CS720

Logical Foundations of Computer Science

Lecture 4: polymorphism

Tiago Cogumbreiro
We now have...

- A reasonable understanding of **proof techniques** (through tactics)
- A reasonable understanding of **functional programming** (today's class mostly concludes this part)
- A minimal understanding of **logic programming** (next class)
Why are we learning Coq?

Logical Foundations of CS

This course of CS 720 is divided into two parts:

1. **The first part:** Coq as a workbench to express the logical foundation of CS
2. **The second part:** use this workbench to formalize a programming language

I will give you other examples of how Coq is being used to formalize CS
Today's class

1. QA about Homework 1 (Basics.v) (no solutions can be discussed!)
2. QA about Induction.v and Lists.v
3. Cover Poly.v
QA about Homework 1 (Basics.v)
QA about Induction.v and Lists.v
Poly.v

Due Tuesday, September 25, 11:59 EST
Today we will...

- Learn to generalize functions/data types to accept any type
- Learn that Coq is an expression language (functions as data)

Why are we learning this?

- To be able to have interesting data-structures (containers)
- To be able to have reusable/generic definitions
Recall natlist from lecture 3

Inductive natlist : Type :=
| nil : natlist
| cons : nat → natlist → natlist.

How do we write a list of bools?
Recall natlist from lecture 3

```
Inductive natlist : Type :=
| nil : natlist
| cons : nat -> natlist -> natlist.
```

How do we write a list of bools?

```
Inductive boollist : Type :=
| bool_nil : boollist
| bool_cons : nat -> boollist -> boollist.
```

How to migrate the code that targeted natlist to boollist? What is missing?
Polymorphism

Inductive types can accept (type) parameters (akin to Java/C# generics, and type variables in C++ templates).

```ml
Inductive list (X:Type) : Type :=
  | nil : list X
  | cons : X -> list X -> list X.
```

What is the type of `list`? How do we print `list`?
Constructors of a polymorphic list

Check list.

yields

list : Type → Type

What does Type → Type mean? What about the following?

Search list.
Check list.
Check nil nat.
Check nil 1.
How do we encode the list $[1; 2]$?
How do we encode the list $[1; 2]$?

\[
\text{cons nat 1 (cons nat 2 (nil nat))}
\]
Implement concatenation

Recall app:

```ocaml
Fixpoint app (l1 l2 : natlist) : natlist :=
  match l1 with
  | nil -> l2
  | h :: t => h :: (app t l2)
end.
```

How do we make app polymorphic?
Implement concatenation

Recall app:

```ocaml
Fixpoint app (l1 l2 : natlist) : natlist :=
  match l1 with
  | nil => l2
  | h :: t => h :: (app t l2)
end.
```

How do we make app polymorphic?

```ocaml
Fixpoint app (X:Type) (l1 l2 : list X) : list X :=
  match l1 with
  | nil _ => l2
  | cons _ h t => cons X h (app X t l2)
end.
```
Implement concatenation

Recall app:

Fixpoint app (l1 l2 : natlist) : natlist :=
 match l1 with
 | nil ⇒ l2
 | h :: t ⇒ h :: (app t l2)
 end.

How do we make app polymorphic?

Fixpoint app (X:Type) (l1 l2 : list X) : list X :=
 match l1 with
 | nil _ ⇒ l2
 | cons _ h t ⇒ cons X h (app X t l2)
 end.
Type inference (1/2)

Coq infer type information:

```
Fixpoint app X l1 l2 :=
  match l1 with
  | nil   => l2
  | cons _ h t => cons X h (app X t l2)
  end.

Check app.
```

outputs

```
app
  : forall X : Type, list X -> list X -> list X
```
Type inference (2/2)

Fixpoint app X (l1 l2:list X) :=
 match l1 with
 | nil _ => l2
 | cons _ h t => cons _ h (app _ t l2)
 end.

Check app.

app
 : forall X : Type, list X -> list X -> list X

Let us look at the output of

Compute cons nat 1 (cons nat 2 (nil nat)).
Compute cons _ 1 (cons _ 2 (nil _)).
Type information redundancy

If Coq can infer the type, can we automate inference of type parameters?
Type information redundancy

If Coq can infer the type, can we automate inference of type parameters?

```coq
Fixpoint app {X:Type} (l1 l2:list X) : list X :=
match l1 with
| nil -> l2
| cons h t => cons h (app t l2)
end.
```

Alternatively, use **Arguments** after a definition:

```coq
Arguments nil {X}.       (* braces should surround argument being inferred *)
Arguments cons {_} _.   (* you may omit the names of the arguments *)
Arguments app {X} 11 12. (* if the argument has a name, you *must* use the *same* name *)
```
Try the following

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X → list X → list X.

Arguments nil {__}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.

What went wrong?
Try the following

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.

Arguments nil {_.}
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.

What went wrong? How do we supply type parameters when they are being automatically inferred?
Try the following

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X → list X → list X.

Arguments nil {_}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.

What went wrong? How do we supply type parameters when they are being automatically inferred?

Prefix a definition with @. Example: @nil nat.
Recall natprod and fst (lec 3)

\[
\text{Inductive } \text{natprod : Type := }
\mid \text{pair : nat }\rightarrow\text{ nat }\rightarrow\text{ natprod.}
\]
\[
\text{Notation } "(x, y)" := \text{(pair x y).}
\]

How do we make \texttt{pair} polymorphic with implicit type arguments?
Recall natprod and fst (lec 3)

Inductive natprod : Type :=
| pair : nat → nat → natprod.
Notation "(x , y)" := (pair x y).

How do we make pair polymorphic with implicit type arguments?

Inductive prod (X Y : Type) : Type :=
| pair : X → Y → prod X Y.
Arguments pair {_} {_}.
Notation "(x , y)" := (pair x y).

Definition fst {X Y : Type} (p : prod X Y) : X :=
 match p with
 | pair x y ⇒ x
 end.

Should we make the arguments of prod implicit? Why?
Recall natprod

Theorem surjective_pairing : forall (p : natprod),
 p = (fst p, snd p).

How does polymorphism affect our theorems? What about the proof?
Recall natprod

\textbf{Theorem} surjective_pairing : \texttt{forall} (p : natprod),
\hspace{1em} p = (\texttt{fst } p, \texttt{snd } p).

How does polymorphism affect our theorems? What about the proof?

\textbf{Theorem} surjective_pairing : \texttt{forall} (X Y:Type) (p : prod X Y),
\hspace{1em} p = (\texttt{fst } p, \texttt{snd } p).

Low impact in proofs (usually, \texttt{intros}).
Recall `indexof` (lecture 3)

How do we make this function polymorphic?

```plaintext
Fixpoint indexof (n:nat) (l:natlist) : natoption :=
  match l with
  | nil ⇒ None
  | h :: t ⇒
    match beq_nat h n with
    | true ⇒ Some 0 (* element found at the head *)
    | false ⇒
      match indexof n t with
      | Some i ⇒ Some (S i) (* increment successful result *)
      | None ⇒ None (* propagate error *)
      end
    end
  end
end.
```
Higher-order functions

Fixpoint indexof {X:Type} (beq: X -> X -> bool) (v:X) (l:list X) : option nat :=
match l with
| nil => None
| cons h t =>
 match beq h v with
 | true => Some 0 (* element found at the head *)
 | false =>
 match indexof beq v t with (* check for error *)
 | Some i => Some (S i) (* increment successful result *)
 | None => None (* propagate error *)
 end
end
end.

(* A couple of unit tests to ensure indexof is behaving as expected. *)
Filter

Fixpoint filter \{X:Type\} (test: X\rightarrow \text{bool}) (l:list X) : (list X) :=
match l with
| [] ⇒
 []
| h :: t ⇒
 if test h
 then h :: filter test t
 else filter test t
end.

What is the type of this function?
Filter

Fixpoint filter \{X: Type\} (test: X \rightarrow \text{bool}) (l: \text{list } X): (\text{list } X) :=
 \text{match } l \text{ with}
 | [] \Rightarrow
 | []
 | h :: t \Rightarrow
 \text{if } \text{test } h
 \text{then } h :: \text{filter } \text{test } t
 \text{else } h :: \text{filter } \text{test } t
 \text{end.}

What is the type of this function?

forall X: Type \rightarrow (X \rightarrow \text{bool}) \rightarrow \text{list } X \rightarrow \text{list} \rightarrow X

What does this function do?
Filter

```plaintext
Fixpoint filter \{X:Type\} (test: X\rightarrow bool) (l:list X) : (list X) :=
match l with
| [] => []
| h :: t => if test h
  then h :: filter test t
  else filter test t
end.
```

What is the type of this function?

\[
\forall X: \text{Type} \rightarrow (X \rightarrow \text{bool}) \rightarrow \text{list} \ X \rightarrow \text{list} \rightarrow X
\]

What does this function do?

Retains all elements that succeed \text{test}.
How do we use filter?

What if we want to retain 1 and 3? How do we do this?

filter ??? [10; 1; 3; 4]
How do we use filter?

What if we want to retain 1 and 3? How do we do this?

```coq
definition keep_1_3 (n:nat) : bool :=
    match n with
    | 1 => true
    | 3 => true
    | _  => false
end.

(* Assert that the output makes sense: *)
goal filter keep_1_3 [10; 1; 3; 4] = [1; 3].

proof.
  reflexivity.
qed.
```
Revisit keep_1_3

Definition keep_1_3 (n:nat) : bool :=
 match n with
 | 1 => true
 | 3 => true
 | _ => false
 end.

Can we rewrite keep_1_3 by only using beq_nat and orb?
Revisit \texttt{keep_1_3}

\begin{verbatim}
Definition keep_1_3 (n:nat) : bool :=
 match n with
 | 1 => true
 | 3 => true
 | _ => false
end.
\end{verbatim}

Can we rewrite \texttt{keep_1_3} by only using \texttt{beq_nat} and \texttt{orb}?

\begin{verbatim}
Open Scope bool. (* ensure the || operator is loaded *)

Definition keep_1_3_v2 (n:nat) : bool :=
 beq_nat 1 n || beq_nat 3 n.
\end{verbatim}
Anonymous functions

Are we ever going to use keep_1_3 again?

Definition keep_1_3_v2 (n:nat) : bool :=
beq_nat 1 n || beq_nat 3 n.

Compute filter keep_1_3_v2 [10; 1; 3; 4].
Anonymous functions

Are we ever going to use `keep_1_3` again?

Definition

```ocaml
keep_1_3_v2 (n:nat) : bool :=
  beq_nat 1 n || beq_nat 3 n.
```

Compute

```ocaml
filter keep_1_3_v2 [10; 1; 3; 4].
```

If you are not, consider using anonymous functions:

Goal

```ocaml
filter (fun (n:nat) : nat ⇒ beq_nat 1 n || beq_nat 3 n) [10; 1; 3; 4] = [1; 3].
```

Proof.

```ocaml
reflexivity.
```

Qed.

Anonymous functions are helpful as one-shoot usages (like anonymous classes in Java and C#).
Currying

Let us retain only 3's

With an anonymous function:

```
Goal filter (fun n ⇒ match n with | 3 ⇒ true | _ ⇒ false) [10; 1; 3; 4] = [3].
Proof.
  reflexivity.
Qed.
```

What about `Check (beq_nat 3)`? Coq is an expression-based language, so `beq_nat 3` is an expression, as is `beq_nat` and `beq_nat 3 10`. What is the type of each expression?
Currying

Let us retain only 3's

With an anonymous function:

\[
\begin{align*}
\text{Goal } & \text{filter } (\text{fun } n \Rightarrow \text{match } n \text{ with } | 3 \Rightarrow \text{true} | _ \Rightarrow \text{false}) [10; 1; 3; 4] = [3]. \\
\text{Proof.} & \quad \text{reflexivity.} \\
\text{Qed.}
\end{align*}
\]

What about \texttt{Check (beq_nat 3)}? Coq is an expression-based language, so \texttt{beq_nat 3} is an expression, as is \texttt{beq_nat} and \texttt{beq_nat 3 10}. What is the type of each expression?

\[
\begin{align*}
\text{Goal } & \text{filter } (\text{beq_nat 3}) [10; 1; 3; 4] = [1; 3]. (* \text{filter all elements that are equal to 3} *) \\
\text{Proof.} & \quad \text{reflexivity.} \\
\text{Qed.}
\end{align*}
\]
What we learned...

Poly.v

- New capability: types as (function/data) arguments
- New capability: type inference (omit types and let Coq guess the type)
- New syntax: braces \{\} and Arguments for type variable inference (implicit arguments)
- New syntax: \[\] makes all type arguments explicit
- New syntax: fun declares anonymous functions
- New capability: currying (function calls with argument missing yields a function)

(No new tactics.)
Next class: read Tactics.v