CS720

Logical Foundations of Computer Science

Lecture 6: tactics (continued)

Tiago Cogumbreiro
Today we will...

- Take a deeper look at proofs by induction
- Unfolding definitions
- Simplifying expressions
- Destructing compound expressions

Why are we learning this?

- To make your proofs smaller/simpler
- Many interesting properties require what we will learn today about induction
Poly.v

Due Tuesday, September 25, 11:59 EST
Tactics.v

Due Thursday, September 27, 11:59 EST
Varying the Induction Hypothesis (1/2)

Theorem double_injective_FAILED : forall n m, double n = double m -> n = m.
Proof.
 intros n m. induction n as [| n'].
 - (* n = O *) simpl. intros eq. destruct m as [| m'].
 + (* m = O *) reflexivity.
 + (* m = S m' *) inversion eq.
 - (* n = S n' *) intros eq.

(Proof state in the next slide.)
Varying the Induction Hypothesis (2/2)

1 subgoal
n', m : nat
IHn' : double n' = double m \rightarrow n' = m
eq : double (\text{S} n') = double m

\text{-----------------------------(1/1)}
\text{S n' = m}

1. Know that: If \(2 n' = 2 m\), then \(n' = m\)
2. Know that: \(2 (n' + 1) = 2 n\)
3. Show that: \(n' + 1 = m\)

Where do we go from this? How can we use the induction hypothesis?
Recall the induction principle of nats

We performed induction on \(n \) and our goal is \(\text{double } n = \text{double } m \to n = m \)
That is, prove \(P(n) := \text{double } n = \text{double } m \to n = m \) by induction on \(n \).

- Prove \(P(0) \), thus replace \(n \) by \(0 \) in \(P(n) \):
 Prove \(\text{double } 0 = \text{double } m \to 0 = m \)
- Prove that \(P(n) \) implies \(P(n+1) \):
 Given \(\text{double } n = \text{double } m \to n = m \) prove that \(\text{double } (n + 1) = \text{double } m \to n = m \).

What is impeding our proof?
Recall the induction principle of nats

We performed induction on n and our goal is $\text{double } n = \text{double } m \rightarrow n = m$
That is, prove $P(n) := \text{double } n = \text{double } m \rightarrow n = m$ by induction on n.

- Prove $P(0)$, thus replace n by 0 in $P(n)$:
 Prove $\text{double } 0 = \text{double } m \rightarrow 0 = m$
- Prove that $P(n)$ implies $P(n+1)$:
 Given $\text{double } n = \text{double } m \rightarrow n = m$ prove that $\text{double } (n + 1) = \text{double } m \rightarrow n = m$.

What is impeding our proof?

The problem is that the goal we are proving fixes the m, however in the expression $\text{double } n = \text{double } m$ the n and the m are related!

Since the induction variable n "influences" m, then we must generalize m.
How do we fix it?

How do we generalize a variable?

We perform induction on n and our goal $P(n)$ becomes:

$$\forall m, \text{double } n = \text{double } m \rightarrow n = m$$

By performing induction on n we get:

- $P(0) = \forall m, \text{double } 0 = \text{double } m \rightarrow 0 = m$
- $P(n) \rightarrow P(n+1) = $
 - $(\forall m, \text{double } n = \text{double } m \rightarrow n = m) \rightarrow$
 - $(\forall m, \text{double } (n + 1) = \text{double } m)$
Let us try again

Theorem double_injective : \(\forall n \ m, \ double\ n = double\ m \Rightarrow n = m.\)

Proof.

\[
\text{intros } n. \ \text{induction } n \ \text{as } [\ | \ n'].
\]

(Done in class.)
Second try

Theorem double_injective : forall m n,
 double n = double m ->
 n = m.
Proof.
 intros m n eq1.

Notice how \(m \) and \(n \) are switched.

(Done in class.)
Theorem double_injective : forall m n,
 double n = double m →
 n = m.
Proof.
 intros m n eq1.

Notice how \(m \) and \(n \) are switched.

(Done in class.)

- **generalize dependent n**: generalizes (abstracts) variable \(n \)
- **Takeaway**: the induction variable should be the left-most in a \(\text{forall} \) binder
Unfolding Definitions

Definition square n := n * n.

Lemma square_mult : forall n m, square (n * m) = square n * square m.

Proof.

- intros n m.
- simpl.
Unfolding Definitions

Definition square n := n * n.

Lemma square_mult : forall n m, square (n * m) = square n * square m.

Proof.
 intros n m.
 simpl.
Simplifiable expressions

Which of \(e, f 0, g 5, i 5, \) and \(h 5 \) simplify?

Definition \(e := 5. \)

Definition \(f (x:\text{nat}) := 5. \)

Definition \(g (x:\text{nat}) := x. \)

Definition \(i (x:\text{nat}) := \text{match } x \text{ with } _\Rightarrow x \text{ end}. \)

Definition \(h (x:\text{nat}) := \)
 \[
 \text{match } x \text{ with } \\
 | \text{S } _ \Rightarrow x \\
 | \text{0 } \Rightarrow x \\
 \text{end.}
 \]
Non-simplifiable expressions

Definition e := 5.
Definition f (x:nat) := 5.
Goal f 0 = 5. Proof. simpl. Abort.
(* no match, simplify cannot unfold *)
Definition g (x:nat) := x.
Goal g 5 = 5. Proof. simpl. Abort.
(* match, but no inspection *)
Definition i (x:nat) := match x with _ => x end.
Goal i 5 = 5. Proof. simpl. Abort.
(* match inspects the argument *)
Definition h (x:nat) :=
 match x with
 | S _ => x | 0 => x
 end.
Goal h 5 = 5. Proof. simpl. reflexivity. Qed.
Destruct compound expressions

Destruct works for any expressions, not just variables

Definition sillyfun (n : nat) : bool :=
 if beq_nat n 3 then false
 else if beq_nat n 5 then false
 else false.

Theorem sillyfun_false : forall (n : nat),
 sillyfun n = false.
Proof.
 intros n. unfold sillyfun.
 destruct (beq_nat n 3).

(Completed in class.)
Destruct compound Expressions

Destruct works for any expressions, not just variables

Definition sillyfun1 (n : nat) : bool :=
 if beq_nat n 3 then true
 else if beq_nat n 5 then true
 else false.

Theorem sillyfun1_odd : forall (n : nat),
 sillyfun1 n = true ->
 oddb n = true.

Proof.
 intros n eq1. unfold sillyfun1 in eq1.
 destruct (beq_nat n 3).
Destruct compound Expressions

Destruct works for any expressions, not just variables

Definition sillyfun1 (n : nat) : bool :=
 if beq_nat n 3 then true
 else if beq_nat n 5 then true
 else false.

Theorem sillyfun1_odd : forall (n : nat),
 sillyfun1 n = true ->
 oddb n = true.

Proof.
 intros n eq1. unfold sillyfun1 in eq1.
 destruct (beq_nat n 3).

What happened here? We lost our knowledge. Use `destruct PATTERN eqn:H`.
Example 1 (4 stars) (1/3)

Define `forallb`.

```
Goal forallb oddb [1;3;5;7;9] = true.
Goal forallb negb [false;false] = true.
Goal forallb evenb [0;2;4;5] = false.
Goal forallb (beq_nat 5) [] = true.
```
Example 1 (4 stars) (2/3)

Define a non-recursive existsb

Goal existsb (beq_nat 5) [0;2;3;6] = false.
Goal existsb (andb true) [true;true;false] = true.
Goal existsb oddb [1;0;0;0;0;3] = true.
Goal existsb evenb [] = false.

Theorem forallb_existsb:
 forall {A} (f:A -> bool) l,
 forallb f l = negb (existsb (fun x => negb (f x)) l).
Example 1 (4 stars) (3/3)

Define a recursive \(\text{existsb}_r \) and a non-recursive \(\text{existsb} \)

Theorem \(\text{existsb}_r _ \text{existsb} \):

\[
\forall \{A\} (f : A \to \text{bool}) \ l, \\
\text{existsb} \ f \ l = \text{existsb}_r \ f \ l.
\]
Example 1 (3 stars)

Theorem filter_exercise : forall (X : Type) (test : X -> bool) (x : X) (l lf : list X),
 filter test l = x :: lsf ->
 test x = true.

Proof.

(Done in class.)
What we learned...

Tactics.v

- New tactics: induction x
- New tactics: generalize dependent x
- New tactics: unfold x
- New capability: simpl in ...
- New capability: destruct compounded expressions
- New capability: destruct eq:... using destruct and rewrite