Logical Foundations of Computer Science
Lecture 6: Tactics (continued)
Tiago Cogumbreiro
Today we will...

- Take a deeper look at proofs by induction
- Unfolding definitions
- Simplifying expressions
- Destructing compound expressions

Why are we learning this?

- To make your proofs smaller/simpler
- Many interesting properties require what we will learn today about induction
Varying the Induction Hypothesis (1/2)
Varying the Induction Hypothesis (1/2)

Fixpoint double (n:nat) := match n with | O => O | S n' => S (double n') end.

Theorem double_injective_FAILED : forall n m, double n = double m -> n = m.
Proof.
 intros n m. induction n as [| n'].
 - (* n = O *) simpl. intros eq. destruct m as [| m'].
 + (* m = O *) reflexivity.
 + (* m = S m' *) discriminate eq.
 - (* n = S n' *) intros eq.

(Proof state in the next slide.)
Varying the Induction Hypothesis (2/2)

1 subgoal
n', m :nat
IHn' : double n' = double m \rightarrow n' = m
eq: double (S n') = double m
______________________________________(1/1)
S n' = m

0. Know that: \(S(n') = n \), thus \(\text{double}(n) \) became \(\text{double}(S(n')) \)

1. Know that: If \(\text{double}(n') = \text{double}(m) \), then \(n' = m \) \(\blacksquare \) Can we prove the pre?

2. Know that: \(\text{double}(S(n')) \) \(\equiv_n \) \(\text{double}(m) \), thus \(S(S(\text{double}(n'))) = \text{double}(m) \)

3. Show that: \(S(n') = m \)

Where do we go from this? How can we use the induction hypothesis?
Recall the induction principle of nats

We performed induction on n and our goal is $\text{double } n = \text{double } m \Rightarrow n = m$

That is, prove $P(n) := \text{double } n = \text{double } m \Rightarrow n = m$ by induction on n.

- Prove $P(0)$, thus replace n by 0 in $P(n)$:
 Prove $\text{double } 0 = \text{double } m \Rightarrow 0 = m$
- Prove that $P(n)$ implies $P(n+1)$:
 Given $\text{double } n = \text{double } m \Rightarrow n = m$ prove that $\text{double } (n + 1) = \text{double } m \Rightarrow n = m$.

What is impeding our proof?
Recall the induction principle of nats

We performed induction on \(n \) **and our goal is** \(\text{double } n = \text{double } m \rightarrow n = m \)

That is, prove \(P(n) := \text{double } n = \text{double } m \rightarrow n = m \) by induction on \(n \).

- Prove \(P(0) \), thus replace \(n \) by \(0 \) in \(P(n) \):
 \[
 \text{Prove double } 0 = \text{double } m \rightarrow 0 = m
 \]

- Prove that \(P(n) \) implies \(P(n+1) \):
 Given \(\text{double } n = \text{double } m \rightarrow n = m \) prove that \(\text{double } (n + 1) = \text{double } m \rightarrow n = m \).

What is impeding our proof?

The problem is that the goal we are proving fixes the \(m \), however in the expression \(\text{double } n = \text{double } m \) the \(n \) and the \(m \) are **related**!

Since the induction variable \(n \) "influences" \(m \), then we must generalize \(m \).
How do we generalize a variable?

We perform induction on \(n \) and our goal \(\text{P}(n) \) becomes:

\[
\text{forall } m, \text{ double } n = \text{ double } m \rightarrow n = m
\]

By performing induction on \(n \) we get:

- \(\text{P}(0) = \text{forall } m, \text{ double } 0 = \text{ double } m \rightarrow 0 = m \)
- \(\text{P}(n) \rightarrow \text{P}(n+1) = \)

 \[
 (\text{forall } m, \text{ double } n = \text{ double } m \rightarrow n = m) \rightarrow
 (\text{forall } m, \text{ double } (n + 1) = \text{ double } m)
 \]
Let us try again

Theorem double_injective : forall n m, double n = double m -> n = m.

Proof.

```coq
intros n. induction n as [| n'].
```

(Done in class.)
Second try

Theorem double_injective : \(\forall m \ n, \ double \ n = double \ m \to n = m. \)

Proof.

\texttt{intros m n eq1.}

Notice how \(m \) and \(n \) are switched.

(*Done in class.*)
Second try

\textbf{Theorem} \texttt{double.Injective} : \texttt{forall} \ m \ n, \\
\hspace{1cm} \texttt{double} \ n = \texttt{double} \ m \implies \\
\hspace{1cm} n = m.

\textbf{Proof}.
\hspace{1cm} \texttt{intros} \ m \ n \ \texttt{eq1}.

Notice how \texttt{m} and \texttt{n} are switched. \hfill \textit{(Done in class.)}

- \texttt{generalize dependent} \ n: generalizes (abstracts) \texttt{variable} \ n
- \texttt{Takeaway}: the induction variable should be the left-most in a \texttt{forall} \texttt{binder}
Destruct compound expressions
Destruct compound expressions

Destruct works for any expressions, not just variables

Definition sillyfun (n : nat) : bool :=
 if Nat.eqb n 3 then false
 else if Nat.eqb n 5 then false
 else false.

Theorem sillyfun_false : forall (n : nat),
 sillyfun n = false.
Proof.
 intros n. unfold sillyfun.
 destruct (Nat.eqb n 3).

(Completed in class.)
Destruct compound expressions

Destruct works for any expressions, not just variables

Definition sillyfun1 (n : nat) : bool :=
 if Nat.eqb n 3 then true
 else if Nat.eqb n 5 then true
 else false.

Theorem sillyfun1_odd : forall (n : nat),
 sillyfun1 n = true →
 oddb n = true.

Proof.
 intros n eq1. unfold sillyfun1 in eq1.
 destruct (Nat.eqb n 3).
Destruct compound expressions

Destruct works for any expressions, not just variables

Definition sillyfun1 (n : nat) : bool :=
 if Nat.eqb n 3 then true
 else if Nat.eqb n 5 then true
 else false.

Theorem sillyfun1_odd : forall (n : nat), sillyfun1 n = true -> oddb n = true.

Proof.
 intros n eq1. unfold sillyfun1 in eq1.
 destruct (Nat.eqb n 3).

What happened here? We lost our knowledge. Use destruct PATTERN eqn:H.
Unfolding Definitions
Unfolding Definitions

Definition square n := n * n.

Lemma square_mult : forall n m, square (n * m) = square n * square m.
Proof.
 intros n m.
 simpl.

How do we prove this?
Unfolding Definitions

Definition square \(n \) := \(n \times n \).

Lemma square_mult : \(\forall n m, \text{square} (n \times m) = \text{square} n \times \text{square} m \).

Proof.
 intros n m.
 simpl.

How do we prove this?

Use unfold \text{square} to "open" the definition.

Function \text{square} is not "simplifiable". A "simplifiable" function performs a match in the argument \textit{and} inspects the structure of the argument.
Which of $e, f 0, g 5, i 5,$ and $h 5$ simplify?

Definition $e := 5.$

Definition $f (x: \text{nat}) := 5.$

Definition $g (x: \text{nat}) := x.$

Definition $i (x: \text{nat}) := \text{match } x \text{ with } _{\downarrow} \Rightarrow x \text{ end}.$

Definition $h (x: \text{nat}) :=$
\[
\text{match } x \text{ with}
\begin{align*}
| S _{\downarrow} & \Rightarrow x \\
| 0 & \Rightarrow x
\end{align*}
\text{end}.
\]
Non-simplifiable expressions

Definition e := 5.
Definition f (x:nat) := 5.
Goal f 0 = 5. Proof. simpl. Abort.
(* no match, simplify cannot unfold *)
Definition g (x:nat) := x.
Goal g 5 = 5. Proof. simpl. Abort.
(* match, but no inspection *)
Definition i (x:nat) := match x with _ ⇒ x end.
Goal i 5 = 5. Proof. simpl. Abort.
(* match inspects the argument *)
Definition h (x:nat) :=
 match x with
 | S _ ⇒ x | 0 ⇒ x
 end.
Goal h 5 = 5. Proof. simpl. reflexivity. Qed.

If simpl does nothing, try unfolding the definition, to understand why simpl is stuck.