Logical Foundations of Computer Science

Lecture 4: Polymorphism

Tiago Cogumbreiro
We now have...

- A reasonable understanding of **proof techniques** (through tactics)
- A reasonable understanding of **functional programming** (today’s class mostly concludes this part)
- A minimal understanding of **logic programming** (next class)
Why are we learning Coq?

Logical Foundations of CS

This course of CS 720 is divided into two parts:

1. **The first part**: Coq as a workbench to express the logical foundation of CS
2. **The second part**: use this workbench to formalize a programming language

 I will give you other examples of how Coq is being used to formalize CS
List.v: data structures

A good chapter to exercise what you have learned so far.
Partial functions

How declare a function that is not defined for empty lists?

(* Pairs the head and the list *)

Fixpoint indexof n (l:natlist) :=
 match l with
 | [] => ???
 | h :: t =>
 match beq_nat h n with
 | true => 0
 | false => S (indexof t)
 end
 end.

Optional results

Inductive natoption : **Type** :=
| **Some** : nat -> natoption
| **None** : natoption.
How do we declare `indexOf` with optional types?

```coq
Fixpoint indexOf n (l:natlist) : natoption :=
```

CS720: Lecture 4 Tiago Cogumbleiro
How do we declare `indexOf` with optional types?

```coq
Fixpoint indexOf n (l:natlist) : natoption :=
match l with
| [] => None
| h :: t =>
  match beq_nat h n with
  | true => Some 0
  | false => S (indexOf n t)
end
end.
```
How do we declare `indexOf` with optional types?

```ocaml
Fixpoint indexOf n (l:natlist) : natoption :=
  match l with
  | [] => None
  | h :: t =>
    match beq_nat h n with
    | true => Some 0
    | false => S (indexOf n t)
  end
end.
```

The term "indexOf n t" has type "natoption" while it is expected to have type "nat"
Fixpoint indexof (n:nat) (l:natlist) : natoption :=
 match l with
 | [] => None
 | h :: t =>
 match beq_nat h n with
 | true => Some 0 (* element found at the head *)
 | false =>
 match indexof n t with (* check for error *
 | Some i => Some (S i) (* increment successful result *)
 | None => None (* propagate error *)
 end
 end
 end
end.
Poly.v: Polymorphism
Recall natlist from lecture 3

```python
Inductive natlist : Type :=
| nil : natlist
| cons : nat -> natlist -> natlist.
```

How do we write a list of bools?
Recall natlist from lecture 3

```
Inductive natlist : Type :=
| nil : natlist
| cons : nat -> natlist -> natlist.
```

How do we write a list of bools?

```
Inductive boollist : Type :=
| bool_nil : boollist
| bool_cons : nat -> boollist -> boollist.
```

How to migrate the code that targeted natlist to boollist? What is missing?
Polymorphism

Inductive types can accept (type) parameters (akin to Java/C# generics, and type variables in C++ templates).

Inductive list (X: Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.

What is the type of list? How do we print list?
Constructors of a polymorphic list

Check list.
yields
list
 : Type -> Type

What does Type -> Type mean? What about the following?

Search list.
Check list.
Check nil nat.
Check nil 1.
How do we encode the list $[1; 2]$?
How do we encode the list \([1; \ 2]\)?

\[
\text{cons \ nat} \ 1 \ (\text{cons \ nat} \ 2 \ (\text{nil \ nat}))
\]
Implement concatenation

Recall app:

```ocaml
Fixpoint app (l1 l2 : natlist) : natlist :=
    match l1 with
    | nil => l2
    | h :: t => h :: (app t l2)
end.
```

How do we make `app` polymorphic?
Implement concatenation

Recall app:

```
Fixpoint app (l1 l2 : natlist) : natlist :=
  match l1 with
  | nil => l2
  | h :: t => h :: (app t l2)
end.
```

How do we make `app` polymorphic?

```
Fixpoint app (X:Type) (l1 l2 : list X) : list X :=
  match l1 with
  | nil _ => l2
  | cons _ h t => cons X h (app X t l2)
end.
```

What is the type of `app`?
Implement concatenation

Recall app:

```ocaml
Fixpoint app (l1 l2 : natlist) : natlist :=
  match l1 with
  | nil => l2
  | h :: t => h :: (app t l2)
end.
```

How do we make `app` polymorphic?

```ocaml
Fixpoint app (X:Type) (l1 l2 : list X) : list X :=
  match l1 with
  | nil _ => l2
  | cons _ h t => cons X h (app X t l2)
end.
```

What is the type of `app`? `forall X : Type, list X -> list X -> list X`
Type inference (1/2)

Coq infer type information:

```coq
Fixpoint app X l1 l2 :=
  match l1 with
  | nil _ => l2
  | cons _ h t => cons X h (app X t l2)
end.

Check app.
```

outputs

```coq
app
  : forall X : Type, list X -> list X -> list X
```
Fixpoint app X (l1 l2:list X) :=
 match l1 with
 | nil _ => l2
 | cons _ h t => cons _ h (app _ t l2)
end.

Check app.

app
 : forall X : Type, list X -> list X -> list X

Let us look at the output of

Compute cons nat 1 (cons nat 2 (nil nat)).
Compute cons _ 1 (cons _ 2 (nil _)).
Type information redundancy

If Coq can infer the type, can we automate inference of type parameters?
Type information redundancy

If Coq can infer the type, can we automate inference of type parameters?

```coq
Fixpoint app {X:Type} (l1 l2:list X) : list X :=
  match l1 with
  | nil => l2
  | cons h t => cons h (app t l2)
end.
```

Alternatively, use `Arguments` after a definition:

```coq
Arguments nil {X}. (* braces should surround argument being inferred *)
Arguments cons {___} _ _ . (* you may omit the names of the arguments *)
Arguments app {X} l1 l2 . (* if the argument has a name, you *must* use the *sa
Try the following

**Inductive list (X:Type) : Type :=**
- nil : list X
- cons : X -> list X -> list X.

**Arguments** nil {__}.
**Arguments** cons {X} x y.

**Search** list.
**Check** list.
**Check** nil nat.
**Compute** nil nat.

What went wrong?
Try the following

Inductive list (X:Type) : Type :=
  | nil : list X
  | cons : X -> list X -> list X.

Arguments nil {__}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.

What went wrong? How do we supply type parameters when they are being automatically inferred?
Try the following

```
Inductive list (X:Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.
```

Arguments nil {__}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.

What went wrong? How do we supply type parameters when they are being automatically inferred?

Prefix a definition with @. Example: @nil nat.
Inductive natprod : Type :=
| pair : nat -> nat -> natprod.
Notation "( x , y )" := (pair x y).

How do we make pair polymorphic with implicit type arguments?
Recall natprod and fst (lec 3)

```ocaml
Inductive natprod : Type :=
| pair : nat -> nat -> natprod.
Notation "(x , y)" := (pair x y).
```

How do we make `pair` polymorphic with implicit type arguments?

```ocaml
Inductive prod (X Y : Type) : Type :=
| pair : X -> Y -> prod X Y.
Arguments pair {_} {__}.
Notation "(x , y)" := (pair x y).

Definition fst {X Y:Type} (p : prod X Y) : X :=
 match p with
 | pair x y => x
end.
```

Should we make the arguments of `prod` implicit? Why?
Recall natprod

**Theorem** surjective_pairing : forall (p : natprod), p = (fst p, snd p).

How does polymorphism affect our theorems? What about the proof?
Recall natprod

Theorem surjective_pairing : forall (p : natprod),
\ p = (fst p, snd p).

How does polymorphism affect our theorems? What about the proof?

Theorem surjective_pairing : forall (X Y : Type) (p : prod X Y),
\ p = (fst p, snd p).

Low impact in proofs (usually, intros).
Recall `indexof` (lecture 3)

How do we make this function polymorphic?

```ocaml
Fixpoint indexof (n:nat) (l:natlist) : natoption :=
 match l with
 | nil => None
 | h :: t =>
 match beq_nat h n with
 | true => Some 0 (* element found at the head *)
 | false =>
 match indexof n t with
 | Some i => Some (S i) (* increment successful result *)
 | None => None (* propagate error *)
 end
 end.
```
Higher-order functions


Fixpoint indexof \{X:Type\} (beq: X -> X -> bool) (v:X) (l:list X) : option nat
match l with
| nil => None
| cons h t =>
  match beq h v with
  | true => Some 0 (* element found at the head *)
  | false =>
    match indexof beq v t with (* check for error *)
    | Some i => Some (S i) (* increment successful result *)
    | None => None (* propagate error *)
  end
end.

(* A couple of unit tests to ensure indexof is behaving as expected. *)
Filter

Fixpoint filter {X:Type} (test: X->bool) (l:list X) : (list X) :=
match l with
| [] => []
| h :: t =>
  if test h
  then h :: filter test t
  else filter test t
end.

What is the type of this function?
Filter

Fixpoint filter {X: Type} (test: X->bool) (l:list X) : (list X) :=
match l with
| [] =>
  []
| h :: t =>
  if test h
  then h :: filter test t
  else filter test t
end.

What is the type of this function?

forall X: Type -> (X -> bool) -> list X -> list -> X

What does this function do?
Filter

Fixpoint filter \{X:\text{Type}\} (test: X->\text{bool}) (l:list X) : (list X) :=
match l with
| [] =>
  []
| h :: t =>
  if test h
  then h :: filter test t
  else filter test t
end.

What is the type of this function?

\text{forall } X: \text{Type} \to (X \to \text{bool}) \to \text{list } X \to \text{list } \to X

What does this function do?

\textit{Retains all elements that succeed test.}
How do we use filter?

What if we want to retain 1 and 3? How do we do this?

```python
filter ??? [10; 1; 3; 4]
```
How do we use filter?

What if we want to retain 1 and 3? How do we do this?

filter ??? [10; 1; 3; 4]

**Answer 1:**

```coq
definition keep_1_3 (n:nat) : bool :=
 match n with
 | 1 => true
 | 3 => true
 | _ => false
 end.

(* Assert that the output makes sense: *)
goal filter keep_1_3 [10; 1; 3; 4] = [1; 3].
proof.
 reflexivity.
Qed.
```
Revisit \texttt{keep\_1\_3}

\begin{verbatim}
\textbf{Definition} \texttt{keep\_1\_3 (n:nat) : bool :=}
\begin{verbatim}
match n with
| 1 => true
| 3 => true
| _ => false
end.
\end{verbatim}
\end{verbatim}

Can we rewrite \texttt{keep\_1\_3} by only using \texttt{beq\_nat} and \texttt{orb}?
Revisit \texttt{keep\_1\_3}

\begin{verbatim}
Definition keep_1_3 (n:nat) : bool :=
  match n with
  | 1 => true
  | 3 => true
  | _ => false
end.
\end{verbatim}

Can we rewrite \texttt{keep\_1\_3} by only using \texttt{beq\_nat} and \texttt{orb}?

\begin{verbatim}
Open Scope bool. (* ensure the \texttt{||} operator is loaded *)
Definition keep_1_3_v2 (n:nat) : bool :=
  beq_nat 1 n || beq_nat 3 n.
\end{verbatim}
Anonymous functions

Are we ever going to use `keep_1_3` again?

**Definition** \( \text{keep}_1_3 \text{\_v2} (n: \text{nat}) : \text{bool} := \text{beq\_nat} \ 1 \ n \ || \ \text{beq\_nat} \ 3 \ n. \)

**Compute** \( \text{filter} \ \text{keep}_1_3 \text{\_v2} \ [10; \ 1; \ 3; \ 4]. \)
Anonymous functions

Are we ever going to use `keep_1_3` again?

**Definition** `keep_1_3_v2 (n:nat) : bool := beq_nat 1 n || beq_nat 3 n`.

**Compute** `filter keep_1_3_v2 [10; 1; 3; 4]`.

*If you are not, consider using anonymous functions:*

**Goal** `filter (fun (n:nat) : nat => beq_nat 1 n || beq_nat 3 n) [10; 1; 3; 4]` =

**Proof.**
- `reflexivity`.
- `Qed`.

Anonymous functions are helpful as one-shoot usages (like anonymous classes in Java and C#).
Let us retain only 3's

With an anonymous function:

```coq
Goal filter (fun n => match n with | 3 => true | _ => false) [10; 1; 3; 4] = [
 Proof.
 reflexivity.
Qed.
```

What about `Check (beq_nat 3)`? Coq is an expression-based language, so `beq_nat 3` is an expression, as is `beq_nat` and `beq_nat 3 10`. What is the type of each expression?
Currying

Let us retain only 3's

With an anonymous function:

```coq
Goal filter (fun n => match n with | 3 => true | _ => false) [10; 1; 3; 4] = []
Proof.
 reflexivity.
Qed.
```

What about `Check (beq_nat 3)`? Coq is an expression-based language, so `beq_nat 3` is an expression, as is `beq_nat` and `beq_nat 3 10`. What is the type of each expression?

```coq
Goal filter (beq_nat 3) [10; 1; 3; 4] = [1; 3]. (* filter all elements that are 3 *)
Proof.
 reflexivity.
Qed.
```