
CS720

Logical Foundations of Computer Science

Lecture 2: A proof primer

Tiago Cogumbreiro

CS720: Lecture 2 ❧ Tiago Cogumbreiro 1 / 32

Programers program every day

2 / 32

Programers program every day
There are no tests, so no way to invest time later.

You have a weekly load of work, don't let it build up.

To master Coq, you must practice every day.

Once you master Coq, the course is accessible.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 3 / 32

On studying effectively for this course
Read the chapter before the class:
This way we can direct the class to speci�c details of a chapter,
rather than a more topical end-to-end description of the chapter.

Attempt to write the exercises before the class:
We can cover certain details of a dif�cult exercise.

Use the of�ce hours and use Discord: Coq is a unusual programming language, so you
will get stuck simply because you are not familiar with the IDE or with a quirk of the
language.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 4 / 32

On studying effectively for this course

Setup

1. Have CoqIDE available in a computer you have access to

2. Have lf.zip extracted in a directory you alone have access to

Homework structure

1. Open the homework �le with CoqIDE: that �le is the chapter we are covering

2. Read the chapter and �ll in any exercise

3. To complete a homework assignment ensure you have 0 occurrences of Admitted
(con�rm this with Gradescope)

4. Make sure you solve all manually-graded exercises (Gradescope won't notify you of this)

CS720: Lecture 2 ❧ Tiago Cogumbreiro 5 / 32

https://cogumbreiro.github.io/teaching/cs720/s22/lf.zip

Compound types

6 / 32

Compound types
Enumerated types are very simple. You can think of them as a typed collection of constants.
We call each enumerated value a constructor.

 Inductive rgb : Type �=
 | red : rgb
 | green : rgb
 | blue : rgb.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 7 / 32

Compound types
Enumerated types are very simple. You can think of them as a typed collection of constants.
We call each enumerated value a constructor.

 Inductive rgb : Type �=
 | red : rgb
 | green : rgb
 | blue : rgb.

A compound type builds on other existing types. Their constructors accept multiple
parameters, like functions do.

 Inductive color : Type �=
 | black : color
 | white : color
 | primary : rgb �> color.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 7 / 32

Manipulating compound values

 Definition monochrome (c : color) : bool �=
 match c with
 | black �> true
 | white �> true
 | primary p �> false
 end.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 8 / 32

Manipulating compound values

 Definition monochrome (c : color) : bool �=
 match c with
 | black �> true
 | white �> true
 | primary p �> false
 end.

We can use the place-holder keyword _ to mean a variable we do not mean to use.

 Definition monochrome (c : color) : bool �=
 match c with
 | black �> true
 | white �> true
 | primary _ �> false
 end.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 8 / 32

Compound types
Allows you to: type-tag, �xed-number of values

CS720: Lecture 2 ❧ Tiago Cogumbreiro 9 / 32

Inductive types

10 / 32

Inductive types
How do we describe arbitrarily large/composed values?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 11 / 32

Inductive types
How do we describe arbitrarily large/composed values?

Here's the de�nition of natural numbers, as found in the standard library:

Inductive nat : Type �=
 | O : nat
 | S : nat �> nat.

O is a constructor of type nat.
Think of the numeral 0.

If n is an expression of type nat, then S n is also an expression of type nat.
Think of expression n + 1.

What's the difference between nat and uint32?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 11 / 32

Example
Let us implement is_zero

CS720: Lecture 2 ❧ Tiago Cogumbreiro 12 / 32

Recursive functions

13 / 32

Recursive functions
Recursive functions are declared differently with Fixpoint, rather than Definition.

Let us implement addition.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 14 / 32

Recursive functions
Recursive functions are declared differently with Fixpoint, rather than Definition.

Let us implement addition.

Fixpoint plus (n : nat) (m : nat) : nat �=
 match n with
 | 0 �> m
 | S n' �> S (plus n' m)
 end.

Notation "x + y" �= (plus x y) (at level 50, left associativity) : nat_scope.
Using Definition instead of Fixpoint will throw the following error:

The reference eqb was not found in the current environment.
Not all recursive functions can be described. Coq has to understand that one value is
getting "smaller."

All functions must be total: all inputs must produce one output. All functions must
terminate.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 14 / 32

Back to proofs

15 / 32

An example

Example plus_O_4 : 0 + 5 = 4.
Proof.

How do we prove this?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 16 / 32

An example

Example plus_O_4 : 0 + 5 = 4.
Proof.

How do we prove this?

We cannot. This is unprovable, which means we are not able to write a script that proves
this statement.

Coq will not tell you that a statement is false.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 16 / 32

Another example

Example plus_O_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 17 / 32

Another example

Example plus_O_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

1. We can think about the de�nition of plus.

2. We can brute-force and try the tactics we know (simpl, reflexivity)

CS720: Lecture 2 ❧ Tiago Cogumbreiro 17 / 32

Another example

Example plus_O_6 : 0 + 6 = 6.
Proof.

How do we prove this?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 18 / 32

Another example

Example plus_O_6 : 0 + 6 = 6.
Proof.

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural n!

CS720: Lecture 2 ❧ Tiago Cogumbreiro 18 / 32

Ranging over all elements of a set

Theorem plus_O_n : forall n : nat, 0 + n = n.
Proof.
 intros n.
 simpl.
 reflexivity.
Qed.

Theorem is just an alias for Example and Definition.

forall introduces a variable of a given type, eg nat; the logical statement must be true
for all elements of the type of that variable.

Tactic intros is the dual of forall in the tactics language

CS720: Lecture 2 ❧ Tiago Cogumbreiro 19 / 32

Forall example
Given

1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

and applying intros n yields

1 subgoal
n : nat
______________________________________(1/1)
0 + n = n

The n is a variable name of your choosing.

Try replacing intros n by intros m.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 20 / 32

simpl and reflexivity work under forall
1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

Applying simpl yields

1 subgoal
______________________________________(1/1)
forall n : nat, n = n
Applying reflexivity yields

No more subgoals.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 21 / 32

reflexivity also simpli�es terms

1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

Applying reflexivity yields

No more subgoals.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 22 / 32

Summary
simpl and reflexivity work under forall binders

simpl only unfolds de�nitions of the goal; does not conclude a proof

reflexivity concludes proofs and simpli�es

CS720: Lecture 2 ❧ Tiago Cogumbreiro 23 / 32

Multiple pre-conditions in a lemma

Theorem plus_id_example : forall n m:nat,
 n = m �>
 n + n = m + m.
Proof.
 intros n.
 intros m.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 24 / 32

Multiple pre-conditions in a lemma

Theorem plus_id_example : forall n m:nat,
 n = m �>
 n + n = m + m.
Proof.
 intros n.
 intros m.

yields

1 subgoal
n, m : nat
______________________________________(1/1)
n = m �> n + n = m + m

CS720: Lecture 2 ❧ Tiago Cogumbreiro 24 / 32

Multiple pre-conditions in a lemma
applying intros H yields

1 subgoal
n, m : nat
H : n = m
______________________________________(1/1)
n + n = m + m
How do we use H? New tactic: use rewrite �> H (lhs becomes rhs)

1 subgoal
n, m : nat
H : n = m
______________________________________(1/1)
m + m = m + m

How do we conclude? Can you write a Theorem that replicates the proof-state above?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 25 / 32

Computing equality of naturals

26 / 32

Computing equality of naturals

Fixpoint eqb (n1:nat) (n2:nat) : bool �=
 match n1 with
 | O �>
 match n2 with
 | O �> true
 _ �> false
 end
 | S n1' �>
 match n2 with
 | O �> false
 | S n2' �> eqb n1 n2
 end
 end.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 27 / 32

How do we prove this example?

Require Import Nat.
Theorem plus_1_neq_0_firsttry : forall n : nat,
 eqb (plus n 1) O = false.
Proof.
 intros n.

yields

1 subgoal
n : nat
______________________________________(1/1)
eqb (plus n 1) O = false

CS720: Lecture 2 ❧ Tiago Cogumbreiro 28 / 32

How do we prove this example?

Require Import Nat.
Theorem plus_1_neq_0_firsttry : forall n : nat,
 eqb (plus n 1) O = false.
Proof.
 intros n.

yields

1 subgoal
n : nat
______________________________________(1/1)
eqb (plus n 1) O = false

Apply simpl and it does nothing. Apply reflexivity:

In environment
n : nat
Unable to unify "false" with "eqb (plus n 1) O".

CS720: Lecture 2 ❧ Tiago Cogumbreiro 28 / 32

Why does simpl fail?
Q: Why can't eqb (n + 1) be simpli�ed? (Hint: inspect its de�nition.)

CS720: Lecture 2 ❧ Tiago Cogumbreiro 29 / 32

Why does simpl fail?
Q: Why can't eqb (n + 1) be simpli�ed? (Hint: inspect its de�nition.)

A: eqb expects the �rst parameter to be either 0 or S ?n, but we have an expression n + 1 (or
plus n 1).

CS720: Lecture 2 ❧ Tiago Cogumbreiro 29 / 32

Why does simpl fail?
Q: Why can't eqb (n + 1) be simpli�ed? (Hint: inspect its de�nition.)

A: eqb expects the �rst parameter to be either 0 or S ?n, but we have an expression n + 1 (or
plus n 1).

Q: Can we simplify plus n 1?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 29 / 32

Why does simpl fail?
Q: Why can't eqb (n + 1) be simpli�ed? (Hint: inspect its de�nition.)

A: eqb expects the �rst parameter to be either 0 or S ?n, but we have an expression n + 1 (or
plus n 1).

Q: Can we simplify plus n 1?

A: No because plus decreases on the �rst parameter, not on the second!

CS720: Lecture 2 ❧ Tiago Cogumbreiro 29 / 32

Case analysis (1/3)
Let us try to inspect value n. Use: destruct n as [| n'].
2 subgoals
______________________________________(1/2)
eqb (0 + 1) 0 = false
______________________________________(2/2)
eqb (S n' + 1) 0 = false

Now we have two goals to prove!

1 subgoal
______________________________________(1/1)
eqb (0 + 1) 0 = false
How do we prove this?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 30 / 32

Case analysis (2/3)
After we conclude the �rst goal we get:

This subproof is complete, but there are some unfocused goals:

______________________________________(1/1)
eqb (S n' + 1) 0 = false
Use another bullet (-).

1 subgoal
n' : nat
______________________________________(1/1)
eqb (S n' + 1) 0 = false

And prove the goal above as well.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 31 / 32

Why can this goal be simpli�ed to false =
false?
______________________________________(1/1)
eqb (S n' + 1) 0 = false

CS720: Lecture 2 ❧ Tiago Cogumbreiro 32 / 32

Why can this goal be simpli�ed to false =
false?
______________________________________(1/1)
eqb (S n' + 1) 0 = false

1. because S n' + 1 = S (n' + 1) (follows the second branch of plus)

2. because eqb (S ...) 0 = false (follows the second branch of eqb)

CS720: Lecture 2 ❧ Tiago Cogumbreiro 32 / 32

