
CS720

Logical Foundations of Computer Science

Lecture 10: Inductive propositions

Tiago Cogumbreiro

CS720: Lecture 10 ❧ Tiago Cogumbreiro 1 / 24

Summary
How is Coq being used in research

Exercises on inductive propositions

Proofs by reflection

CS720: Lecture 10 ❧ Tiago Cogumbreiro 2 / 24

Projects that use Coq
Coq Proof of the Four Color
Theorem (Georges Gonthier, 2008) (Proposed
in 1852, first
proof in 1976 by Appel and Haken, proved in Coq in 2005). Four
colors suffice to color
any flat map.

CompCert (2009): "CompCert is the first commercially
available optimizing compiler
that is formally verified, using machine
assisted mathematical proofs, to be free from
mis-compilation."

Programming language formalization: Rust (2015), Haskell (2018)

Verdi (2015): Verdi is a framework from the University of
Washington to implement and
formally verify distributed systems.

A Formal Proof of the Expressiveness of Deep Learning (2017): A Formal Proof of the
Expressiveness of Deep Learning.

Coq: The world's best macro assembler (2013)

CS720: Lecture 10 ❧ Tiago Cogumbreiro 3 / 24

http://www.ams.org/notices/200811/tx081101382p.pdf
http://compcert.inria.fr/
https://plv.mpi-sws.org/rustbelt/popl18/
https://deepspec.org/entry/Project/Haskell+CoreSpec
http://verdi.uwplse.org/
http://matryoshka.gforge.inria.fr/pubs/deep_learning_paper.pdf
https://www.microsoft.com/en-us/research/publication/coq-worlds-best-macro-assembler/

Projects that use Coq @ UMB
Deadlock Avoidance in Parallel Programs with Futures (2017): formalized a task parallel
programming model and the result that Data-Race-Freedom implies Deadlock-
Freedom.

Dynamic Deadlock Verification for General Barrier Synchronisation (2019): formalized
phaser semantics and the notion of deadlock

Checking Data-Race Freedom of GPU Kernels, Compositionally (2021): formalized GPU
program semantics and our data-race-freedom analysis

Formalizing the Introduction to the Theory of Computation (unpublished):
decidability/undecidability results (eg, halting problem, Rice's theorem, etc). Rice's
Theorem was proved by Kleopatra Ginji, an undergraduate student here at UMB.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 4 / 24

http://cogumbreiro.github.io/assets/cogumbreiro-gorn.pdf
https://dl.acm.org/doi/10.1145/3229060
https://cogumbreiro.github.io/assets/cogumbreiro-etal-faial.pdf
https://gitlab.com/umb-svl/turing

Proofs are code

5 / 24

Proofs by induction
Derivation versus data

6 / 24

Recall the definition on even numbers

Fixpoint evenb (n:nat) : bool :=
 match n with
 | O => true
 | S O => false
 | S (S n') => evenb n'
 end.

Inductive ev : nat -> Prop :=
| ev_0 : ev 0
| ev_SS : forall n : nat, ev n -> ev (S (S n)).

CS720: Lecture 10 ❧ Tiago Cogumbreiro 7 / 24

Let us prove that these two propositions are equivalent

Theorem evenb_to_ev:
 forall n,
 evenb n = true ->
 ev n.
 (* Hint: use [even_bool_prop]; no need for induction. *)

Theorem ev_to_evenb:
 forall n,
 ev n ->
 evenb n = true.

Theorem ev_iff_evenb:
 forall n,
 ev n <-> evenb n = true.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 8 / 24

Proofs by reflection

9 / 24

Reflection
We say that a proposition is reflected by a boolean value according to the
following
definition.

Inductive reflect (P : Prop) : bool -> Prop :=
| ReflectT : P -> reflect P true
| ReflectF : ~ P -> reflect P false.

Theorem iff_reflect : forall P b, (P <-> b = true) -> reflect P b.
Theorem reflect_iff : forall P b, reflect P b -> (P <-> b = true). (* Homework*)

Let us prove that ev n reflects evenb n.

Lemma ev_reflect : forall n, reflect (ev n) (evenb n).

CS720: Lecture 10 ❧ Tiago Cogumbreiro 10 / 24

Recall proving that 6 is even
It is much easier to compute that 6 is even, than to derive a proposition
for it.

Theorem ev_6: ev 6.
Proof.
 apply ev_SS, ev_SS, ev_SS, ev_0.
Qed.

Theorem evenb_6: evenb 6 = true.
 reflexivity.
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 11 / 24

Prove that 6 is even with reflection

Lemma reflect_true:
 forall P,
 reflect P true ->
 P.
Proof.
 intros.
 inversion H.
 apply H0.
Qed.

Theorem ev_6_reflect: ev 6.
Proof.
 apply (reflect_true (ev 6) (ev_reflect 6)).
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 12 / 24

Proof by Reflection
The term reflection applies because we will need to translate Gallina
propositions into
values of inductive types representing syntax, so that
Gallina programs may analyze
them, and translating such a term back to the
original form is called reflecting it.

– Certified Programming with Dependent Types

A bit more than what we have seen so far…

CS720: Lecture 10 ❧ Tiago Cogumbreiro 13 / 24

http://adam.chlipala.net/cpdt/html/Reflection.html

Reflecting the Logical And

Lemma reflect_and:
 forall P b1 Q b2,
 reflect P b1 ->
 reflect Q b2 ->
 reflect (P /\ Q) (andb b1 b2).

CS720: Lecture 10 ❧ Tiago Cogumbreiro 14 / 24

Reflecting the Logical Or

Lemma reflect_or:
 forall P b1 Q b2,
 reflect P b1 ->
 reflect Q b2 ->
 reflect (P \/ Q) (orb b1 b2).

CS720: Lecture 10 ❧ Tiago Cogumbreiro 15 / 24

A mini-language of expressions

Inductive Lang :=
| Eq: nat -> nat -> Lang (* x = n *)
| Even: nat -> Lang (* ev n *)
| And: Lang -> Lang -> Lang (* P /\ Q *)
| Or: Lang -> Lang -> Lang. (* P \/ Q *)

CS720: Lecture 10 ❧ Tiago Cogumbreiro 16 / 24

Evaluate our mini-language

Fixpoint eval (exp:Lang) :=
 match exp with
 | Eq n m => beq_nat n m
 | Even n => evenb n
 | And l r => andb (eval l) (eval r)
 | Or l r => orb (eval l) (eval r)
 end.

Goal eval (Or (Even 3) (Eq 3 3)) = true.
 reflexivity.
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 17 / 24

Generate a proposition

Fixpoint as_prop (exp:Lang) :=
 match exp with
 | Eq n m => n = m
 | Even n => ev n
 | And l r => as_prop l /\ as_prop r
 | Or l r => as_prop l \/ as_prop r
 end.

Goal as_prop (Or (Even 3) (Eq 3 3)).
 (* ev 3 \/ 3 = 3 *)
 simpl.
 right.
 reflexivity.
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 18 / 24

Show that our language is reflective

Lemma reflect_lang:
 forall p,
 reflect (as_prop p) (eval p).

Goal ev 3 \/ 3 = 3.
 assert (H:=reflect_lang (Or (Even 3) (Eq 3 3))).
 apply reflect_true, H.
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 19 / 24

Automating the translation

Ltac trans P :=
 match P with
 | ?P1 /\ ?P2 =>
 let t1 := trans P1 in
 let t2 := trans P2 in constr:(And t1 t2)
 | ev ?x => constr:(Even x)
 | ?P1 \/ ?P2 =>
 let t1 := trans P1 in
 let t2 := trans P2 in constr:(Or t1 t2)
 | ?x = ?y => constr:(Eq x y)
 end.

Goal ev 3 \/ 3 = 3.
 let t := trans (ev 3 \/ 3 = 3) in
 assert (H:= reflect_lang t).

CS720: Lecture 10 ❧ Tiago Cogumbreiro 20 / 24

Automating the translation

Ltac solve :=
 match goal with
 | [|- ?P] =>
 let t := trans P in
 let H := fresh "H" in
 assert (H := reflect_lang t);
 apply reflect_true, H
 end.

Goal ev 3 \/ 3 = 3.
 solve.
Qed.

CS720: Lecture 10 ❧ Tiago Cogumbreiro 21 / 24

Summary on Proof by Reflection
Reflection establishes a deep connection between a proposition and
the function that
decides it

We can leverage Ltac to automate trivial operations and build solvers
(Not covered in
this course.)

CS720: Lecture 10 ❧ Tiago Cogumbreiro 22 / 24

Exercises on Less-Than
Prove that

1. < is transitive

2. < is irreflexive

3. < is asymmetric

4. < is decidable

CS720: Lecture 10 ❧ Tiago Cogumbreiro 23 / 24

Summary
We looked at Coq being used in research

Exercises on inductive propositions

A deep dive in proofs by reflection

CS720: Lecture 10 ❧ Tiago Cogumbreiro 24 / 24

