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Today we will…
Take a deeper look at proofs by induction

Unfolding definitions

Simplifying expressions

Destructing compound expressions

Why are we learning this?

To make your proofs smaller/simpler

Many interesting properties require what we will learn today about induction
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Varying the Induction Hypothesis
(1/2)
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Varying the Induction Hypothesis (1/2)

Fixpoint double (n:nat) := match n with | O => O | S n' => S (S (double n')) end.

Theorem double_injective_FAILED : forall n m,
     double n = double m ->
     n = m.
Proof.
  intros n m. induction n as [| n'].
  - (* n = O *) simpl. intros eq. destruct m as [| m'].
    + (* m = O *) reflexivity.
    + (* m = S m' *) discriminate eq.
  - (* n = S n' *) intros eq.

(Proof state in the next slide.)
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Varying the Induction Hypothesis (2/2)

1 subgoal
n', m : nat
IHn' : double n' = double m -> n' = m
eq : double (S n') = double m
______________________________________(1/1)
S n' = m

0. Know that: , thus  became 

1. Know that: If , then ☚ Can we prove the pre?

2. Know that: , thus 

3. Show that: 

Where do we go from this? How can we use the induction hypothesis?

S(n ) =′ n double(n) double(S(n ))′

double(n ) =′ double(m) n =′ m

double( ​ ​) =S(n )′
n

double(m) S(S(double(n ))) =′ double(m)

S(n ) =′ m
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Recall the induction principle of nats

We performed induction on n and our goal is double n = double m -> n = m
That is, prove P(n) := double n = double m -> n = m by induction on n.

Prove P(0), thus replace n by 0 in P(n):
Prove double 0 = double m -> 0 = m
Prove that P(n) implies P(n+1):
Given double n = double m -> n = m prove that double (n + 1) = double m -> n = m.

What is impeding our proof?

CS720: Lecture 6  ❧  Tiago Cogumbreiro 6 / 16



Recall the induction principle of nats

We performed induction on n and our goal is double n = double m -> n = m
That is, prove P(n) := double n = double m -> n = m by induction on n.

Prove P(0), thus replace n by 0 in P(n):
Prove double 0 = double m -> 0 = m
Prove that P(n) implies P(n+1):
Given double n = double m -> n = m prove that double (n + 1) = double m -> n = m.

What is impeding our proof?

The problem is that the goal we are proving fixes the m, however in the expression double n
= double m the n and the m are related!

Since the induction variable n "influences" m, then we must generalize m.

CS720: Lecture 6  ❧  Tiago Cogumbreiro 6 / 16



How do we fix it?
How do we generalize a variable?

We perform induction on n and our goal P(n) becomes:

forall m, double n = double m -> n = m

By performing induction on n we get:

P(0) = forall m, double 0 = double m -> 0 = m
P(n) -> P(n+1) =
(forall m, double n = double m -> n = m) ->
(forall m, double (n + 1) = double m)`
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Let us try again

Theorem double_injective : forall n m,
     double n = double m ->
     n = m.
Proof.
  intros n. induction n as [| n'].

(Done in class.)
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Second try

Theorem double_injective : forall m n,
     double n = double m ->
     n = m.
Proof.
  intros m n eq1.

Notice how m and n are switched.

(Done in class.)
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Second try

Theorem double_injective : forall m n,
     double n = double m ->
     n = m.
Proof.
  intros m n eq1.

Notice how m and n are switched.

(Done in class.)

generalize dependent n: generalizes (abstracts) variable n
Takeaway: the induction variable should be the left-most in a forall binder
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Destruct compound expressions
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Destruct compound expressions
Destruct works for any expressions, not just variables

Definition sillyfun (n : nat) : bool :=
  if Nat.eqb n 3 then false
  else if Nat.eqb n 5 then false
  else false.

Theorem sillyfun_false : forall (n : nat),
  sillyfun n = false.
Proof.
  intros n. unfold sillyfun.
  destruct (Nat.eqb n 3).

(Completed in class.)
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Destruct compound expressions
Destruct works for any expressions, not just variables

Definition sillyfun1 (n : nat) : bool :=
  if Nat.eqb n 3 then true
  else if Nat.eqb n 5 then true
  else false.

Theorem sillyfun1_odd : forall (n : nat),
     sillyfun1 n = true ->
     oddb n = true.
Proof.
  intros n eq1. unfold sillyfun1 in eq1.
  destruct (Nat.eqb n 3).
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Destruct compound expressions
Destruct works for any expressions, not just variables

Definition sillyfun1 (n : nat) : bool :=
  if Nat.eqb n 3 then true
  else if Nat.eqb n 5 then true
  else false.

Theorem sillyfun1_odd : forall (n : nat),
     sillyfun1 n = true ->
     oddb n = true.
Proof.
  intros n eq1. unfold sillyfun1 in eq1.
  destruct (Nat.eqb n 3).

What happened here? We lost our knowledge. Use destruct PATTERN eqn:H.
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Unfolding Definitions
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Unfolding Definitions

Definition square n := n * n.

Lemma square_mult : forall n m, square (n * m) = square n * square m.
Proof.
  intros n m.
  simpl.

How do we prove this?
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Unfolding Definitions

Definition square n := n * n.

Lemma square_mult : forall n m, square (n * m) = square n * square m.
Proof.
  intros n m.
  simpl.

How do we prove this?

Use unfold square to "open" the definition.

Function square is not "simplifiable". A "simplifiable" function performs a
match in the
argument and inspects the structure of the argument.

CS720: Lecture 6  ❧  Tiago Cogumbreiro 14 / 16



Simplifiable expressions
Which of e, f 0, g 5, i 5, and h 5 simplify?

Definition e := 5.

Definition f (x:nat) := 5.

Definition g (x:nat) := x.

Definition i (x:nat) := match x with _ => x end.

Definition h (x:nat) :=
  match x with
  | S _ => x
  | 0 => x
  end.

CS720: Lecture 6  ❧  Tiago Cogumbreiro 15 / 16



Non-simplifiable expressions

Definition e := 5.
Goal f = 5. Proof. simpl. Abort.
Definition f (x:nat) := 5.
Goal f 0 = 5. Proof. simpl. Abort.
(* no match, simplify cannot unfold *)
Definition g (x:nat) := x.
Goal g 5 = 5. Proof. simpl. Abort.
(* match, but no inspection *)
Definition i (x:nat) := match x with _ => x end.
Goal i 5 = 5. Proof. simpl. Abort.
(* match inspects the argument *)
Definition h (x:nat) :=
  match x with
  | S _ => x | 0 => x
  end.
Goal h 5 = 5. Proof. simpl. reflexivity. Qed.

If simpl does nothing, try unfolding the definition, to understand why simpl is stuck.


