Abstract

In this project we will formalize and prove Theorem 1 of Featherweight $X10^1$, for an *abstract expression language*. We will also formalize a notion of sequential programs and show that such a property is preserved by small-step semantics.

1 Language

(Text adapted from the FX10 paper.)

The semantics of FX10 uses the binary operator || in the semantics of async, it uses the binary \triangleright operator in the semantics of finish, and it uses the constant $\sqrt{}$ to model a completed computation. A state in the semantics consists of a tree T that describes the code executing. The internal nodes of T are either ||or \triangleright , while the leaves are $\sqrt{}$ or $\langle s \rangle$, where s is a statement.

As an example of how the semantics works, we will now informally discuss an execution of a program. The execution begins with a finish statement.

$$\begin{array}{l} \langle \texttt{finish} \{\texttt{async} \{s_2\}; s_3\}; s_1 \rangle \Rightarrow \\ \langle \texttt{async} \{s_2\}; s_3 \rangle \rhd \langle s_1 \rangle \Rightarrow \\ \langle s_2 \rangle \mid\mid \langle s_3 \rangle \rhd \langle s_1 \rangle \Rightarrow \end{array}$$

The first step illustrates the semantics of finish and introduces \triangleright to signal that the left-hand side of \triangleright must complete execution before the right-hand can proceed. The second step illustrates the semantics of async and introduces || to signal that e_2 and e_3 should proceed in parallel. The two sides of || can execute in parallel, which we model with an interleaving semantics. When one of the sides completes execution, it will reach the state $\sqrt{}$. For example if $\langle s_3 \rangle \Rightarrow \sqrt{}$, then the semantics can do $\langle s_2 \rangle || \langle s_3 \rangle \Rightarrow \langle s_2 \rangle || \sqrt{} \Rightarrow \langle s_2 \rangle$. When also s_2 completes execution, the semantics can finally proceed with the right-hand side of \triangleright , that is $\langle s_1 \rangle$.

A statement is a sequence of instructions. Each instruction is either skip, evaluating an expression e, async, or finish.

 $s ::= \text{skip} \mid e; s \mid \text{async } \{s\}; s \mid \text{finish } \{s\}; s$

An async statement $\operatorname{async} \{s_1\}; s_2$ runs s_1 in parallel with the continuation of the async statement s_2 . The async statement is a lightweight notation for spawning threads, while a finish statement finish $\{s_1\}; s_2$ waits for termination of all async bodies started while executing s_1 before executing the continuation s_2 .

 $^{^1}Featherweight X10:$ A Core Calculus for Async-Finish Parallelism. Jonathan K. Lee, Jens Palsberg. In PPoPP'10. DOI: 10.1145/1693453.1693459.

$$T ::= T \vartriangleright T \mid T \mid T \mid \langle s \rangle \mid \checkmark$$

A tree $T_1 > T_2$ is convenient for giving the semantics of finish: T_1 must complete execution before we move on to executing T_2 . A tree $T_1 || T_2$ represents a parallel execution of T_1 and T_2 that interleaves the execution of subtrees, except when disallowed by \triangleright . A tree $\langle s \rangle$ represents statement *s* running. A tree $\sqrt{}$ has completed execution.

2 Small-step semantics

Rules for statements $s \Rightarrow T$:	Rules for trees $T \Rightarrow T$:
$\frac{e \Rightarrow e'}{e; s \Rightarrow \langle e'; s \rangle}$	$\overline{\surd \rhd T \Rightarrow T}$
$\frac{\text{value}(e)}{e; s \Rightarrow \langle s \rangle}$	$\frac{T_1 \Rightarrow T_1'}{T_1 \rhd T_2 \Rightarrow T_1' \rhd T_2}$
$\overline{\texttt{skip}} \Rightarrow $	$\overline{\sqrt{\mid\mid T \Rightarrow T}}$
$\overline{\texttt{async}\{s_1\};s_2\Rightarrow \langle s_1\rangle \mid\mid \langle s_2\rangle}$	$\overline{T \mid\mid \checkmark \Rightarrow T}$
$\overline{\texttt{finish}\{s_1\}; s_2 \Rightarrow \langle s_1 \rangle \rhd \langle s_2 \rangle}$	$\frac{T_1 \Rightarrow T_1'}{T_1 \parallel T_2 \Rightarrow T_1' \parallel T_2}$
	$\frac{T_2 \Rightarrow T'_2}{T_1 \mid\mid T_2 \Rightarrow T_1 \mid\mid T'_2}$
	$\frac{s \Rightarrow T}{\langle s \rangle \Rightarrow T}$

3 Exercises

The homework shall be submitted via Blackboard as a single Coq file, named FX10.v.

Exercise 1 (60%): Formalize the small-step semantics and show that it enjoys *strong progress*. You will need to assume that the abstract expression language e enjoys strong progress.

Theorem (Strong progress). For every state T, either $T = \sqrt{}$ or there exists T' such that $T \Rightarrow T'$.

Exercise 2 (10%): Prove that the FX10 language you have just defined can be instantiated with Smallstep.tm and prove that it enjoys strong progress. (The proof should be a simple application of the theorem of Exercise 1.)

Exercise 3 (30%): We want to be able to identify statically *sequential* trees. Write a type system $\vdash T$ that rules out statements with **async** and trees with the parallel composition ||, and show that such a type system enjoys type preservation. Finally, show that the type system is *inhabited*, that is, there exists at least one tree that is well-typed.

4 Template

```
Require Import Smallstep.
Section FX10.
  (* Abstract expressions are parameters of our theory. *)
 Variable exp: Set.
 Variable e_step: exp -> exp -> Prop.
 Variable value: exp -> Prop.
 Variable exp_progress: forall x,
    value x \setminus / exists y, e_step x y.
  (* Define our language *)
  Inductive stmt : Set := (* TODO *)
 Inductive tree : Set := (* TODO *)
  (* Define the small-steps semantics *)
 Inductive s_step:
    (* TODO: small-step relation for statements *)
  Inductive t_step:
    (* TODO: small-step relation for trees *)
  (* Exercise 1: *)
 Theorem t_strong_progress:
    (* TODO: Prove strong progress for [t_step] *)
End FX10.
Inductive s_seq: (* TODO: type system for statements *)
Inductive t_seq: (* TODO: type system for trees *)
(* Exercise 2: *)
Lemma subject_reduction:
(* TODO: Prove subject reduction *)
(* Exercise 3: *)
Lemma tm_strong_progress:
(* TODO: Prove strong progress for [t_step]
         parameterized with [tm] *)
```