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Today we will... A

BOSTON

o Take a deeper look at proofs by induction
o Unfolding definitions

e Simplifying expressions

e Destructing compound expressions

Why are we learning this?

e To make your proofs smaller/simpler
 Many interesting properties require what we will learn today about induction

CS720: Lecture 6 = Tiago Cogumbreiro 2/16



Varying the Induction Hypothesis
(1/2)




Varying the Induction Hypothesis (1/2) m

Fixpoint double (n:nat) := match n with | 0 = 0| S n' = S (S (double n')) end.

Theorem double_injective_FAILED : forall n m,
double n = double m —
n =m.
Proof.
intros n m. induction n as [| n'].
z simpl. intros eq. destruct m as [| m'].
reflexivity.
+ discriminate eq.
- intros eq.

(Proof state in the next slide.)
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Varying the Induction Hypothesis (2/2) m

1 subgoal

n', m: nat
IHn' : double n' = double m = n' =m
eq : double (S n') = double m

0. Know that: S(n') = n, thus double(n) became double(S(n'))

1. Know that: If double(n') = double(m), thenn’ = m = Can we prove the pre?

2. Know that: double(S(n') ) = double(m), thus S(S(double(n’))) = double(m)
vn

3.Show that: S(n') = m

I Where do we go from this? How can we use the induction hypothesis?
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A

Recall the induction principle of nats Ciunss

We performed induction on nand our goal is double n = double m > n =m
That is, prove P(n) := double n = double m = n = mby induction on n.

e Prove P(0), thus replace nby @in P(n):
Prove double @ = double m = @ = m
e Prove that P(n) implies P(n+1):
Given double n = double m = n = mprove thatdouble (n + 1) = double m = n = m.

| What is impeding our proof?
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A

Recall the induction principle of nats Ciunss

We performed induction on nand our goal is double n = double m = n =m
That is, prove P(n) := double n = double m = n = mby induction on n.

e Prove P(0), thus replace n by @inP(n):
Prove double @ = double m = 0 =m

e Prove that P(n) implies P(n+1):
Given double n = double m = n = mprove thatdouble (n + 1) = double m = n = m.

| What is impeding our proof?

The problem is that the goal we are proving fixes the m, however in the expression double n
= double mthenand the mare related!

Since the induction variable n "influences” m, then we must generalize m.

6/16
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How do we fix it?

| How do we generalize a variable?

We perform induction on n and our goal P(n) becomes:

forall m, double n = double m = n =m

By performing induction on n we get:

o P(0) = forall m, double @ = double m = @ =m
e P(n) = P(n+1) =
(forall m, double n = doublem = n =nm) =
(forall m, double (n + 1) = double m)

A

UMASS
BOSTON
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Let us try again ?/11

Theorem double_injective : forall n m,
double n = double m —
n=m.
Proof.
intros n. induction n as [| n'].

(Doneinclass.)
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Second try ?/11

Theorem double_injective : forall m n,
double n = double m —
n=m.
Proof.
intros m n eql.

Notice how m and n are switched.
(Doneinclass.)
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Second try m

Theorem double_injective : forall m n,
double n = double m —
n=m.
Proof.
intros m n eql.

Notice how m and n are switched.
(Doneinclass.)

e generalize dependent n: generalizes (abstracts) variable n
o Takeaway: the induction variable should be the left-most in a forall binder
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Destruct compound expressions




Destruct compound expressions m

Destruct works for any expressions, not just variables

Definition sillyfun (n : nat) : bool :=
if Nat.egb n 3 then false
else if Nat.egb n 5 then false
else false.

Theorem sillyfun_false : forall (n : nat),
sillyfun n = false.

Proof.
intros n. unfold sillyfun.
destruct (Nat.egb n 3).

(Completedin class.)
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Destruct compound expressions 7

UMASS
BOSTON

Destruct works for any expressions, not just variables

Definition sillyfunT (n : nat) : bool :=
if Nat.egb n 3 then true

else if Nat.egb n 5 then true
else false.

Theorem sillyfuni_odd : forall (n : nat),
sillyfunl n = true —
oddb n = true.

Proof.

intros n eql. unfold sillyfunl in eql.
destruct (Nat.egb n 3).
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Destruct compound expressions 7

UMASS
BOSTON

Destruct works for any expressions, not just variables

Definition sillyfunl (n : nat) : bool :=
if Nat.egb n 3 then true

else if Nat.egb n 5 then true
else false.

Theorem sillyfuni_odd : forall (n : nat),
sillyfun1l n = true —
oddb n = true.

Proof.

intros n eql. unfold sillyfunl in eql.
destruct (Nat.egb n 3).

I What happened here? We lost our knowledge. Use destruct PATTERN eqgn:H.
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Unfolding Definitions




Unfolding Definitions 7

Definition square n := n * n.

Lemma square_mult : forall n m, square (n * m) = square n *

Proof.
intros n m.
simpl.

square m.

| How do we prove this?
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Unfolding Definitions 7

Definition square n := n * n.

Lemma square_mult : forall n m, square (n * m) = square n *

Proof.
intros n m.
simpl.

square m.

| How do we prove this?
Use unfold square to "open" the definition.

Function square is not "simplifiable”. A "simplifiable" function performs a match in the
argument and inspects the structure of the argument.
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Simplifiable expressions ?/11

I Which ofe, f 8,g 5,1 5 andh 5simplify?

Definition e := 5.

Definition f (x:nat) :

1
(@]

Definition g (x:nat) :

1
x

Definition i (x:nat) := match x with - = x end.

Definition h (x:nat) :
match x with

| S - = x
| 8 = x
end.
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Non-simplifiable expressions

Definition e := 5.
Goal f = 5. Proof. simpl. Abort.
Definition f (x:nat) := 5.
Goal f @ = 5. Proof. simpl. Abort.
(* no match, simplify cannot unfold *)
Definition g (x:nat) := x.
Goal g 5 = 5. Proof. simpl. Abort.
(* match, but no inspection *)
Definition i (x:nat) := match x with - = x end.
Goal 1 5 = 5. Proof. simpl. Abort.
(* match inspects the argument *)
Definition h (x:nat) :=
match x with
| S_=>x| 08 = x
end.
Goal h 5 = 5. Proof. simpl. reflexivity. Qed.

I If simpl does nothing, try unfolding the definition, to understand why simpl is stuck.

.
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