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Building propositions

with data structures

(inductively)
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Enumerated propositions
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Types vs propositions

Inductive bit : Type := on | off.
Definition bool_to_bit (b:bool) : bit :=
    match b with
    | true => on
    | false => off
    end.
Definition bit_to_bool (b:bit) : bool :=
  match b with
  | on => true
  | off => false
  end.
Goal
    forall b,
    bool_to_bit (bit_to_bool b) = b.
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Examples
What is a value of bit?

CS720: Lecture 9  ❧  Tiago Cogumbreiro 5 / 32



Examples
What is a value of bit? example, off.

What is a value of bit -> bit?

CS720: Lecture 9  ❧  Tiago Cogumbreiro 5 / 32



Examples
What is a value of bit? example, off.

What is a value of bit -> bit? example, fun (b:bit) => if b then off else on
What is a value of bool -> bit?
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Examples
What is a value of bit? example, off.

What is a value of bit -> bit? example, fun (b:bit) => if b then off else on
What is a value of bool -> bit? example, fun (b:bool) => if b then on else off
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Enumerated propositions

Inductive Bit : Prop := On | Off.

Definition bool_to_Bit (b:bool) : Bit :=
  match b with
  | true => On
  | false => Off
  end.

Definition Bit_to_bool (b:Bit) : bool :=
  match b with
  | On => true
  | Off => false
  end.

Propositions cannot be the target of match
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Examples of propositions and their proofs
Goal Bit.
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apply H.
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Examples of propositions and their proofs
Goal Bit.
You can always prove bit. Example, on

Goal Bit -> Bit.
If you have bit, then you can conclude bit. Example, intros H. apply H.
Goal forall b:Bit, b. Error! Variable b is a value of Bit, an evidence. Cannot be used as
a proposition (Bit is a proposition!)

Goal forall b:Bit, Bit.
If you have bit, then you can conclude bit. Example, intros H.
apply H.
Goal Bit <-> True.
Whenever you have Bit, you can conclude True, and vice versa. We
are not saying that Bit is True.
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Insights
Propositions are restricted in how you can

Equivalence between A and B, means A is provable whenever B is provable.

Theorems are just definitions, where we don't care about how it was proved (the code),
just that it can be proved
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Composite inductive propositions
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Disjunction

Inductive or (A B : Prop) : Prop :=
  | or_introl :
    A ->
    or A B
  | or_intror :
    B ->
    or A B
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Conjunction

Inductive and (P Q : Prop) : Prop :=
| conj :
    P ->
    Q ->
    and P Q.
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Adding parameters to predicates

Inductive Bar : nat -> Prop :=
| C : Bar 1
| D : Bar 2.
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Adding parameters to predicates

Inductive Bar : nat -> Prop :=
| C : Bar 1
| D : forall n,
    Bar (S n).

Goal forall n,
    Bar n ->
    n <> 0.
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Alternative definition of Bar

Definition Bar2 n : Prop := n <> 0.
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Existential

Inductive sig (A : Type) (P : A -> Prop) : Type :=
  | exist : forall x : A,
    P x ->
    sig A P.
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Recursive inductive propositions
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Recall the functional definition of In
Fixpoint In {A : Type} (x : A) (l : list A) : Prop :=
  match l with
  | [] => False
  | x' :: l' => x' = x \/ In x l'
  end.
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Defining In inductively

Inductive In {A:Type} : A -> list A -> Prop :=  
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Defining In inductively

Inductive In {A:Type} : A -> list A -> Prop :=  

| in_eq:
    forall x l,
    In x (x::l)
| in_cons:
    forall x y l,
    In x l ->
    In x (y::l).
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Fixed parameters in inductive propositions

Inductive In' {A:Type} (x: A) : list A -> Prop :=  
| in_eq:
    forall l,
    In' x (x::l)
| in_cons:
    forall y l,
    In' x l ->
    In' x (y::l).
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Proofs by induction on the derivation

Lemma in_in':
  forall (A:Type) (x:Type) l,
  In' x l ->
  In x l.
Proof.
  intros.
  induction H.
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McCarthy 91 function
McCarthy's 91 function

Inductive McCarthy91: nat -> nat -> Prop :=
| mc_carthy_91_gt:
  forall n,
  n > 100 ->
  McCarthy91 n (n - 10)
| mc_carthy_91_le:
  forall n o m,
  n <= 100 ->
  McCarthy91 (n + 11) m ->
  McCarthy91 m o ->
  McCarthy91 n o.

M(n) = n− 10 if n > 100
M(n) = M(M(n+ 11)) if n ≤ 100
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Exercise
Let us define even numbers inductively…

In the world of propositions, what is a signature of a number being even?
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Exercise
Let us define even numbers inductively…

In the world of propositions, what is a signature of a number being even?

Inductive ev: nat -> Prop

0 is even

If  is even, then  is also even.n 2 + n
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Inductive ev: nat -> Prop :=
(* Rule 1: *)
| ev_0:
  ev 0
(* Rule 2: *)
| ev_SS: forall n,
  ev n ->
(*------------*)
  ev (S (S n)).

Which can be typeset as an inductive
definition with the following notation:

Inductively defined even
In Logic, the constructors ev_0 and ev_SS of propositions can be called
inference rules.

​ev_0 ​ev_SS
ev(0) ev(S(S(n)))

ev(n)
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Backward style: From ev_SS we can conclude that 4 is
even, if we can show
that 2 is even, which follows from
ev_SS and the fact that 0 is even (by
ev_0).

Forward style: From the fact that 0 is even (ev_0), we
use theorem
ev_SS to show that 2 is even; so, applying
theorem ev_SS to the latter, we
conclude that 4 is even.

Goal ev 4.
Proof. (* backward style proof *)
  apply eq_SS.
  apply eq_SS.
  apply ev_0.
Qed.

Goal ev 4.
Proof. (* forward style proof *)
  apply (ev_SS 2 (ev_SS 0 ev_0)).
Qed.

Proving that 4 is even

​  ev_0
ev 0

​ ev_SS
ev 2

​ ev_SS
ev 4
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Reasoning about inductive propositions

Theorem evSS : forall n,
  ev (S (S n)) -> ev n.

(Done in class.)
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Example

Goal ~ ev 3.

(Done in class.)
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Proofs by induction

Goal forall n, ev n -> ~ ev (S n).

(Done in class.)
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Proofs by induction

Goal forall n, ev n -> ~ ev (S n).

(Done in class.)

Notice the difference between induction on n and on judgment ev n.
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Inductive le : nat -> nat -> Prop :=
  | le_n :
    forall n,
    le n n

  | le_S :
    forall n m,
    le n m ->
    le n (S m).
Notation "n <= m" := (le n m).

Relations in Coq

​ le_n ​ le_S
n ≤ n n ≤ S m

n ≤ m
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Exercise

Goal 3 <= 6.
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Less-than

Definition lt (n m:nat) := le (S n) m.

How do we prove that this definition is correct?
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Less-than

Definition lt (n m:nat) := le (S n) m.

How do we prove that this definition is correct?

Goal n <= m <-> lt n m \/ n = m.
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Less-than
How can we define Less-Than inductively?
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Less-than
How can we define Less-Than inductively?

Inductive lt : nat -> nat -> Prop :=
  | lt_base :
    forall n,
    lt n (S n)

  | lt_S :
    forall n m,
    lt n m ->
    lt n (S m).
Notation "n < m" := (lt n m).

How do we prove that this definition is correct?
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Exercises on Less-Than
Prove that

1. < is transitive

2. < is irreflexive

3. < is asymmetric

4. < is decidable
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