CS720

Logical Foundations of Computer Science

Lecture 9: Inductive propositions

Tiago Cogumbreiro
Inductive propositions

In lectures 7 and 8 we learned to write inductive definitions that compose other propositions (eg, \(\land \) takes holds two propositions)

Think about the following statement:

A product \(X \times Y \) is to a conjunction \(P \land Q \), the same way a list \(\text{list } X \) is to...?

Today we define inductive definitions that can "hold" an unbounded number of propositions.
Today we will learn...

- (recursive) inductive definitions
- implementing binary relations
- properties on binary relations
Exercise

Let us define even numbers inductively...

In the world of propositions, what is a signature of a number being even?
Exercise

Let us define even numbers inductively...

In the world of propositions, what is a signature of a number being even?

Inductive ev: nat → Prop
Exercise

Let us define even numbers inductively...

In the world of propositions, what is a signature of a number being even?

\[\text{Inductive } \text{ev}: \text{nat} \rightarrow \text{Prop} \]

- 0 is even
- If \(n \) is even, then \(2 + n \) is also even.
Inductively defined even

In Logic, the constructors `ev_0` and `ev_SS` of propositions can be called *inference rules*.

Which can be typeset as an inductive definition with the following notation:

\[
\begin{array}{c}
\text{ev}_0 \\
\text{ev}(0) \quad \equiv \quad \text{ev}_0 \\
\text{ev}(S(S(n))) \quad \equiv \quad \text{ev}_SS
\end{array}
\]
Proving that 4 is even

Backward style: From \textit{ev_SS} we can conclude that 4 is even, if we can show that 2 is even, which follows from \textit{ev_SS} and the fact that 0 is even (by \textit{ev_0}).

Forward style: From the fact that 0 is even (\textit{ev_0}), we use theorem \textit{ev_SS} to show that 2 is even; so, applying theorem \textit{ev_SS} to the latter, we conclude that 4 is even.
Reasoning about inductive propositions

Theorem evSS : forall n,
 ev (S (S n)) → ev n.

(Done in class.)
Example

\textbf{Goal} \sim ev 3.

\textit{(Done in class.)}
Proofs by induction

Goal \forall n, \text{ev } n \rightarrow \neg \text{ev } (S \ n).

(Done in class.)
Proofs by induction

Goal forall \(n \), ev \(n \rightarrow \neg ev (S\ n) \).

(Done in class.)

Notice the difference between induction on \(n \) and on judgment \(ev \ n \).
Relations in Coq

Inductive $\text{le} : \text{nat} \to \text{nat} \to \text{Prop}$:=
| le_n :
 forall n, $\text{le} \ n \ n$
| le_S :
 forall $n \ m$, $\text{le} \ n \ m$ \Rightarrow
 $\text{le} \ n \ (\text{S} \ m)$.

Notation "$n \leq m$" := (le n m).
Exercise

Goal $3 \leq 6$.
Less-than

Definition \(\text{lt} \ (n \ m : \text{nat}) := \text{le} \ (S \ n) \ m. \)

How do we prove that this definition is correct?
Less-than

Definition \(\text{lt} \ (n \ m: \text{nat}) := \text{le} \ (S \ n) \ m. \)

How do we prove that this definition is correct?

Goal \(n \leq m \leftrightarrow \text{lt} \ n \ m \ \lor \ n = m. \)
Less-than

How can we define Less-Than inductively?
Less-than

How can we define Less-Than inductively?

```ocaml
Inductive lt : nat → nat → Prop :=
  | lt_base :forall n, lt n (S n)
  | lt_S :forall n m, lt n m → lt n (S m).
Notation "n < m" := (lt n m).
```

How do we prove that this definition is correct?
Exercises on Less-Than

Prove that

1. $<$ is transitive
2. $<$ is irreflexive
3. $<$ is asymmetric
4. $<$ is decidable