CS720

Logical Foundations of Computer Science

Lecture 3: induction

Tiago Cogumbreiro
Recap

- We are currently learning the Logical Foundations (volume 1 of the SF book)
- We are learning a **programming language** that allows us formalize programming languages

What do we mean by formalizing programming languages?
Recap

- We are currently learning the Logical Foundations (volume 1 of the SF book)
- We are learning a **programming language** that allows us formalize programming languages

What do we mean by formalizing programming languages?

1. A way to describe the abstract syntax (do we know how to do this?)
2. A way to describe how language executes (do we know how to do this?)
3. A way to describe properties of the language (do we know how to do this?)
Today we will learn...

- about proofs with recursive data structures
- how to use induction in Coq
- how to infer the induction principle
- about the difference between informal and mechanized proofs
Compile `Basic.v`

CoqIDE:
- Open `Basics.v`. In the "Compile" menu, click on "Compile Buffer".

Console:
- `make Basics.vo`
Example: prove this lemma (1/4)

\textbf{Theorem} \plus_n_0 : \text{forall } n : \text{nat},
\begin{align*}
n & = n + 0.
\end{align*}

\textbf{Proof.}
Example: prove this lemma (1/4)

Theorem plus_n_0 : forall n:nat,
 n = n + 0.
Proof.

Tactic simpl does nothing.
Example: prove this lemma (1/4)

Theorem `plus_n_0 : forall n:nat, n = n + 0`.

Proof.

Tactic `simpl` does nothing. Tactic `reflexivity` fails.
Example: prove this lemma (1/4)

Theorem \(\text{plus}_n\,0 : \forall n: \text{nat}, \)
\[n = n + 0. \]

Proof.

Tactic `simpl` does nothing. Tactic `reflexivity` fails. Apply `destruct n`.

2 subgoals

(1/2)

\[0 = 0 + 0 \]

(2/2)

\[S\,n = S\,n + 0 \]
Example: prove this lemma (2/4)

After proving the first, we get

1 subgoal
n : nat
___________________________(1/1)
S n = S n + 0

Applying simplify yields:

1 subgoal
n : nat
___________________________(1/1)
S n = S (n + 0)
Example: prove this lemma (2/4)

After proving the first, we get

1 subgoal
n : nat
______________________________________(1/1)
S n = S n + 0

Applying `simplify` yields:

1 subgoal
n : nat
______________________________________(1/1)
S n = S (n + 0)

Tactic `reflexivity` fails and there is nothing to rewrite.
We need an induction principle of \texttt{nat}

For some property P we want to prove.

- Show that $P(0)$ holds.
- Given the induction hypothesis $P(n)$, show that $P(n + 1)$ holds.

Conclude that $P(n)$ holds for all n.
Example: prove this lemma (3/4)

Apply induction \(n \).

2 subgoals

\[0 = 0 + 0 \]

\[S \ n = S \ n + 0 \]

How do we prove the first goal?
Compare \texttt{induction} \(n \) with \texttt{destruct} \(n \).
Example: prove this lemma (4/4)

After proving the first goal we get
1 subgoal
n : nat
IHn : n = n + 0

S n = S n + 0

applying simpl yields
1 subgoal
n : nat
IHn : n = n + 0

S n = S (n + 0)

How do we conclude this proof?
Intermediary results

Theorem mult_0_plus' : forall n m : nat, (0 + n) * m = n * m.
Proof.
 intros n m.
 assert (H: 0 + n = n). { reflexivity. }
 rewrite → H.
 reflexivity. Qed.

- H is a variable name, you can pick whichever you like.
- Your intermediary result will capture all of the existing hypothesis.
- It may include forall.
- We use braces { and } to prove a sub-goal.
Formal versus informal proofs

- The objective of a mechanical (formal) proofs is to convince the proof checker.
- The objective of an informal proof is to convince (logically) the reader.
- Ltac proofs are imperative, assume the reader can step through
- In informal proofs we want to help the reader reconstruct the proof state.
An example of an Ltac proof

Theorem plus_assoc : forall n m p : nat,
\(n + (m + p) = (n + m) + p \).

Proof.

1. intros n m p. induction n as [| n' IHn'].
2. reflexivity.
3. simpl. rewrite \(\rightarrow \) IHn'. reflexivity. Qed.

1. The proof follows by induction on \(n \).
An example of an Ltac proof

Theorem plus_assoc : \forall n m p : nat,
\[n + (m + p) = (n + m) + p. \]

Proof.
- intros n m p. induction n as [| n' IHn'].
- reflexivity.
- simpl. rewrite \rightarrow IHn'. reflexivity. Qed.

1. The proof follows by induction on \(n \).
2. In the base case, we have that \(n = 0 \). We need to show \(0 + (m + p) = 0 + m + p \), which follows by the definition of \(+ \).
An example of an \texttt{ltac} proof

\begin{itemize}
 \item \textbf{Theorem} \texttt{plus_assoc} : \texttt{forall} n m p : nat, \n n + (m + p) = (n + m) + p.
 \item \textbf{Proof}.
 \begin{itemize}
 \item \texttt{intros} n m p. \texttt{induction} n as [_ n' IHn'].
 \item \texttt{- reflexivity.}
 \item \texttt{- simpl. rewrite \rightarrow IHn'. reflexivity. Qed.}
 \end{itemize}
\end{itemize}

1. The proof follows by induction on \textit{n}.
2. In the base case, we have that \textit{n} = 0. We need to show \textit{0 + (m + p) = 0 + m + p},
 which follows by the definition of \texttt{+}.
3. In the inductive case, we have \textit{n} = \texttt{S n'} and must show \texttt{S n'} + (m + p) = \texttt{S n'} + m + p.
 From the definition of \texttt{+} it follows that \texttt{S (n' + (m + p)) = S (n' + m + p)}.
 The proof concludes by applying the induction hypothesis \texttt{n' + (m + p) = n' + m + p}.

How do we define a data structure that holds two nats?
A pair of nats

```
Inductive natprod : Type :=
| pair : nat → nat → natprod.

Notation "( x , y )" := (pair x y).
```

Explicit vs implicit: be cautious when declaring notations, they make your code harder to understand.
How do we read the contents of a pair?
Accessors of a pair
Accessors of a pair

Definition \(\text{fst} (p : \text{natprod}) : \text{nat} := \)
Accessors of a pair

Definition \(\text{fst} \ (p : \text{natprod}) : \text{nat} := \)
\[
\text{match } p \ \text{with}\\
\ | \ \text{pair} \ x \ y \Rightarrow x\\n\text{end.}
\]

Definition \(\text{snd} \ (p : \text{natprod}) : \text{nat} := \)
\[
\text{match } p \ \text{with}\\
\ | \ (x, y) \Rightarrow y (* \text{using notations in a pattern to be matched} *)\\n\text{end.}
\]
How do we prove the correctness of our accessors?

(What do we expect fst/snd to do?)
Proving the correctness of our accessors:

Theorem surjective_pairing :\(\forall (p : \text{natprod}), p = (\text{fst } p, \text{snd } p)\).

Proof.
 intros p.

1 subgoal
p : \text{natprod}
--(1/1)
p = (\text{fst } p, \text{snd } p)

- Does simpl work? Does reflexivity work? Does destruct work? What about induction?
How do we define a list of nats?
A list of nats

Inductive natlist : Type :=
| nil : natlist
| cons : nat \rightarrow natlist \rightarrow natlist.

(* You don't need to learn notations, just be aware of its existence:*)

Notation "x :: 1" := (cons x 1) (at level 60, right associativity).
Notation "[]" := nil.
Notation "[x ; .. ; y]" := (cons x .. (cons y nil) ..).

Compute cons 1 (cons 2 (cons 3 nil)).

outputs:
= [1; 2; 3] : list nat
How do we concatenate two lists?
Concatenating two lists

Fixpoint app (l1 l2 : natlist) : natlist :=
match l1 with
| nil => l2
| h :: t => h :: (app t l2)
end.

Notation "x ++ y" := (app x y) (right associativity, at level 60).
Proving results on list concatenation

Theorem nil_app_l : forall l:natlist,
 [] ++ l = l.
Proof.
 intros l.

Can we prove this with \textit{reflexivity}? Why?
Theorem nil_app_l : forall l:natlist,
 [] ++ l = l.
Proof.
 intros 1.

Can we prove this with reflexivity? Why?

 reflexivity.
Qed.
Nil is a neutral element wrt app

Theorem nil_app_l : forall l:natlist, l ++ [] = l.

Proof.
intros l.

Can we prove this with **reflexivity**? Why?
Nil is a neutral element wrt app

\[\text{Theorem } \text{nil_app_l} : \forall l : \text{natlist}, \]
\[l ++ [] = l.\]

\[\text{Proof.}\]
\[\text{intros } l.\]

| Can we prove this with \textit{reflexivity}? Why? |

In environment
\[l : \text{natlist}\]
Unable to \textit{unify} "l" with "l ++ []".

| How can we prove this result? |
We need an induction principle of \texttt{natlist}.

For some property \(P \) we want to prove.

- Show that \(P(\texttt{[]} \) holds.
- Given the induction hypothesis \(P(l) \) and some number \(n \), show that \(P(n :: l) \) holds.

Conclude that \(P(l) \) holds for all \(l \).

How do we know this principle? Hint: compare \texttt{natlist} with \texttt{nat}.
Comparing nats with natlists

Inductive natlist : Type :=
| O : natlist | A : T
| S : nat → nat. | B : T → T

1. ⊢ P(A)
2. t : T, P(t) ⊢ P(B t)

Inductive natlist : Type :=
| nil : natlist | A : T
| cons : nat → natlist → natlist. | B : X → T → T

1. ⊢ P(A)
2. x : X, t : T, P(t) ⊢ P(B t)
How do we know the induction principle?

Use search

```
Search natlist.
```

which outputs

```
nil: natlist
cons: nat -> natlist -> natlist
(* trimmed output *)
```

```
natlist_ind:
  forall P : natlist -> Prop,
P [] ->
  (forall (n : nat) (l : natlist), P l -> P (n::l)) -> forall n : natlist, P n
```
Nil is neutral on the right (1/2)

Theorem nil_app_r : forall l:natlist,
 l ++ [] = l.
Proof.
 intros l.
 induction l.
 - reflexivity.
 -

yields

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l
----------------------------------(1/1)
(n :: l) ++ [] = n :: l
Nil is neutral on the right (2/2)

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l

--(1/1)
(n :: l) ++ [] = n :: l
Nil is neutral on the right (2/2)

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l
______________________________________(1/1)
(n :: l) ++ [] = n :: l

simpl. (* app (n::1) [] = n :: (app l []) *)
rewrite → IHl. (* n :: (app l []) = n :: l *)
reflexivity. (* conclude *)

Can we apply rewrite directly without simplifying?
Hint: before and after stepping through a tactic show/hide notations.
How do we state a theorem that leads to the same proof state (without Ltac)?
How do we signal failure in a functional language?
Partial functions

How declare a function that is not defined for empty lists?

(* Pairs the head and the list *)
Fixpoint indexof n (l:natlist) :=
 match l with
 | [] ⇒ ???
 | h :: t ⇒
 match beq_nat h n with
 | true ⇒ 0
 | false ⇒ S (indexof t)
 end
 end.

Optional results

Inductive natoption : Type :=
| Some : nat → natoption
| None : natoption.
How do we declare `indexOf` with optional types?

```ocaml
Fixpoint indexOf n (l:natlist) : natoption :=
```
How do we declare \texttt{indexof} with optional types?

\begin{verbatim}
Fixpoint indexof n (l:natlist) : natoption :=
 match l with
 | [] => None
 | h :: t =>
 match beq_nat h n with
 | true => Some 0
 | false => S (indexof n t)
 end
 end.
\end{verbatim}
How do we declare indexof with optional types?

```ocaml
Fixpoint indexof n (l:natlist) : natoption :=
  match l with
  | [] => None
  | h :: t =>
    match beq_nat h n with
    | true => Some 0
    | false => S (indexof n t)
    end
  end.
```

The term "indexof n t" has type "natoption" while it is expected to have type "nat".
How do we declare `indexOf` with optional types?

```coq
Fixpoint indexOf (n:nat) (l:natlist) : natoption :=
  match l with
  | [] ⇒ None
  | h :: t ⇒
    match beq_nat h n with
    | true ⇒ Some 0 (* element found at the head *)
    | false ⇒
      match indexOf n t with (* check for error *)
      | Some i ⇒ Some (S i) (* increment successful result *)
      | None ⇒ None (* propagate error *)
    end
  end.
```

CS720: Lecture 3 Tiago Cogumbreiro
Summary

- implemented containers: pair, list, option
- partial functions via option types
- reviewed case analysis, proof by induction
- used Search to browse definitions
Next class: read Poly.v
Ltac vocabulary

- simpl
- reflexivity
- intros
- rewrite
- destruct
- induction
- assert

(Nothing new from Lesson 2.)