
CS720

Logical Foundations of Computer Science

Lecture 6: Tactics (continued)

Tiago Cogumbreiro

CS720: Lecture 6 ❧ Tiago Cogumbreiro 1 / 16

Today we will…
Take a deeper look at proofs by induction

Unfolding definitions

Simplifying expressions

Destructing compound expressions

Why are we learning this?

To make your proofs smaller/simpler

Many interesting properties require what we will learn today about induction

CS720: Lecture 6 ❧ Tiago Cogumbreiro 2 / 16

Varying the Induction Hypothesis
(1/2)

3 / 16

Varying the Induction Hypothesis (1/2)

Fixpoint double (n:nat) := match n with | O => O | S n' => S (S (double n')) end.

Theorem double_injective_FAILED : forall n m,
 double n = double m ->
 n = m.
Proof.
 intros n m. induction n as [| n'].
 - (* n = O *) simpl. intros eq. destruct m as [| m'].
 + (* m = O *) reflexivity.
 + (* m = S m' *) discriminate eq.
 - (* n = S n' *) intros eq.

(Proof state in the next slide.)

CS720: Lecture 6 ❧ Tiago Cogumbreiro 4 / 16

Varying the Induction Hypothesis (2/2)

1 subgoal
n', m : nat
IHn' : double n' = double m -> n' = m
eq : double (S n') = double m
______________________________________(1/1)
S n' = m

0. Know that: , thus became

1. Know that: If , then ☚ Can we prove the pre?

2. Know that: , thus

3. Show that:

Where do we go from this? How can we use the induction hypothesis?

S(n) =′ n double(n) double(S(n))′

double(n) =′ double(m) n =′ m

double(​ ​) =S(n)′
n

double(m) S(S(double(n))) =′ double(m)

S(n) =′ m

CS720: Lecture 6 ❧ Tiago Cogumbreiro 5 / 16

Recall the induction principle of nats

We performed induction on n and our goal is double n = double m -> n = m
That is, prove P(n) := double n = double m -> n = m by induction on n.

Prove P(0), thus replace n by 0 in P(n):
Prove double 0 = double m -> 0 = m
Prove that P(n) implies P(n+1):
Given double n = double m -> n = m prove that double (n + 1) = double m -> n = m.

What is impeding our proof?

CS720: Lecture 6 ❧ Tiago Cogumbreiro 6 / 16

Recall the induction principle of nats

We performed induction on n and our goal is double n = double m -> n = m
That is, prove P(n) := double n = double m -> n = m by induction on n.

Prove P(0), thus replace n by 0 in P(n):
Prove double 0 = double m -> 0 = m
Prove that P(n) implies P(n+1):
Given double n = double m -> n = m prove that double (n + 1) = double m -> n = m.

What is impeding our proof?

The problem is that the goal we are proving fixes the m, however in the expression double n
= double m the n and the m are related!

Since the induction variable n "influences" m, then we must generalize m.

CS720: Lecture 6 ❧ Tiago Cogumbreiro 6 / 16

How do we fix it?
How do we generalize a variable?

We perform induction on n and our goal P(n) becomes:

forall m, double n = double m -> n = m

By performing induction on n we get:

P(0) = forall m, double 0 = double m -> 0 = m
P(n) -> P(n+1) =
(forall m, double n = double m -> n = m) ->
(forall m, double (n + 1) = double m)`

CS720: Lecture 6 ❧ Tiago Cogumbreiro 7 / 16

Let us try again

Theorem double_injective : forall n m,
 double n = double m ->
 n = m.
Proof.
 intros n. induction n as [| n'].

(Done in class.)

CS720: Lecture 6 ❧ Tiago Cogumbreiro 8 / 16

Second try

Theorem double_injective : forall m n,
 double n = double m ->
 n = m.
Proof.
 intros m n eq1.

Notice how m and n are switched.

(Done in class.)

CS720: Lecture 6 ❧ Tiago Cogumbreiro 9 / 16

Second try

Theorem double_injective : forall m n,
 double n = double m ->
 n = m.
Proof.
 intros m n eq1.

Notice how m and n are switched.

(Done in class.)

generalize dependent n: generalizes (abstracts) variable n
Takeaway: the induction variable should be the left-most in a forall binder

CS720: Lecture 6 ❧ Tiago Cogumbreiro 9 / 16

Destruct compound expressions

10 / 16

Destruct compound expressions
Destruct works for any expressions, not just variables

Definition sillyfun (n : nat) : bool :=
 if Nat.eqb n 3 then false
 else if Nat.eqb n 5 then false
 else false.

Theorem sillyfun_false : forall (n : nat),
 sillyfun n = false.
Proof.
 intros n. unfold sillyfun.
 destruct (Nat.eqb n 3).

(Completed in class.)

CS720: Lecture 6 ❧ Tiago Cogumbreiro 11 / 16

Destruct compound expressions
Destruct works for any expressions, not just variables

Definition sillyfun1 (n : nat) : bool :=
 if Nat.eqb n 3 then true
 else if Nat.eqb n 5 then true
 else false.

Theorem sillyfun1_odd : forall (n : nat),
 sillyfun1 n = true ->
 oddb n = true.
Proof.
 intros n eq1. unfold sillyfun1 in eq1.
 destruct (Nat.eqb n 3).

CS720: Lecture 6 ❧ Tiago Cogumbreiro 12 / 16

Destruct compound expressions
Destruct works for any expressions, not just variables

Definition sillyfun1 (n : nat) : bool :=
 if Nat.eqb n 3 then true
 else if Nat.eqb n 5 then true
 else false.

Theorem sillyfun1_odd : forall (n : nat),
 sillyfun1 n = true ->
 oddb n = true.
Proof.
 intros n eq1. unfold sillyfun1 in eq1.
 destruct (Nat.eqb n 3).

What happened here? We lost our knowledge. Use destruct PATTERN eqn:H.

CS720: Lecture 6 ❧ Tiago Cogumbreiro 12 / 16

Unfolding Definitions

13 / 16

Unfolding Definitions

Definition square n := n * n.

Lemma square_mult : forall n m, square (n * m) = square n * square m.
Proof.
 intros n m.
 simpl.

How do we prove this?

CS720: Lecture 6 ❧ Tiago Cogumbreiro 14 / 16

Unfolding Definitions

Definition square n := n * n.

Lemma square_mult : forall n m, square (n * m) = square n * square m.
Proof.
 intros n m.
 simpl.

How do we prove this?

Use unfold square to "open" the definition.

Function square is not "simplifiable". A "simplifiable" function performs a
match in the
argument and inspects the structure of the argument.

CS720: Lecture 6 ❧ Tiago Cogumbreiro 14 / 16

Simplifiable expressions
Which of e, f 0, g 5, i 5, and h 5 simplify?

Definition e := 5.

Definition f (x:nat) := 5.

Definition g (x:nat) := x.

Definition i (x:nat) := match x with _ => x end.

Definition h (x:nat) :=
 match x with
 | S _ => x
 | 0 => x
 end.

CS720: Lecture 6 ❧ Tiago Cogumbreiro 15 / 16

Non-simplifiable expressions

Definition e := 5.
Goal f = 5. Proof. simpl. Abort.
Definition f (x:nat) := 5.
Goal f 0 = 5. Proof. simpl. Abort.
(* no match, simplify cannot unfold *)
Definition g (x:nat) := x.
Goal g 5 = 5. Proof. simpl. Abort.
(* match, but no inspection *)
Definition i (x:nat) := match x with _ => x end.
Goal i 5 = 5. Proof. simpl. Abort.
(* match inspects the argument *)
Definition h (x:nat) :=
 match x with
 | S _ => x | 0 => x
 end.
Goal h 5 = 5. Proof. simpl. reflexivity. Qed.

If simpl does nothing, try unfolding the definition, to understand why simpl is stuck.

