CS720

Logical Foundations of Computer Science

Lecture 1: course structure, Coq basics

Tiago Cogumbreiro

CS720:Lecturel » Tiago Cogumbreiro 1/36

Do computers do

what we tell them to?

How do we talk to computers?

How do we talk to computers?

With programs

How do we construct a program?

ow do we construct a program?

We write code and we give it to a
compiler/interpreter

Does the code match our intent? m

BOSTON

CS720:Lecturel » Tiago Cogumbreiro 5/36

Does the code match our intent? m

e Do we check inputs/outputs? Eg, for an input of x, expect an output of y
Do we check all inputs/outputs? Eg, the result is a sorted list

e Do we check resource usage? Eg, takes under X-seconds to run

e Do we check all resource usage? Eg, takes at most X-second for any run

CS720:Lecturel » Tiago Cogumbreiro 5/36

Does the code match our intent? m

BOSTON

e Do we check inputs/outputs? Eg, for an input of x, expect an output of y
Do we check all inputs/outputs? Eg, the result is a sorted list

e Do we check resource usage? Eg, takes under X-seconds to run

e Do we check all resource usage? Eg, takes at most X-second for any run

How do we even assess our intent?

CS720:Lecturel » Tiago Cogumbreiro 5/36

Does the code match our intent? m

BOSTON

e Do we check inputs/outputs? Eg, for an input of x, expect an output of y
Do we check all inputs/outputs? Eg, the result is a sorted list

e Do we check resource usage? Eg, takes under X-seconds to run

e Do we check all resource usage? Eg, takes at most X-second for any run

How do we even assess our intent?

e How do we convince ourselves that our intent is correct? Tests, coverage, audit, logic
e How do we convince others that our intent is correct? Tests, coverage, audit, logic

CS720:Lecturel » Tiago Cogumbreiro 5/36

Does the code match our intent? m

BOSTON

e Do we check inputs/outputs? Eg, for an input of x, expect an output of y
Do we check all inputs/outputs? Eg, the result is a sorted list

e Do we check resource usage? Eg, takes under X-seconds to run

e Do we check all resource usage? Eg, takes at most X-second for any run

How do we even assess our intent?

e How do we convince ourselves that our intent is correct? Tests, coverage, audit, logic
e How do we convince others that our intent is correct? Tests, coverage, audit, logic

Does the compiler/interpreter preserve the intent?

CS720:Lecturel » Tiago Cogumbreiro 5/36

Welcome to

Programming Language Theory

About the course A

BOSTON

Course web page: cogumbreiro.github.io/teaching/cs720/s22/
o Office hours
o Syllabus
o Course schedule

Gitlab to share homework assignments

Discord for communication (announcements, links)
Discord is preferable to email!

Gradescope for homework submission

CS720:Lecturel » Tiago Cogumbreiro 7/36

https://cogumbreiro.github.io/teaching/cs720/s22/

About the course ?/11

e A programming course (Coq)
e A theoretical course (logic)
e A forum to practice paper presentation (PhD)

CS720:Lecturel » Tiago Cogumbreiro 8/36

Course structure ?/11

e Course: 28 lectures

* 12 homework assignments (85%) + (1 paper presentation + 12 presentation reviews
(15%))

* No exams; around 1 homework assignment per week; assighnments are not small (but
with practice, you can do them quickly)

Course structure inspired by UPenn's CIS500; their grading is stricter (12 homework
assignments + midterm + exam).

CS720:Lecturel » Tiago Cogumbreiro 9/36

https://www.seas.upenn.edu/~cis500/current/index.html

Homework (85%) 7

e No late homework. Late homework = O points.
e Homework is your personal individual work.

It is acceptable to discuss the concept in general terms, but unacceptable to discuss
specific solutions to any homework assignment.

CS720:Lecturel » Tiago Cogumbreiro 10/36

Grading 7

BOSTON

Work is partially graded by Gradescope.

Unreadable solutions will get O points.

If Gradescope gives you O points, then your grade is O points.
Some questions are manually graded by me.

CS720:Lecturel » Tiago Cogumbreiro 11/36

Presentation (15%) ?/11

Each paper is handled by 1 group of students

Groups will have 2 students, 1 group has 3 students

1 paper =1 group

Each student must present for 10 minutes

Each student must review their colleagues presentations (~22 presentations)

CS720:Lecturel » Tiago Cogumbreiro 12/36

Textbooks ?/11

e Logical Foundations (Software Foundations - Volume 1). Benjamin C. Pierce, et al. 2021.
Version 6.1.

e Programming Languages Foundations (Software Foundations - Volume 2). Benjamin C.
Pierce,etal. 2021. Version 6.1.

Recommended

e Types and programming languages. Benjamin C. Pierce. 2002.
o Software foundations @ YouTube
e Oregon PL Summer School Archives (in particular: 2013, 2014,)

CS720:Lecturel » Tiago Cogumbreiro 13/36

https://www.seas.upenn.edu/~cis500/current/sf/lf-current/index.html
https://www.seas.upenn.edu/~cis500/current/sf/plf-current/index.html
https://mitpress.mit.edu/books/types-and-programming-languages
https://www.youtube.com/watch?v=KKrD4JcfW90&list=PLGCr8P_YncjUT7gXUVJWSoefQ40gTOz89
https://www.cs.uoregon.edu/research/summerschool/archives.html
https://www.cs.uoregon.edu/research/summerschool/summer13/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer14/curriculum.html

Programming language semantics ?/11

e Describes a computation model
e Defines the set of possible behaviors through some primitives
e Mathematically precise properties of a computation model

CS720: Lecturel » Tiago Cogumbreiro 14/36

Bird’'s eye view

Here is what we will learn

15/36

How do check if a program is correct? m

BOSTON

Does the program meet the intent?

let division (a b: int) : int
requires { true }
ensures { exists r: int. a=b *result +r /\ @ < r <b}

let g = ref @ in

let r = ref a in

while !r = b do
invariant { true }

q = 1q+ 1;
r:=1Ir->
done;
'q

Examples: WhyML, Dafny.

CS720:Lecturel » Tiago Cogumbreiro 16/36

http://why3.lri.fr/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

How does the compiler check if a program is correct? m

BOSTON

let division (a b: int) : int

let q = ref @ in

let r = ref a in

while !r = b do
q:=1Iq+1;
r:=1Ir->

done;

'q

Examples: OCaml, F#, ReasonML

CS720:Lecturel » Tiago Cogumbreiro 17/36

https://ocaml.org/
https://fsharp.org/
https://reasonml.github.io/

Specitying a functional language ?/11

Language grammar
tu=z|v|tt viu=Ae: Tt T:=T — T |unit

Evaluation rules

t1 —)tll
t1 to — tll to

tz—)té
t1 to — 14 t,2

(E-app1)

(E-app2)

()\:13: Tll-t12) Vo9 — [33 —> ’l)g]tlz (E-abs)

CS720:Lecturel » Tiago Cogumbreiro 18/36

Specitying a functional language ?/11

Type checking rules

[(z)=T D[z — T - ty: T
T= T-ab
TFaT 07 Trae: it Do T o0
Fl_tllTll %le Fl_tQZTll
(T-app)

I'- \x: Tl.tg ZTl %Tg

CS720:Lecturel » Tiago Cogumbreiro 19/36

What about all programs of a given language” 4.

BOSTON

Progress: valid programs execute one step

Any valid program is either a value or can evaluate.
If " - ¢ : T, then either tis a value, or there exists some t’ such thatt — ¢'.

Subject reduction: valid programs remain valid

The validity of a program is preserved while evaluating it.
fI'F¢t:Tandt — t', thenT' ¢ : T.

| Can you give an example of a property?

CS720:Lecturel » Tiago Cogumbreiro 20/36

What we will learn in this course 7

Course summary

Specification: logical reasoning, describing program behavior
Abstraction: capturing the fundamentals, thinking from first principles

Testing: unit and property testing

CS720:Lecturel » Tiago Cogumbreiro 21/36

Basics.v: Partl

A primer on the programming language CoQg

We will learn the core principles behind Coq

CS720:Lecturel » Tiago Cogumbreiro 22/36

https://www.seas.upenn.edu/~cis500/current/sf/lf-current/Basics.html

Enumerated type ?/11

A data type where the user specifies the various distinct values that inhabit the type.

Examples?

CS720:Lecturel » Tiago Cogumbreiro 23/36

Enumerated type ?/11

A data type where the user specifies the various distinct values that inhabit the type.
Examples?

e boolean

4 suits of cards
byte

int32

int64

CS720:Lecturel » Tiago Cogumbreiro 23/36

Declare an enumerated type ?/11

Inductive day : Type :=
| monday : day
| tuesday : day
| wednesday : day
| thursday : day
| friday : day
|
|

saturday : day
sunday : day.

Inductive defines an (enumerated) type by cases.

The type is named day and declared as a : Type (Line 1).

Enumerated types are delimited by the assignment operator (:=) and a dot (.).
Type day consists of 7 cases, each of which is is tagged with the type (day).

CS720: Lecturel » Tiago Cogumbreiro 24/36

Printing to the standard output ?/11

Compute prints the result of an expression (terminated with dot):

Compute monday.
prints

= tuesday
: day

CS720:Lecturel » Tiago Cogumbreiro PASYACTS)

Interacting with the outside world ?/11

e Programming in Coq is different most popular programming paradigms
Programming is an interactive development process

The IDE is very helpful: workflow similar to using a debugger

It's a REPL on steroids!

Compute evaluates an expression, similar to printf

CS720:Lecturel » Tiago Cogumbreiro 26/36

Inspecting an enumerated type ?/11

match d with
| monday = tuesday

| tuesday = wednesday
| wednesday = thursday
| thursday = friday

| friday = monday

| saturday = monday

| sunday = monday

end

CS720:Lecturel » Tiago Cogumbreiro 27736

Inspecting an enumerated type ?/11

match d with
| monday = tuesday

| tuesday = wednesday
| wednesday = thursday
| thursday = friday

| friday = monday

| saturday = monday

| sunday = monday

end

e match performs pattern matching on variable d.

o Each pattern-match is called a branch; the branches are delimited by keywords with and
end.

e Each branch is prefixed by a mid-bar (|) (=), a pattern (eg, monday), an arrow (=), and a
return value

CS720:Lecturel » Tiago Cogumbreiro 27736

Pattern matching example ?/11

Compute match monday with
| monday = tuesday

| tuesday = wednesday
| wednesday = thursday
| thursday = friday

| friday = monday

| saturday = monday

| sunday = monday

end.

CS720:Lecturel » Tiago Cogumbreiro 28/36

Create a function ?/11

Definition next_weekday (d:day) : day :=
match d with
| monday = tuesday

| tuesday = wednesday

| wednesday = thursday

| thursday = friday

| friday = monday

| saturday = monday

| sunday = monday

end.

CS720:Lecturel » Tiago Cogumbreiro PASNAC]S)

Create a function ?/11

Definition next_weekday (d:day) : day :=
match d with
| monday = tuesday

| tuesday = wednesday

| wednesday = thursday

| thursday = friday

| friday = monday

| saturday = monday

| sunday = monday

end.

e Definitionis used to declare a function.

 |n this case next_weekday has one parameter d of type day and returns (:) a value of type
day.

 Between the assignment operator (:=) and the dot (.), we have the body of the function.

CS720:Lecturel » Tiago Cogumbreiro PASNAC]S)

Example 2 ?/11

Compute (next_weekday friday).
yields (Message pane)

= monday
: day

next_weekday friday is the same as monday (after evaluation)

CS720:Lecturel » Tiago Cogumbreiro 30/36

Your first proof ?/11

Example test_next_weekday:

next_weekday (next_weekday saturday) = tuesday.
Proof.

simpl.

reflexivity.
Qed.

CS720:Lecturel » Tiago Cogumbreiro 31/36

Your first prooft ?/11

Example test_next_weekday:

next_weekday (next_weekday saturday) = tuesday.
Proof.

simpl.

reflexivity.
Qed.

o Example prefixes the name of the proposition we want to prove.

The return type (:) is a (logical) proposition stating that two values are equal (after
evaluation).

The body of function test_next_weekday uses the 1tac proof language.
The dot (.) after the type puts us in proof mode. (Read as "defined below".)
This is essentially a unit test.

CS720:Lecturel » Tiago Cogumbreiro 31/36

Ltac: Coqg's proof language ?/11

1tac is imperative! You can step through the state with CoqlDE
Proof begins an 1tac-scope, yielding
1 subgoal

next_weekday (next_weekday saturday) = tuesday
Tactic simpl evaluates expressions in a goal (normalizes them)

CS720:Lecturel » Tiago Cogumbreiro 32/36

Ltac: Coqg's proof language ?/11

tuesday = tuesday
e reflexivity solves a goal with a pattern 7X = 7X

No more subgoals.
e (Qed ends an 1tac-scope and ensures nothing is left to prove

CS720:Lecturel » Tiago Cogumbreiro 33/36

74

UMASS

Function types s

Use Check to print the type of an expression:

Check next_weekday.

which outputs

next_weekday

: day — day
Function type day — day takes one value of type day and returns a value of type day.

CS720:Lecturel » Tiago Cogumbreiro 34/36

Basicv ?/11

e New syntax:Definition declares a non-recursive function

 New syntax: Compute evaluates an expression and outputs the result + type
 New syntax: Check prints the type of an expression

e New syntax: Inductive defines inductive data structures

 New syntax: Fixpoint declares a (possibly) recursive function

 New syntax: match performs pattern matching on a value

 New tactic: simpl evaluates functions if possible

e New tactic: reflexivity concludes agoal ?X = 7X

CS720:Lecturel » Tiago Cogumbreiro 35/36

L tac vocabulary ?/11

* simpl
e reflexivity

CS720:Lecturel » Tiago Cogumbreiro 36/36

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.simpl
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.reflexivity

