Logical Foundations of Computer Science

Lecture 3: data structures

Tiago Cogumbreiro
Recap

- We are currently learning the Logical Foundations (volume 1 of the SF book)
- We are learning a programming language that allows us to formalize programming languages

What do we mean by formalizing programming languages?
Recap

- We are currently learning the Logical Foundations (volume 1 of the SF book)
- We are learning a **programming language** that allows us formalize programming languages

What do we mean by formalizing programming languages?

1. A way to describe the abstract syntax (do we know how to do this?)
2. A way to describe how language executes (do we know how to do this?)
3. A way to describe properties of the language (do we know how to do this?)
Homework submission reminder

The star system was confusing, so we no longer use it: Complete all non-optional exercises.

- For instance, if an exercise says Exercise: 3 stars, optional, then that exercise is not be graded.
- For instance, if an exercise says Exercise: 3 stars, then that exercise is graded.

A quick sure way to check if your homework is acceptable by the autograder is to run coqc YourHomework.v it should compile without errors
Today we will...

- Review how to define data structures and how to prove

Why are we learning this?

- Today we will be honing the tools you have learned so far.
Homework 2 (Induction.v, Lists.v) due:
Tuesday, September 18, 11:59 EST

By email: Tiago.Cogumbreiro@umb.edu
List.v

Due Tuesday, September 18, 11:59 EST
How do we define a data structure that holds two nats?
A pair of nats

```
Inductive natprod : Type :=
| pair : nat → nat → natprod.

Notation "( x , y )" := (pair x y).
```

Explicit vs implicit: be cautious when declaring notations, they make your code harder to understand.
How do we read the contents of a pair?
Accessors of a pair
Accessors of a pair

Definition $\text{fst} \ (p : \text{natprod}) : \text{nat} :=$
Accessors of a pair

\[
\text{Definition } \text{fst} (p : \text{natprod}) : \text{nat} := \\
\quad \text{match } p \text{ with} \\
\quad \mid \text{pair } x \; y \Rightarrow x \\
\quad \text{end.}
\]

\[
\text{Definition } \text{snd} (p : \text{natprod}) : \text{nat} := \\
\quad \text{match } p \text{ with} \\
\quad \mid (x, \; y) \Rightarrow y \quad (* \text{using notations in a pattern to be matched} *) \\
\quad \text{end.}
\]
How do we prove the correctness of our accessors?

(What do we expect fst/snd to do?)
Proving the correctness of our accessors:

Theorem surjective_pairing : forall (p : natprod),
 p = (fst p, snd p).
Proof.
 intros p.

1 subgoal
p : natprod
-----------------------------------(1/1)
p = (fst p, snd p)

Does simpl work? Does reflexivity work? Does destruct work? What about induction?
How do we define a list of nats?
A list of nats

Inductive natlist : Type :=
| nil : natlist
| cons : nat → natlist → natlist.

(* You don't need to learn notations, just be aware of its existence:*)

Notation "x :: l" := (cons x l) (at level 60, right associativity).
Notation "[]" := nil.
Notation "[x ; .. ; y]" := (cons x .. (cons y nil) ..).

Compute cons 1 (cons 2 (cons 3 nil)).

outputs:

= [1; 2; 3]
: list nat
How do we concatenate two lists?
Concatenating two lists

Fixpoint app (l1 l2 : natlist) : natlist :=
 match l1 with
 | nil => l2
 | h :: t => h :: (app t l2)
end.

Notation "x ++ y" := (app x y) (right associativity, at level 60).
Proving results on list concatenation

Theorem nil_app_l : forall l:natlist, [] ++ l = l.

Proof.

intros l.

Can we prove this with reflexivity? Why?
Proving results on list concatenation

Theorem \(\text{nil_app_l} : \forall l : \text{natlist}, \) \([\text{}] \mathbin{\text{++}} l = l.\)

Proof.

\[\text{intros } l. \]

Can we prove this with \text{reflexivity}? Why?

\[\text{reflexivity}. \]

\[\text{Qed.} \]
Nil is a neutral element wrt app

\[\text{Theorem \ nil_app_l : for all \ } l : \text{natlist}, \]
\[l \ ++ \ [] = l. \]

\[\text{Proof.} \]
\[\text{intros } l. \]

Can we prove this with \textit{reflexivity}? Why?
Nil is a neutral element wrt app

Theorem nil_app_l : \(\forall l : \text{natlist}, \)
\[l ++ [] = l. \]

Proof.
\[
\text{intros } l.
\]

Can we prove this with **reflexivity**? Why?

In environment
\[l : \text{natlist} \]
Unable to unify "1" with "1 ++ []".

How can we prove this result?
We need an induction principle of natlist

For some property P we want to prove.

- Show that $P([],\text{nat})$ holds.
- Given the induction hypothesis $P(l)$ and some number n, show that $P(n :: l)$ holds.

Conclude that $P(l)$ holds for all l.

How do we know this principle? Hint: compare natlist with nat.
Comparing nats with natlists

\[
\text{Inductive } \text{natlist} : \text{Type} := \\
| \text{O} : \text{natlist} | \text{A} : T \\
| \text{S} : \text{nat} \to \text{nat.} | \text{B} : T \to T
\]

1. \[\vdash P(A) \]
2. \[t : T, P(t) \vdash P(B \ t) \]

\[
\text{Inductive } \text{natlist} : \text{Type} := \\
| \text{nil} : \text{natlist} | \text{A} : T \\
| \text{cons} : \text{nat} \to \text{natlist} \to \text{natlist.} | \text{B} : X \to T \to T
\]

1. \[\vdash P(A) \]
2. \[x : X, t : T, P(t) \vdash P(B \ t) \]
How do we know the induction principle?

Use search

```
Search natlist.
```

which outputs

```
nil: natlist
cons: nat → natlist → natlist
(* trimmed output *)

natlist_ind:
  forall P : natlist → Prop,
  P [] →
  (forall (n : nat) (l : natlist), P l → P (n::l)) → forall n : natlist, P n
```
Nil is neutral on the right (1/2)

Theorem nil_app_r : forall l:natlist,
l ++ [] = l.

Proof.
 intros l.
 induction l.
 - reflexivity.
 -

yields

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l
--(1/1)
(n :: l) ++ [] = n :: l
Nil is neutral on the right (2/2)

1 subgoal
n : nat
l : natlist
IH_l : l ++ [] = l

(1/1)

(n :: l) ++ [] = n :: l
Nil is neutral on the right (2/2)

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l

\[(n :: l) ++ [] = n :: l \]

simpl. (* app (n::l) [] = n :: (app l []) *)
rewrite → IHl. (* n :: (app l []) = n :: l *)
reflexivity. (* conclude *)

Can we apply rewrite directly without simplifying?
Hint: before and after stepping through a tactic show/hide notations.
How do we state a theorem that leads to the same proof state (without ltac)?
How do we signal failure in a functional language?
Partial functions

How declare a function that is not defined for empty lists?

(* Pairs the head and the list *)
Fixpoint indexof n (l:natlist) :=
 match l with
 | [] ⇒ ???
 | h :: t ⇒
 match beq_nat h n with
 | true ⇒ 0
 | false ⇒ S (indexof t)
 end
 end.

Inductive natoption : Type :=
 | Some : nat → natoption
 | None : natoption.
How do we declare `indexof` with optional types?

```
Fixpoint indexof n (l:natlist) : natoption :=
```
How do we declare `indexOf` with optional types?

```ocaml
Fixpoint indexOf n (l:natlist) : natoption :=
  match l with
  | [] => None
  | h :: t =>
    match beq_nat h n with
    | true => Some 0
    | false => S (indexOf n t)
  end
end.
```
How do we declare `indexOf` with optional types?

```coq
Fixpoint indexOf n (l:natlist) : natoption :=
  match l with
  | [] => None
  | h :: t =>
    match beq_nat h n with
    | true => Some 0
    | false => S (indexOf n t)
  end
end.
```

The term "indexOf n t" has type "natoption" while it is expected to have type "nat".
How do we declare `indexOf` with optional types?

```haskell
Fixpoint indexOf (n:nat) (l:natlist) : natoption :=
  match l with
  | [] ⇒ None
  | h :: t ⇒
    match beq_nat h n with
    | true ⇒ Some 0 (* element found at the head *)
    | false ⇒
      match indexOf n t with (* check for error *)
      | Some i ⇒ Some (S i) (* increment successful result *)
      | None ⇒ None (* propagate error *)
    end
  end
end.
```
Summary
Summary

- implemented containers: pair, list, option
- partial functions via option types
- reviewed case analysis, proof by induction
- used Search to browse definitions
Next class: read Poly.v
Ltac vocabulary

- `simpl`
- `reflexivity`
- `intros`
- `rewrite`
- `destruct`
- `induction`
- `assert`

(Nothing new from Lesson 2.)