
CS720

Logical Foundations of Computer Science

Lecture 9: Inductive propositions

Tiago Cogumbreiro

CS720: Lecture 9 ❧ Tiago Cogumbreiro 1 / 32

Building propositions

with data structures

(inductively)

2 / 32

Enumerated propositions

3 / 32

Types vs propositions

Inductive bit : Type := on | off.
Definition bool_to_bit (b:bool) : bit :=
 match b with
 | true => on
 | false => off
 end.
Definition bit_to_bool (b:bit) : bool :=
 match b with
 | on => true
 | off => false
 end.
Goal
 forall b,
 bool_to_bit (bit_to_bool b) = b.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 4 / 32

Examples
What is a value of bit?

CS720: Lecture 9 ❧ Tiago Cogumbreiro 5 / 32

Examples
What is a value of bit? example, off.

What is a value of bit -> bit?

CS720: Lecture 9 ❧ Tiago Cogumbreiro 5 / 32

Examples
What is a value of bit? example, off.

What is a value of bit -> bit? example, fun (b:bit) => if b then off else on
What is a value of bool -> bit?

CS720: Lecture 9 ❧ Tiago Cogumbreiro 5 / 32

Examples
What is a value of bit? example, off.

What is a value of bit -> bit? example, fun (b:bit) => if b then off else on
What is a value of bool -> bit? example, fun (b:bool) => if b then on else off

CS720: Lecture 9 ❧ Tiago Cogumbreiro 5 / 32

Enumerated propositions

Inductive Bit : Prop := On | Off.

Definition bool_to_Bit (b:bool) : Bit :=
 match b with
 | true => On
 | false => Off
 end.

Definition Bit_to_bool (b:Bit) : bool :=
 match b with
 | On => true
 | Off => false
 end.

Propositions cannot be the target of match

CS720: Lecture 9 ❧ Tiago Cogumbreiro 6 / 32

Examples of propositions and their proofs
Goal Bit.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 7 / 32

Examples of propositions and their proofs
Goal Bit.
You can always prove bit. Example, on

Goal Bit -> Bit.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 7 / 32

Examples of propositions and their proofs
Goal Bit.
You can always prove bit. Example, on

Goal Bit -> Bit.
If you have bit, then you can conclude bit. Example, intros H. apply H.
Goal forall b:Bit, b.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 7 / 32

Examples of propositions and their proofs
Goal Bit.
You can always prove bit. Example, on

Goal Bit -> Bit.
If you have bit, then you can conclude bit. Example, intros H. apply H.
Goal forall b:Bit, b. Error! Variable b is a value of Bit, an evidence. Cannot be used as
a proposition (Bit is a proposition!)

Goal forall b:Bit, Bit.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 7 / 32

Examples of propositions and their proofs
Goal Bit.
You can always prove bit. Example, on

Goal Bit -> Bit.
If you have bit, then you can conclude bit. Example, intros H. apply H.
Goal forall b:Bit, b. Error! Variable b is a value of Bit, an evidence. Cannot be used as
a proposition (Bit is a proposition!)

Goal forall b:Bit, Bit.
If you have bit, then you can conclude bit. Example, intros H.
apply H.
Goal Bit <-> True.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 7 / 32

Examples of propositions and their proofs
Goal Bit.
You can always prove bit. Example, on

Goal Bit -> Bit.
If you have bit, then you can conclude bit. Example, intros H. apply H.
Goal forall b:Bit, b. Error! Variable b is a value of Bit, an evidence. Cannot be used as
a proposition (Bit is a proposition!)

Goal forall b:Bit, Bit.
If you have bit, then you can conclude bit. Example, intros H.
apply H.
Goal Bit <-> True.
Whenever you have Bit, you can conclude True, and vice versa. We
are not saying that Bit is True.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 7 / 32

Insights
Propositions are restricted in how you can

Equivalence between A and B, means A is provable whenever B is provable.

Theorems are just definitions, where we don't care about how it was proved (the code),
just that it can be proved

CS720: Lecture 9 ❧ Tiago Cogumbreiro 8 / 32

Composite inductive propositions

9 / 32

Disjunction

Inductive or (A B : Prop) : Prop :=
 | or_introl :
 A ->
 or A B
 | or_intror :
 B ->
 or A B

CS720: Lecture 9 ❧ Tiago Cogumbreiro 10 / 32

Conjunction

Inductive and (P Q : Prop) : Prop :=
| conj :
 P ->
 Q ->
 and P Q.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 11 / 32

Adding parameters to predicates

Inductive Bar : nat -> Prop :=
| C : Bar 1
| D : Bar 2.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 12 / 32

Adding parameters to predicates

Inductive Bar : nat -> Prop :=
| C : Bar 1
| D : forall n,
 Bar (S n).

Goal forall n,
 Bar n ->
 n <> 0.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 13 / 32

Alternative definition of Bar

Definition Bar2 n : Prop := n <> 0.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 14 / 32

Existential

Inductive sig (A : Type) (P : A -> Prop) : Type :=
 | exist : forall x : A,
 P x ->
 sig A P.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 15 / 32

Recursive inductive propositions

16 / 32

Recall the functional definition of In
Fixpoint In {A : Type} (x : A) (l : list A) : Prop :=
 match l with
 | [] => False
 | x' :: l' => x' = x \/ In x l'
 end.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 17 / 32

Defining In inductively

Inductive In {A:Type} : A -> list A -> Prop :=

CS720: Lecture 9 ❧ Tiago Cogumbreiro 18 / 32

Defining In inductively

Inductive In {A:Type} : A -> list A -> Prop :=

| in_eq:
 forall x l,
 In x (x::l)
| in_cons:
 forall x y l,
 In x l ->
 In x (y::l).

CS720: Lecture 9 ❧ Tiago Cogumbreiro 18 / 32

Fixed parameters in inductive propositions

Inductive In' {A:Type} (x: A) : list A -> Prop :=
| in_eq:
 forall l,
 In' x (x::l)
| in_cons:
 forall y l,
 In' x l ->
 In' x (y::l).

CS720: Lecture 9 ❧ Tiago Cogumbreiro 19 / 32

Proofs by induction on the derivation

Lemma in_in':
 forall (A:Type) (x:Type) l,
 In' x l ->
 In x l.
Proof.
 intros.
 induction H.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 20 / 32

McCarthy 91 function
McCarthy's 91 function

Inductive McCarthy91: nat -> nat -> Prop :=
| mc_carthy_91_gt:
 forall n,
 n > 100 ->
 McCarthy91 n (n - 10)
| mc_carthy_91_le:
 forall n o m,
 n <= 100 ->
 McCarthy91 (n + 11) m ->
 McCarthy91 m o ->
 McCarthy91 n o.

M(n) = n− 10 if n > 100
M(n) = M(M(n+ 11)) if n ≤ 100

CS720: Lecture 9 ❧ Tiago Cogumbreiro 21 / 32

https://en.wikipedia.org/wiki/McCarthy_91_function

Exercise
Let us define even numbers inductively…

In the world of propositions, what is a signature of a number being even?

CS720: Lecture 9 ❧ Tiago Cogumbreiro 22 / 32

Exercise
Let us define even numbers inductively…

In the world of propositions, what is a signature of a number being even?

Inductive ev: nat -> Prop

CS720: Lecture 9 ❧ Tiago Cogumbreiro 22 / 32

Exercise
Let us define even numbers inductively…

In the world of propositions, what is a signature of a number being even?

Inductive ev: nat -> Prop

0 is even

If is even, then is also even.n 2 + n

CS720: Lecture 9 ❧ Tiago Cogumbreiro 22 / 32

Inductive ev: nat -> Prop :=
(* Rule 1: *)
| ev_0:
 ev 0
(* Rule 2: *)
| ev_SS: forall n,
 ev n ->
(*------------*)
 ev (S (S n)).

Which can be typeset as an inductive
definition with the following notation:

Inductively defined even
In Logic, the constructors ev_0 and ev_SS of propositions can be called
inference rules.

​ev_0 ​ev_SS
ev(0) ev(S(S(n)))

ev(n)

CS720: Lecture 9 ❧ Tiago Cogumbreiro 23 / 32

Backward style: From ev_SS we can conclude that 4 is
even, if we can show
that 2 is even, which follows from
ev_SS and the fact that 0 is even (by
ev_0).

Forward style: From the fact that 0 is even (ev_0), we
use theorem
ev_SS to show that 2 is even; so, applying
theorem ev_SS to the latter, we
conclude that 4 is even.

Goal ev 4.
Proof. (* backward style proof *)
 apply eq_SS.
 apply eq_SS.
 apply ev_0.
Qed.

Goal ev 4.
Proof. (* forward style proof *)
 apply (ev_SS 2 (ev_SS 0 ev_0)).
Qed.

Proving that 4 is even

​ ev_0
ev 0

​ ev_SS
ev 2

​ ev_SS
ev 4

CS720: Lecture 9 ❧ Tiago Cogumbreiro 24 / 32

Reasoning about inductive propositions

Theorem evSS : forall n,
 ev (S (S n)) -> ev n.

(Done in class.)

CS720: Lecture 9 ❧ Tiago Cogumbreiro 25 / 32

Example

Goal ~ ev 3.

(Done in class.)

CS720: Lecture 9 ❧ Tiago Cogumbreiro 26 / 32

Proofs by induction

Goal forall n, ev n -> ~ ev (S n).

(Done in class.)

CS720: Lecture 9 ❧ Tiago Cogumbreiro 27 / 32

Proofs by induction

Goal forall n, ev n -> ~ ev (S n).

(Done in class.)

Notice the difference between induction on n and on judgment ev n.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 27 / 32

Inductive le : nat -> nat -> Prop :=
 | le_n :
 forall n,
 le n n

 | le_S :
 forall n m,
 le n m ->
 le n (S m).
Notation "n <= m" := (le n m).

Relations in Coq

​ le_n ​ le_S
n ≤ n n ≤ S m

n ≤ m

CS720: Lecture 9 ❧ Tiago Cogumbreiro 28 / 32

Exercise

Goal 3 <= 6.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 29 / 32

Less-than

Definition lt (n m:nat) := le (S n) m.

How do we prove that this definition is correct?

CS720: Lecture 9 ❧ Tiago Cogumbreiro 30 / 32

Less-than

Definition lt (n m:nat) := le (S n) m.

How do we prove that this definition is correct?

Goal n <= m <-> lt n m \/ n = m.

CS720: Lecture 9 ❧ Tiago Cogumbreiro 30 / 32

Less-than
How can we define Less-Than inductively?

CS720: Lecture 9 ❧ Tiago Cogumbreiro 31 / 32

Less-than
How can we define Less-Than inductively?

Inductive lt : nat -> nat -> Prop :=
 | lt_base :
 forall n,
 lt n (S n)

 | lt_S :
 forall n m,
 lt n m ->
 lt n (S m).
Notation "n < m" := (lt n m).

How do we prove that this definition is correct?

CS720: Lecture 9 ❧ Tiago Cogumbreiro 31 / 32

Exercises on Less-Than
Prove that

1. < is transitive

2. < is irreflexive

3. < is asymmetric

4. < is decidable

CS720: Lecture 9 ❧ Tiago Cogumbreiro 32 / 32

