
Abstract

In this project we will formalize and prove Theorem 1 of Featherweight
X101, for an abstract expression language. We will also formalize a notion
of sequential programs and show that such a property is preserved by
small-step semantics.

1 Language

(Text adapted from the FX10 paper.)

The semantics of FX10 uses the binary operator || in the semantics of async,
it uses the binary B operator in the semantics of finish, and it uses the con-
stant

√
to model a completed computation. A state in the semantics consists of

a tree T that describes the code executing. The internal nodes of T are either ||
or B, while the leaves are

√
or 〈s〉, where s is a statement.

As an example of how the semantics works, we will now informally discuss
an execution of a program. The execution begins with a finish statement.

〈finish {async {s2}; s3}; s1〉 ⇒
〈async {s2}; s3〉 B 〈s1〉 ⇒

〈s2〉 || 〈s3〉 B 〈s1〉 ⇒

The first step illustrates the semantics of finish and introduces B to signal
that the left-hand side of B must complete execution before the right-hand can
proceed. The second step illustrates the semantics of async and introduces || to
signal that e2 and e3 should proceed in parallel. The two sides of || can execute
in parallel, which we model with an interleaving semantics. When one of the
sides completes execution, it will reach the state

√
. For example if 〈s3〉 ⇒

√
,

then the semantics can do 〈s2〉||〈s3〉 ⇒ 〈s2〉||
√

⇒ 〈s2〉. When also s2 completes
execution, the semantics can finally proceed with the right-hand side of B, that
is 〈s1〉.

A statement is a sequence of instructions. Each instruction is either skip,
evaluating an expression e, async, or finish.

s ::= skip | e; s | async {s}; s | finish {s}; s

An async statement async {s1}; s2 runs s1 in parallel with the continua-
tion of the async statement s2. The async statement is a lightweight notation
for spawning threads, while a finish statement finish {s1}; s2 waits for ter-
mination of all async bodies started while executing s1 before executing the
continuation s2.

1Featherweight X10: A Core Calculus for Async-Finish Parallelism. Jonathan K. Lee,
Jens Palsberg. In PPoPP’10. DOI: 10.1145/1693453.1693459.

1

https://doi.org/10.1145/1693453.1693459
10.1145/1693453.1693459

T ::= T B T | T || T | 〈s〉 |
√

A tree T1 B T2 is convenient for giving the semantics of finish: T1 must
complete execution before we move on to executing T2 . A tree T1 ||T2 represents
a parallel execution of T1 and T2 that interleaves the execution of subtrees,
except when disallowed by B. A tree 〈s〉 represents statement s running. A
tree

√
has completed execution.

2 Small-step semantics

Rules for statements s ⇒ T :

e ⇒ e′

e; s ⇒ 〈e′; s〉

value(e)

e; s ⇒ 〈s〉

skip ⇒
√

async{s1}; s2 ⇒ 〈s1〉 || 〈s2〉

finish{s1}; s2 ⇒ 〈s1〉 B 〈s2〉

Rules for trees T ⇒ T :

√
B T ⇒ T

T1 ⇒ T ′
1

T1 B T2 ⇒ T ′
1 B T2

√
|| T ⇒ T

T ||
√

⇒ T

T1 ⇒ T ′
1

T1 || T2 ⇒ T ′
1 || T2

T2 ⇒ T ′
2

T1 || T2 ⇒ T1 || T ′
2

s ⇒ T

〈s〉 ⇒ T

2

3 Exercises

The homework shall be submitted via Blackboard as a single Coq file,
named FX10.v.

Exercise 1 (60%): Formalize the small-step semantics and show that it en-
joys strong progress. You will need to assume that the abstract expression
language e enjoys strong progress.

Theorem (Strong progress). For every state T , either T =
√

or there
exists T ′ such that T ⇒ T ′.

Exercise 2 (10%): Prove that the FX10 language you have just defined can
be instantiated with Smallstep.tm and prove that it enjoys strong progress.
(The proof should be a simple application of the theorem of Exercise 1.)

Exercise 3 (30%): We want to be able to identify statically sequential trees.
Write a type system ` T that rules out statements with async and trees with
the parallel composition ||, and show that such a type system enjoys type preser-
vation. Finally, show that the type system is inhabited, that is, there exists at
least one tree that is well-typed.

3

4 Template

Require Import Smallstep.

Section FX10.

(* Abstract expressions are parameters of our theory. *)

Variable exp: Set.

Variable e_step: exp -> exp -> Prop.

Variable value: exp -> Prop.

Variable exp_progress: forall x,

value x \/ exists y, e_step x y.

(* Define our language *)

Inductive stmt : Set := (* TODO *)

Inductive tree : Set := (* TODO *)

(* Define the small-steps semantics *)

Inductive s_step:

(* TODO: small-step relation for statements *)

Inductive t_step:

(* TODO: small-step relation for trees *)

(* Exercise 1: *)

Theorem t_strong_progress:

(* TODO: Prove strong progress for [t_step] *)

End FX10.

Inductive s_seq: (* TODO: type system for statements *)

Inductive t_seq: (* TODO: type system for trees *)

(* Exercise 2: *)

Lemma subject_reduction:

(* TODO: Prove subject reduction *)

(* Exercise 3: *)

Lemma tm_strong_progress:

(* TODO: Prove strong progress for [t_step]

parameterized with [tm] *)

4

	Language
	Small-step semantics
	Exercises
	Template

