
CS720

Logical Foundations of Computer Science

Lecture 5: Tactics

Tiago Cogumbreiro

CS720: Lecture 5 ❧ Tiago Cogumbreiro 1 / 17

Tactics.v

2 / 17

Exercise 1: transitivity over equals

Theorem eq_trans : forall (T:Type) (x y z : T),
 x = y -> y = z -> x = z.
Proof.
 intros T x y z eq1 eq2.
 rewrite -> eq1.

yields

1 subgoal
T : Type
x, y, z : T
eq1 : x = y
eq2 : y = z
______________________________________(1/1)
y = z

How do we conclude this proof?

CS720: Lecture 5 ❧ Tiago Cogumbreiro 3 / 17

Exercise 1: transitivity over equals

Theorem eq_trans : forall (T:Type) (x y z : T),
 x = y -> y = z -> x = z.
Proof.
 intros T x y z eq1 eq2.
 rewrite -> eq1.

yields

1 subgoal
T : Type
x, y, z : T
eq1 : x = y
eq2 : y = z
______________________________________(1/1)
y = z

How do we conclude this proof?
Yes, rewrite -> eq2. reflexivity. works.

CS720: Lecture 5 ❧ Tiago Cogumbreiro 3 / 17

Exercise 1: introducing apply
Apply takes an hypothesis/lemma to conclude the goal.

 apply eq2.
Qed.

apply takes ?X to conclude a goal ?X (resolves foralls in the hypothesis).

1 subgoal
T : Type
x, y, z : T
eq1 : x = y
eq2 : y = z
______________________________________(1/1)
y = z

CS720: Lecture 5 ❧ Tiago Cogumbreiro 4 / 17

Applying conditional hypothesis
apply uses an hypothesis/theorem of format H1 -> ... -> Hn -> G, then
solves goal G, and
produces new goals H1, …, Hn.

Theorem eq_trans_2 : forall (T:Type) (x y z: T),
 (x = y -> y = z -> x = z) -> (* eq1 *)
 x = y -> (* eq2 *)
 y = z -> (* eq3 *)
 x = z.
Proof.
 intros T x y z eq1 eq2 eq3.
 apply eq1. (* x = y -> y = z -> x = z *)

(Done in class.)

CS720: Lecture 5 ❧ Tiago Cogumbreiro 5 / 17

Rewriting conditional hypothesis
apply uses an hypothesis/theorem of format H1 -> ... -> Hn -> G, then
solves goal G, and
produces new goals H1, …, Hn.

Theorem eq_trans_3 : forall (T:Type) (x y z: T),
 (x = y -> y = z -> x = z) -> (* eq1 *)
 x = y -> (* eq2 *)
 y = z -> (* eq3 *)
 x = z.
Proof.
 intros T x y z eq1 eq2 eq3.
 rewrite -> eq1. (* x = y -> y = z -> x = z *)

(Done in class.)

Notice that there are 2 conditions in eq1, so we get 3 goals to solve.

CS720: Lecture 5 ❧ Tiago Cogumbreiro 6 / 17

Recap
What's the difference between reflexivity, rewrite, and apply?

1. reflexivity solves goals that can be simplified as an equality like ?X = ?X
2. rewrite -> H takes an hypothesis H of type H1 -> ... -> Hn -> ?X = ?Y,
finds any sub-

term of the goal that matches ?X and replaces it by ?Y; it also produces goals H1,…, Hn.
rewrite does not care about what your goal is, just that the goal must contain a pattern ?
X.

3. apply H takes an hypothesis H of type H1 -> ... -> Hn -> G and solves goal G; it creates
goals H1, …, Hn.

CS720: Lecture 5 ❧ Tiago Cogumbreiro 7 / 17

Apply with/Rewrite with

Theorem eq_trans_nat : forall (x y z: nat),
 x = 1 ->
 x = y ->
 y = z ->
 z = 1.
Proof.
 intros x y z eq1 eq2 eq3.
 assert (eq4: x = z). {
 apply eq_trans.

outputs

Unable to find an instance for the variable y.
We can supply the missing arguments using the keyword with:
apply eq_trans with
(y:=y).

Can we solve the same theorem but use rewrite instead?

CS720: Lecture 5 ❧ Tiago Cogumbreiro 8 / 17

Symmetry
What about this exercise?

Theorem eq_trans_nat : forall (x y z: nat),
 x = 1 ->
 x = y ->
 y = z ->
 1 = z.
Proof.
 intros x y z eq1 eq2 eq3.
 assert (eq4: x = z). {

CS720: Lecture 5 ❧ Tiago Cogumbreiro 9 / 17

Symmetry
What about this exercise?

Theorem eq_trans_nat : forall (x y z: nat),
 x = 1 ->
 x = y ->
 y = z ->
 1 = z.
Proof.
 intros x y z eq1 eq2 eq3.
 assert (eq4: x = z). {

We can rewrite a goal ?X = ?Y into ?Y = ?X with symmetry.

CS720: Lecture 5 ❧ Tiago Cogumbreiro 9 / 17

Apply in example

Theorem silly3' : forall (n : nat),
 (Nat.eqb n 5 = true -> Nat.eqb (S (S n)) 7 = true) ->
 true = Nat.eqb n 5 ->
 true = Nat.eqb (S (S n)) 7.
Proof.
 intros n eq H.
 symmetry in H.
 apply eq in H.

(Done in class.)

CS720: Lecture 5 ❧ Tiago Cogumbreiro 10 / 17

Targetting hypothesis
rewrite -> H1 in H2
symmetry in H
apply H1 in H2

CS720: Lecture 5 ❧ Tiago Cogumbreiro 11 / 17

Forward vs backward reasoning
If we have a theorem L: C1 -> C2 -> G:

Goal takes last: apply to goal of type G and replaces G by C1 and C2
Assumption takes first: apply to hypothesis L to an hypothesis H: C1 and rewrites H:C2
-> G

Proof styles:

Forward reasoning: (apply in hypothesis) manipulate the hypothesis until we reach a
goal.
Standard in math textbooks.

Backward reasoning: (apply to goal) manipulate the goal until you reach a state where
you can apply the hypothesis.
Idiomatic in Coq.

CS720: Lecture 5 ❧ Tiago Cogumbreiro 12 / 17

Recall our encoding of natural numbers

Inductive nat : Type :=
 | O : nat
 | S : nat -> nat.

1. Does the equation S n = 0 hold? Why?

CS720: Lecture 5 ❧ Tiago Cogumbreiro 13 / 17

Recall our encoding of natural numbers

Inductive nat : Type :=
 | O : nat
 | S : nat -> nat.

1. Does the equation S n = 0 hold? Why?

No the constructors are implicitly disjoint.

2. If S n = S m, can we conclude something about
the relation between n and m?

CS720: Lecture 5 ❧ Tiago Cogumbreiro 13 / 17

Recall our encoding of natural numbers

Inductive nat : Type :=
 | O : nat
 | S : nat -> nat.

1. Does the equation S n = 0 hold? Why?

No the constructors are implicitly disjoint.

2. If S n = S m, can we conclude something about
the relation between n and m?

Yes, constructor S is injective. That is, if S n = S m, then n = m holds.

These two principles are available to all inductive definitions! How do we use these two
properties in a proof?

CS720: Lecture 5 ❧ Tiago Cogumbreiro 13 / 17

Proving that S is injective (1/2)

Theorem S_injective : forall (n m : nat),
 S n = S m ->
 n = m.
Proof.
 intros n m eq1.
 injection eq1 as eq2.

If we run injection, we get:

1 subgoal
n, m : nat
eq1 : S n = S m
eq2 : n = m
______________________________________(1/1)
m = m

CS720: Lecture 5 ❧ Tiago Cogumbreiro 14 / 17

Disjoint constructors

Theorem Nat.eqb_0_l : forall n,
 Nat.eqb 0 n = true -> n = 0.
Proof.
 intros n eq1.
 destruct n.

(To do in class.)

CS720: Lecture 5 ❧ Tiago Cogumbreiro 15 / 17

Principle of explosion

Ex falso (sequitur) quodlibet

discriminate concludes absurd hypothesis, where there is an equality between different
constructors. Use discriminate eq1 to conclude the proof below.

1 subgoal
n : nat
eq1 : false = true
______________________________________(1/1)
S n = 0

CS720: Lecture 5 ❧ Tiago Cogumbreiro 16 / 17

What we learned…

Tactics.v
Exploding principle

Forward and backward proof styles

New tactics: apply H and apply H in
Differences between apply and rewrite
New tactics: symmetry
New capability: rewrite ... in ...
New capability: simpl in ...
Constructors are disjoint and injective

CS720: Lecture 5 ❧ Tiago Cogumbreiro 17 / 17

