CS720

Logical Foundations of Computer Science

Lecture 7: Logical connectives in Coq

Tiago Cogumbreiro
Poly.v

Due Tuesday, September 25, 11:59 EST
Tactics.v

Due Thursday, September 27, 11:59 EST
Logic.v

Due Thursday, October 4, 11:59 EST
What have we learned so far

- Comparing if two expressions are equal syntactically: \(e_1 = e_2 \)
- Implication \(P \rightarrow Q \)
- Universal quantifier for all \(x, P \)

Is this all we can do?
What have we learned so far

- Comparing if two expressions are equal syntactically: $e_1 = e_2$
- Implication $P \rightarrow Q$
- Universal quantifier $\forall x, P$

Is this all we can do? No.

We encoded predicates \textit{computationally}:

- In \texttt{Basics.v} we defined \texttt{beq_nat : nat \rightarrow nat \rightarrow bool} to compare if two naturals are equal.
- In \texttt{Basics.v} we defined \texttt{evenb : nat \rightarrow bool} to check if a natural number is even

Computational predicates are limited in what they can describe (eg, functions in Coq have to be total), and are not very easy to reason about (ie, they are meant to compute/execute, not build logic statements).
Today we will...

- Logical connectives in Coq

\[P \land Q \quad P \lor Q \]

Why are we learning this?

- The building blocks of any interesting property
Typing equality

What is the type of an equality?

Check \(\text{beq_nat} \ 2 \ 2 = \text{true} \).

Check \(\forall (n \ m : \text{nat}), n + m = m + n \).
Typing equality

What is the type of an equality?

Check `beq_nat 2 2 = true`.

Check `forall (n m : nat), n + m = m + n`.

Both of these expressions have type `Prop`, for proposition.
Are all propositions provable?
Are all propositions provable?

No. How do you prove this proposition:

Check $0 = 1$. (* Prints: $0 = 1$: Prop *)

Goal $0 = 1$.

Notice how we cannot conclude (write a proof for) a statement that does not hold. In Coq, we must show evidence of what holds. (*This is known as a constructive logic.*)
Propositions are still expressions (1/3)

What is the type of $ex0$:

Definition $ex0 := beq_nat 2 2.$
Propositions are still expressions (1/3)

What is the type of ex0:

\begin{verbatim}
Definition ex0 := beq_nat 2 2.
\end{verbatim}

What is the type of ex1? How can we use ex1?

\begin{verbatim}
Definition ex1 (n:nat) := beq_nat 2 n = true.
\end{verbatim}

For which n is $\text{ex1 } n$ provable?
Propositions are still expressions (1/3)

What is the type of \texttt{ex0}:

\begin{verbatim}
Definition ex0 := beq_nat 2 2.
\end{verbatim}

What is the type of \texttt{ex1}? How can we use \texttt{ex1}?

\begin{verbatim}
Definition ex1 (n:nat) := beq_nat 2 n = true.
\end{verbatim}

For which \(n \) is \texttt{ex1 n} provable?

\begin{verbatim}
Lemma easy:
 forall n, n = 2 \rightarrow ex1 n.
Proof.
\end{verbatim}

\textit{(Done in class.)}
Propositions are still expressions (2/3)

What is the difference between \texttt{ex1} and \texttt{ex2}?

\textbf{Definition} \texttt{ex1} (\texttt{n:nat}) := \texttt{beq_nat} 2 \texttt{n} = \texttt{true}.

\textbf{Theorem} \texttt{ex2}: \texttt{forall} (\texttt{n:nat}), \texttt{beq_nat} 2 \texttt{n} = \texttt{true}.
Propositions are still expressions (2/3)

What is the difference between \texttt{ex1} and \texttt{ex2}?

\textbf{Definition} \texttt{ex1 (n:nat) := beq_nat 2 n = true.}

\textbf{Theorem} \texttt{ex2: forall (n:nat), beq_nat 2 n = true.}

\textit{ex1} defines a position (\textit{Prop}), \textit{ex2} is a theorem definition and is expecting a proof.

What is the relation between \texttt{ex3} and \texttt{ex1}, \texttt{ex2}?

\textbf{Definition} \texttt{ex3 (n:nat) : beq_nat 2 n = true.}
Propositions are still expressions (2/3)

What is the difference between ex1 and ex2?

Definition ex1 (n:nat) := beq_nat 2 n = true.

Theorem ex2: forall (n:nat), beq_nat 2 n = true.

ex1 defines a position (Prop), ex2 is a theorem definition and is expecting a proof.

What is the relation between ex3 and ex1, ex2?

Definition ex3 (n:nat) : beq_nat 2 n = true.

- Recall that Theorem and Definition are synonyms!
- Thus, ex2 and ex3 are the same
Propositions are still expressions (3/3)

What is the difference between \texttt{ex3} and \texttt{ex4}?

Definition \texttt{ex1 (n:nat) := beq_nat 2 n = true.}
Definition \texttt{ex3 (n:nat) : beq_nat 2 n = true.}

Theorem \texttt{ex4: forall (n:nat), ex1 n.}
Propositions are still expressions (3/3)

What is the difference between \texttt{ex3} and \texttt{ex4}?

\begin{definition}
\texttt{ex1} (n:nat) := \texttt{beq_nat} 2 n = \texttt{true}.
\end{definition}
\begin{definition}
\texttt{ex3} (n:nat) : \texttt{beq_nat} 2 n = \texttt{true}.
\end{definition}

\begin{theorem}
\texttt{ex4}: \texttt{forall} (n:nat), \texttt{ex1} n.
\end{theorem}

\texttt{ex3} and \texttt{ex4} are the same.

Are any of \texttt{ex2}, \texttt{ex3}, and \texttt{ex4} provable?
What is the difference between ex3 and ex4?

Definition ex1 (n:nat) := beq_nat 2 n = true.
Definition ex3 (n:nat) : beq_nat 2 n = true.

Theorem ex4: forall (n:nat), ex1 n.

ex3 and ex4 are the same.

Are any of ex2, ex3, and ex4 provable?

No, because not all numbers are equal to 2.
Summary: Propositions are still expressions

- `forall` versus arguments of a definition
- Definitions for propositions are just abbreviations for our own understanding

For instance, define `GreaterThan` in terms of `leb` so that it is easier to read:

```haskell
Definition GreaterThan x y := leb x y = false.
(* which is the same as *)
Definition GreaterThan := forall x y, leb x y = false.
```
Coq from the ground up
Inductive propositions

We have seen how to define types inductively; propositions can also be defined inductively.

- instead of Type we use Prop
- the parameters are not just values, but propositions
- the idea is to build your logical argument as *structured data*

We will now encode various logical connectives using inductive definitions.
Conjunction

\[P \land Q \]
What is $P \land Q$?

1. What is the type of P?
What is $P \land Q$?

1. What is the type of P? Prop
2. What is the type of Q?
What is $P \land Q$?

1. What is the type of P? Prop
2. What is the type of Q? Prop
3. What is the type of \land?
What is $P \land Q$?

1. What is the type of P? Prop
2. What is the type of Q? Prop
3. What is the type of \land? Prop \rightarrow Prop \rightarrow Prop
What is $P \land Q$?

Let and represent \land:

\[
\text{and: Prop} \to \text{Prop} \to \text{Prop}
\]

Recall how we defined a pair:

\[
\text{Inductive pair (X:Type) (Y:Type) : Type := ...}
\]

How would we define and?
Conjunction

\[
\text{Inductive and (P Q : Prop) : Prop :=}
\]
\[
\mid \text{conj : P} \rightarrow \text{Q} \rightarrow \text{and} \ P \ Q.
\]

- apply conj to solve a goal, inversion in a hypothesis
- The \(/\) operator represents a logical conjunction (usually typeset with \(\land \))
- The split tactics is used to prove a goal of type \(?X /\ ?Y\), where \(?X\) and \(?Y\) are propositions

Notice that \(P /\ Q\) is a type (a proposition) and that conj is the only constructor of that type.
Conjunction example

Example and_example : 3 + 4 = 7 ∧ 2 * 2 = 4.
Proof.
apply conj.

(Done in class.)
Conjunction example 1

More generally, we can show that if we have propositions A and B, we can conclude that we have $A \land B$.

Goal forall A B : Prop, A → B → A \land B.
Conjunction in the hypothesis

Example and_in_conj :

\[\forall x \, y, \quad 3 + x = y \land 2 \times 2 = x \rightarrow x = 4 \land y = 7. \]

Proof.

\textit{intros} \ x \ y \ \textit{Hconj}.

\textit{destruct} \ \textit{Hconj} \ \text{as} \ [\text{Hleft Hright}].

(\textit{Done in class.})
Conjunction example 2

Lemma correct_2 : forall A B : Prop, A \land B \to A.
Proof.

Lemma correct_3 : forall A B : Prop, A \land B \to B.
Proof.

(Done in class.)
Disjunction

\[P \lor Q \]
What is $P \lor Q$?

1. What is the type of P?
What is $P \lor Q$?

1. What is the type of P? Prop
2. What is the type of Q?
What is $P \lor Q$?

1. What is the type of P? Prop
2. What is the type of Q? Prop
3. What is the type of \lor?
What is $P \lor Q$?

1. What is the type of P? Prop
2. What is the type of Q? Prop
3. What is the type of \lor? $\text{Prop} \to \text{Prop} \to \text{Prop}$

How can we define an disjunction using an inductive proposition?
Disjunction

\[
\text{Inductive } \text{or } (A \ B : \text{Prop}) : \text{Prop} := \\
\text{or_introl} : A \rightarrow \text{or } A \ B \\
\text{or_intror} : B \rightarrow \text{or } A \ B
\]

- apply \text{or_introl} or apply \text{or_intror} to goal; inversion to hypothesis
- The \(\lor\) operator represents a logical disjunction (usually typeset with \(\lor\))
- The left (right) tactics are used to prove a goal of type \(\forall X \lor \forall Y\), replacing it with a new goal \(\forall X\ (\forall Y\ \text{respectively})\)
Disjunction example

Theorem or_1: \(\forall A B : \text{Prop}, \ A \rightarrow A \lor B. \)

Theorem or_2: \(\forall A B : \text{Prop}, \ B \rightarrow A \lor B. \)

(Done in class.)
Disjunction in the hypothesis

Tactics **destruct** can break a disjunction into its two cases.
Tactics **inversion** also breaks a disjunction, but leaves the original hypothesis in place.

Lemma or_example :

```coq
forall n m : nat, n = 0 / m = 0 \rightarrow n * m = 0.
```

Proof.

```coq
intros n m H. destruct H as [Heq | Heq].
```
Example

Theorem odd_or_even:
 forall n,
 evenb n = true \or oddb n = true.
Example

Theorem odd_or_even:
 \(\forall n,\) evenb \(n\) = true \(\lor\) oddb \(n\) = true.

Hint, prove this first:

Theorem evenb_flip:
 \(\forall n,\) evenb \(n\) = negb (evenb (S n)).
Summary

- Propositions as expressions
- Inductive propositions
 - $P \land Q$
 - $P \lor Q$