

Logical Foundations of Computer Science

Lecture 2: A proof primer

Tiago Cogumbreiro

Programers program every day

Programers program every day

- There are no tests, so no way to invest time later.
- You have a **weekly** load of work, don't let it build up.
- To master Coq, you must practice every day.
- Once you master Coq, the course is accessible.

On studying effectively for this course

• Read the chapter before the class:

This way we can direct the class to specific details of a chapter, rather than a more topical end-to-end description of the chapter.

- Attempt to write the exercises before the class: We can cover certain details of a difficult exercise.
- Use the office hours and use Discord: Coq is a unusual programming language, so you will get stuck simply because you are not familiar with the IDE or with a quirk of the language.

On studying effectively for this course Setup

1. Have CoqIDE available in a computer you have access to

2. Have <u>lf.zip</u> extracted in a directory **you alone** have access to

Homework structure

- 1. Open the homework file with CoqIDE: that file is the chapter we are covering
- 2. Read the chapter and fill in any exercise
- 3. To complete a homework assignment ensure you have 0 occurrences of Admitted (confirm this with Gradescope)
- 4. Make sure you solve all manually-graded exercises (Gradescope won't notify you of this)

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

```
Inductive rgb : Type :=
    | red : rgb
    | green : rgb
    | blue : rgb.
```


Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

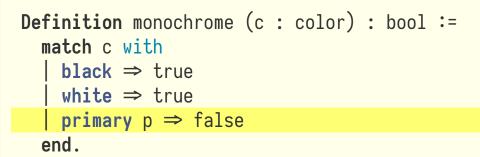
A **compound type** builds on other existing types. Their constructors accept *multiple parameters*, like functions do.

```
Inductive color : Type :=
    | black : color
    white : color
    primary : rgb → color.
```

Manipulating compound values

```
Definition monochrome (c : color) : bool :=
  match c with
  | black ⇒ true
  | white ⇒ true
  | primary p ⇒ false
  end.
```


Manipulating compound values



We can use the place-holder keyword _ to mean a variable we do not mean to use.

```
Definition monochrome (c : color) : bool :=
  match c with
    | black ⇒ true
    | white ⇒ true
    | primary _ ⇒ false
    end.
```


Allows you to: type-tag, fixed-number of values

Inductive types

Inductive types

How do we describe arbitrarily large/composed values?

Inductive types

How do we describe arbitrarily large/composed values? Here's the definition of natural numbers, as found in the standard library:

```
Inductive nat : Type :=
  | 0 : nat
  | S : nat → nat.
```

- 0 is a constructor of type nat.
 Think of the numeral 0.
- If n is an expression of type nat, then S n is also an expression of type nat.
 Think of expression n + 1.

What's the difference between nat and uint32?

Let us implement is_zero

Recursive functions

Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition. Let us implement addition.

Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition. Let us implement addition.

Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope.

Using Definition instead of Fixpoint will throw the following error:

The reference eqb was not found in the current environment.

Not all recursive functions can be described. Coq has to understand that one value is getting "smaller."

All functions must be total: all inputs must produce one output. All functions must terminate.

Back to proofs

An example

Example plus_0_4 : 0 + 5 = 4.
Proof.

How do we prove this?

An example

Example plus_0_4 : 0 + 5 = 4.
Proof.

How do we prove this?

- We cannot. This is unprovable, which means we are not able to write a script that proves this statement.
- Coq will **not** tell you that a statement is false.

Example plus_0_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

Example plus_0_5 : 0 + 5 = 5. **Proof**.

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

1. We can think about the definition of plus.

2. We can brute-force and try the tactics we know (simpl, reflexivity)

Example plus_0_6 : 0 + 6 = 6. **Proof**.

How do we prove this?

Example plus_0_6 : 0 + 6 = 6. **Proof**.

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural n!

Ranging over all elements of a set


```
Theorem plus_0_n : forall n : nat, 0 + n = n.
Proof.
intros n.
simpl.
reflexivity.
Qed.
```

- Theorem is just an alias for Example and Definition.
- forall introduces a variable of a given type, eg nat; the logical statement must be true for all elements of the type of that variable.
- Tactic intros is the dual of forall in the tactics language

Forall example

Given

1 subgoal

.....(1/1)

forall n : nat, 0 + n = n

and applying intros n yields

1 subgoal n : nat _____(1/1) 0 + n = n

The n is a variable name of your choosing.

Try replacing intros n by intros m.

simpl and reflexivity work under forall

1 subgoal

-----(1/1)
forall n : nat, 0 + n = n

Applying simpl yields

1 subgoal

```
forall n : nat, n = n
Applying reflexivity yields
No more subgoals.
```

reflexivity also simplifies terms

1 subgoal

forall n : nat, 0 + n = n

Applying reflexivity yields

No more subgoals.

Summary

- simpl and reflexivity work under forall binders
- simpl only unfolds definitions of the goal; does not conclude a proof
- reflexivity concludes proofs and simplifies

Multiple pre-conditions in a lemma

Theorem plus_id_example : forall n m:nat, n = m → n + n = m + m. Proof. intros n. intros m.

CS720: Lecture 2 🕷 Tiago Cogumbreiro

Multiple pre-conditions in a lemma

Theorem plus_id_example : **forall** n m:nat, $n = m \rightarrow$ n + n = m + m. Proof. intros n. intros m. yields 1 subgoal n, m : nat(1/1) $n = m \rightarrow n + n = m + m$

Multiple pre-conditions in a lemma

applying intros Hyields

1 subgoal n, m : nat H : n = m

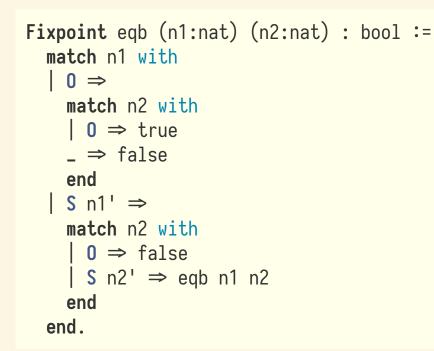
n + n = m + m How do we use H? **New tactic:** use rewrite \rightarrow H (lhs becomes rhs)

1 subgoal n, m : nat H : n = m _____(1/1) m + m = m + m

How do we conclude? Can you write a **Theorem** that replicates the proof-state above?

Computing equality of naturals

Computing equality of naturals



How do we prove this example?

```
Require Import Nat.
Theorem plus_1_neq_0_firsttry : forall n : nat,
    eqb (plus n 1) 0 = false.
Proof.
    intros n.

yields
1 subgoal
n : nat
______(1/1)
eqb (plus n 1) 0 = false
```


How do we prove this example?

```
Require Import Nat.
 Theorem plus_1_neq_0_firsttry : forall n : nat,
  eqb (plus n 1) 0 = false.
 Proof.
  intros n.
yields
 1 subgoal
n : nat
        _____(1/1)
eqb (plus n 1) 0 = false
Apply simpl and it does nothing. Apply reflexivity:
 In environment
```

```
n : nat
Unable to unify "false" with "eqb (plus n 1) 0".
```


Q: Why can't eqb (n + 1) be simplified? (Hint: inspect its definition.)

Q: Why can't eqb (n + 1) be simplified? (Hint: inspect its definition.)
A: eqb expects the first parameter to be either 0 or S ?n, but we have an expression n + 1 (or plus n 1).

Q: Why can't eqb (n + 1) be simplified? (Hint: inspect its definition.)

A: eqb expects the first parameter to be either 0 or S ?n, but we have an expression n + 1 (or plus n 1).

Q: Can we simplify plus n 1?

Q: Why can't eqb (n + 1) be simplified? (Hint: inspect its definition.)

A: eqb expects the first parameter to be either 0 or S ?n, but we have an expression n + 1 (or plus n 1).

Q: Can we simplify plus n 1?

A: No because plus decreases on the first parameter, not on the second!

Case analysis (1/3)

Let us try to inspect value n. Use: destruct n as [| n'].

2 subgoals

_____(1/2)
eqb (0 + 1) 0 = false
_____(2/2)
eqb (S n' + 1) 0 = false
Now we have two goals to prove!
1 subgoal

eqb (0 + 1) 0 = false How do we prove this?

Case analysis (2/3)

After we conclude the first goal we get: This subproof is complete, but there are some unfocused goals:

```
----(1/1)
eqb (S n' + 1) 0 = false
Use another bullet (-).
1 subgoal
n' : nat
-----(1/1)
eqb (S n' + 1) 0 = false
```

```
And prove the goal above as well.
```


Why can this goal be simplified to false = false?

_____(1/1) eqb (S n' + 1) 0 = false

Why can this goal be simplified to false = false?

-----(1/1) eqb (S n' + 1) 0 = false

1. because S n' + 1 = S (n' + 1) (follows the second branch of plus) 2. because eqb (S ...) 0 = false (follows the second branch of eqb)