
\[
\text{H_Asgn} : \forall Q V a, \text{hoare_proof} (\text{assn_sub} V a Q) (V ::= a) Q
\]
\[
\text{H_Seq} : \forall P c Q d R, \text{hoare_proof} P c Q > \text{hoare_proof} Q d R > \text{hoare_proof} P (c;;d) R
\]
\[
\text{H_If} : \forall P Q b c1 c2,
\text{hoare_proof} (\text{fun} \: st \Rightarrow P \: st /\ \text{bassn} b \: st) c1 Q \Rightarrow
\text{hoare_proof} (\text{fun} \: st \Rightarrow P \: st /\ \sim (\text{bassn} b \: st)) c2 Q \Rightarrow
\text{hoare_proof} P (\text{IF} b \text{ THEN} c1 \text{ ELSE} c2 \text{ FI}) Q
\]
\[
\text{H_While} : \forall P b c,
\text{hoare_proof} (\text{fun} \: st \Rightarrow P \: st /\ \text{bassn} b \: st) c P \Rightarrow
\text{hoare_proof} P (\text{WHILE} b \text{ DO} c \text{ END}) (\text{fun} \: st \Rightarrow P \: st /\ \sim (\text{bassn} b \: st))
\]
\[
\text{H_Consequence} : \forall (P Q P' Q' : \text{Assertion}) c,
\text{hoare_proof} P' c Q' \rightarrow (\text{forall} \: st, P \: st \rightarrow P' \: st) \rightarrow (\text{forall} \: st, Q' \: st \rightarrow Q \: st) \rightarrow \text{hoare_proof} P c Q.
\]
Summary

- Consequence Theorem
- Conditional Theorem
- While-Loop Theorem
- Axiomatic Hoare Logic