Logical Foundations of Computer Science

Lecture 2: A proof primer

Tiago Cogumbreiro
Programers program every day
Programers program every day

- There are no tests, so no way to invest time later.
- You have a weekly load of work, don't let it build up.
- To master Coq, you must practice every day.
- Once you master Coq, the course is accessible.
On studying effectively for this course

• **Read the chapter before the class:**
 This way we can direct the class to specific details of a chapter, rather than a more topical end-to-end description of the chapter.

• **Attempt to write the exercises before the class:**
 We can cover certain details of a difficult exercise.

• **Use the office hours and use Discord:** Coq is an unusual programming language, so you will get stuck simply because you are not familiar with the IDE or with a quirk of the language.
On studying effectively for this course

Setup

1. Have CoqIDE available in a computer you have access to
2. Have \texttt{lf.zip} extracted in a directory \textit{you alone} have access to

Homework structure

1. Open the homework file with CoqIDE: that file is the chapter we are covering
2. Read the chapter and fill in any exercise
3. To complete a homework assignment ensure you have 0 occurrences of \texttt{Admitted} (confirm this with Gradescope)
4. Make sure you solve all manually-graded exercises (Gradescope won't notify you of this)
Compound types
Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

```
Inductive rgb : Type :=
  | red  : rgb
  | green : rgb
  | blue : rgb.
```
Compound types

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

```plaintext
Inductive rgb : Type :=
  red : rgb
  green : rgb
  blue : rgb.
```

A **compound type** builds on other existing types. Their constructors accept **multiple parameters**, like functions do.

```plaintext
Inductive color : Type :=
  black : color
  white : color
  primary : rgb → color.
```
Manipulating compound values

Definition monochrome (c : color) : bool :=

```plaintext
match c with
| black  ⇒ true
| white  ⇒ true
| primary p ⇒ false
end.
```
Manipulating compound values

Definition monochrome (c : color) : bool :=
 match c with
 | black ⇒ true
 | white ⇒ true
 | primary p ⇒ false
end.

We can use the place-holder keyword _ to mean a variable we do not mean to use.

Definition monochrome (c : color) : bool :=
 match c with
 | black ⇒ true
 | white ⇒ true
 | primary _ ⇒ false
end.
Compound types

Allows you to: type-tag, fixed-number of values
Inductive types
Inductive types

How do we describe arbitrarily large/composed values?
Inductive types

How do we describe arbitrarily large/composed values?
Here's the definition of natural numbers, as found in the standard library:

```
Inductive nat : Type :=
    | O : nat
    | S : nat → nat.
```

- O is a constructor of type nat.
 Think of the numeral 0.
- If n is an expression of type nat, then $S\ n$ is also an expression of type nat.
 Think of expression $n + 1$.

What's the difference between nat and $uint32$?
Example

Let us implement `is_zero`
Recursive functions
Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition. Let us implement addition.
Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition. Let us implement addition.

```
Fixpoint plus (n : nat) (m : nat) : nat :=
  match n with
  | 0 => m
  | S n' => S (plus n' m)
  end.
```

Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope.

Using Definition instead of Fixpoint will throw the following error:
The reference eqb was not found in the current environment.

Not all recursive functions can be described. Coq has to understand that one value is getting "smaller."

All functions must be total: all inputs must produce one output. **All functions must terminate.**
Back to proofs
An example

Example plus_0_4 : 0 + 5 = 4.
Proof.

How do we prove this?
An example

Example plus_0_4 : 0 + 5 = 4.
Proof.

How do we prove this?

- We cannot. This is unprovable, which means we are not able to write a script that proves this statement.
- Coq will **not** tell you that a statement is false.
Another example

Example plus_0_5 : 0 + 5 = 5.

Proof.

How do we prove this? We "know" it is true, but why do we know it is true?
Another example

Example plus_0_5 : 0 + 5 = 5.

Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

1. We can think about the definition of plus.
2. We can brute-force and try the tactics we know (simpl, reflexivity)
Another example

Example $\text{plus}_0 6 : 0 + 6 = 6$.

Proof.

How do we prove this?
Another example

Example plus_0_6 : 0 + 6 = 6.

Proof.

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural n!
Ranging over all elements of a set

Theorem plus_0_n : **forall** n : nat, 0 + n = n.

Proof.

```coq
intros n.
simpl.
reflexivity.
Qed.
```

- Theorem is just an **alias for Example and Definition.**
- **forall** introduces a variable of a given type, eg nat; the logical statement must be true for all elements of the type of that variable.
- Tactic **intros** is the dual of **forall** in the tactics language.
Forall example

Given

1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

and applying intros n yields

1 subgoal
n : nat
___________________________(1/1)
0 + n = n

The n is a variable name of your choosing.

Try replacing intros n by intros m.
simpl and reflexivity work under forall

1 subgoal

forall n : nat, 0 + n = n

Applying simpl yields

1 subgoal

forall n : nat, n = n

Applying reflexivity yields

No more subgoals.
reflexivity also simplifies terms

1 subgoal
__________________________(1/1)
forall n : nat, 0 + n = n

Applying reflexivity yields
No more subgoals.
Summary

- `simpl` and `reflexivity` work under `forall` binders
- `simpl` only unfolds definitions of the **goal**; does not conclude a proof
- `reflexivity` concludes proofs and simplifies
Multiple pre-conditions in a lemma

Theorem plus_id_example : \(\forall n \ m : \text{nat}, \)
\[
 n = m \ \rightarrow \\
 n + n = m + m.
\]

Proof.
- intros \(n \).
- intros \(m \).
Multiple pre-conditions in a lemma

Theorem plus_id_example : forall n m : nat,
 n = m ->
 n + n = m + m.

Proof.
 intros n.
 intros m.

yields

1 subgoal
n, m : nat
---(1/1)
n = m -> n + n = m + m
Multiple pre-conditions in a lemma

applying intros H yields
1 subgoal
n, m : nat
H : n = m

--(1/1)
n + n = m + m

How do we use H? **New tactic:** use rewrite → H (lhs becomes rhs)

1 subgoal
n, m : nat
H : n = m

--(1/1)
m + m = m + m

How do we conclude? Can you write a **Theorem** that replicates the proof-state above?
Computing equality of naturals
Computing equality of naturals

Fixpoint eqb (n1:nat) (n2:nat) : bool :=
 match n1 with
 | 0 =>
 match n2 with
 | 0 => true
 | _ => false
 end
 | S n1' =>
 match n2 with
 | 0 => false
 | S n2' => eqb n1 n2
 end
 end.

CS720: Lecture 2 Tiago Cogumbreiro
How do we prove this example?

Require Import Nat.

Theorem plus_1_neq_0_firsttry : forall n : nat,
 eqb (plus n 1) 0 = false.

Proof.
 intros n.

yields

1 subgoal
n : nat

--------------------------(1/1)
eqb (plus n 1) 0 = false
How do we prove this example?

Require Import Nat.

Theorem plus_1_neq_0_firsttry : forall n : nat,
 eqb (plus n 1) 0 = false.

Proof.
 intros n.

 yields

 1 subgoal
 n : nat
 __(1/1)
 eqb (plus n 1) 0 = false

Apply simpl and it does nothing. Apply reflexivity:

 In environment
 n : nat
 Unable to unify "false" with "eqb (plus n 1) 0".
Why does simpl fail?

Q: Why can't eqb (n + 1) be simplified? (Hint: inspect its definition.)
Q: Why can't `eqb (n + 1)` be simplified? (Hint: inspect its definition.)
A: `eqb` expects the first parameter to be either 0 or `S ?n`, but we have an expression `n + 1` (or `plus n 1`).
Why does simpl fail?

Q: Why can't `eqb (n + 1)` be simplified? (Hint: inspect its definition.)
A: `eqb` expects the first parameter to be either `0` or `S ?n`, but we have an expression `n + 1` (or `plus n 1`).

Q: Can we simplify `plus n 1`?
Why does simpl fail?

Q: Why can't \(\text{eqb} \ (n + 1) \) be simplified? (Hint: inspect its definition.)

A: \(\text{eqb} \) expects the first parameter to be either 0 or \(S \ ?n \), but we have an expression \(n + 1 \) (or \(\text{plus} \ n \ 1 \)).

Q: Can we simplify \(\text{plus} \ n \ 1 \)?

A: No because \(\text{plus} \) decreases on the first parameter, not on the second!
Case analysis (1/3)

Let us try to inspect value n. Use: destruct n as [\[n\]].

2 subgoals
--(1/2)
eqb (0 + 1) 0 = false
______________________________________(2/2)
eqb (\$ n' + 1) 0 = false

Now we have two goals to prove!
1 subgoal
--(1/1)
eqb (0 + 1) 0 = false

How do we prove this?
Case analysis (2/3)

After we conclude the first goal we get:
This subproof is complete, but there are some unfocused goals:

\[
\text{eqb} \ (S \ n' + 1) \ 0 = \text{false}
\]

Use another bullet (\(-\)).

\[
\begin{array}{l}
1 \ \text{subgoal} \\
\text{n'} : \text{nat} \\
\text{eqb} \ (S \ n' + 1) \ 0 = \text{false}
\end{array}
\]

And prove the goal above as well.
Why can this goal be simplified to \texttt{false = false}?

\begin{verbatim}

(1/1)

\verb|eqb (S n' + 1) 0 = false|
\end{verbatim}
Why can this goal be simplified to \(\text{false} = \text{false} \)?

\[
eqb (S \ n' + 1) \ 0 = \text{false}
\]

1. because \(S \ n' + 1 = S \ (n' + 1) \) (follows the second branch of \text{plus})
2. because \(eqb (S \ ...) \ 0 = \text{false} \) (follows the second branch of \text{eqb})